ON k-CAPS IN $\text{PG}(n,q)$, WITH q EVEN AND $n \geq 4$

J. A. THAS
GHENT UNIVERSITY

ABSTRACT. Let $m_2(n,q)$, $n \geq 3$, be the maximum size of k for which there exists a complete k-cap in $\text{PG}(n,q)$. In this paper the known bounds for $m_2(n,q)$, $n \geq 4$, q even and $q \geq 2048$, will be considerably improved.

Keywords: projective space, finite field, k-cap.

1. INTRODUCTION

A k-arc of $\text{PG}(2,q)$ is a set of k points, no three of which are collinear; a k-cap of $\text{PG}(n,q)$, $n \geq 3$, is a set of k points, no three of which are collinear. A k-arc or k-cap is complete if it is not contained in a $(k+1)$-arc or $(k+1)$-cap. The largest value of k for which a k-arc of $\text{PG}(2,q)$, or a k-cap of $\text{PG}(n,q)$ with $n \geq 3$, exists is denoted by $m_2(n,q)$. The size of the second largest complete k-arc of $\text{PG}(2,q)$ or k-cap of $\text{PG}(n,q)$, $n \geq 3$, is denoted by $m_0^2(n,q)$.

For any k-arc K in $\text{PG}(2,q)$ or k-cap K in $\text{PG}(n,q)$, $n \geq 3$, a tangent of K is a line which has exactly one point in common with K. Let t be the number of tangents of K through a point P of K and let $\sigma_1(Q)$ be the number of tangents of K through a point $Q \not \in K$. Then for a k-arc K $t + k = q^{n-1} + q^{n-2} + \cdots + q + 2$.

Theorem 1.1 ([6]). If K is a complete k-arc in $\text{PG}(2,q)$, q even, or a complete k-cap in $\text{PG}(n,q)$, $n \geq 3$ and q even, then $\sigma_1(Q) \leq t$ for each point Q not in K.

Theorem 1.2.

(i) $m_2(2,q) = q + 2$, q even [5];

(ii) $m_2(3,q) = q^2 + 1$, q even, $q > 2$ [4, 1, 8];

(iii) $m_2(n,2) = 2^n$ [1];

(iv) $m_2(4,4) = 41$ [3];

(v) $m_2^2(n,2) = 2^{n-1} + 2^{n-3}$ [2];

(vi) $m_2^2(3,4) = 14$ [6].

Theorem 1.3 ([9, 11, 5]). Let K be a k-arc of $\text{PG}(2,q)$, q even and $q > 2$, with $q - \sqrt{q+1} < k \leq q + 1$. Then K can be uniquely extended to a $(q+2)$-arc of $\text{PG}(2,q)$.

The following result is the Main Theorem of [12].

Theorem 1.4 ([12]).

(1) $m_2^2(3,q) < q^2 - (\sqrt{q} - 1)q + 5$, q even, $q \geq 8$.
As a corollary new bounds for \(m_2(n, q) \), \(q \) even, \(q \geq 8 \) and \(n \geq 4 \), are obtained.

Theorem 1.5 ([12]).

(i) \(m_2(4, 8) \geq 479 \);
(ii) for \(q \) even, \(q > 8 \),
\[m_2(4, q) < q^3 - q^2 + 2\sqrt{5}q - 8; \]
(iii) \(m_2(n, 8) \leq 478.8^{n-4} - 2(8^{n-5} + \cdots + 8 + 1) + 1, n \geq 5; \)
(iv) for \(q \) even, \(q > 8, n \geq 5 \),
\[m_2(n, q) < q^{n-1} - q^{n-2} + 2\sqrt{5}q^{n-3} - 9q^{n-4} - 2(q^{n-5} + \cdots + q + 1) + 1. \]

Combining the main theorem of [10] with Theorem 1.4, there is an immediate improvement of the upper bound for \(m'_2(3, q), q \geq 2048 \). This important remark is due to T. Szönyi.

Theorem 1.6 ([12]).

(2) \(m'_2(3, q) < q^3 - 2q + 3\sqrt{q} + 2, q \) even, \(q \geq 2048 \).

Relying on Theorem 1.6, in the underlying paper new bounds for \(m_2(n, q), q \) even, \(q \geq 2048, n \geq 4 \), will be obtained.

Theorem 1.7. For \(q \) even, \(q \geq 2048 \),

(i) \(m_2(4, q) < q^3 - 2q^2 + 3q\sqrt{q} + 8q - 9\sqrt{q} - 6 \),
(ii) \(m_2(n, q) < q^{n-1} - 2q^{n-2} + 3q^{n-3}\sqrt{q} + 8q^{n-3} - 9q^{n-4}\sqrt{q} - 7q^{n-4} - 2(q^{n-5} + \cdots + q + 1) + 1, n \geq 5. \)

2. NEW BOUND FOR \(m_2(4, q) \)

Theorem 2.1. For \(q \) even, \(q \geq 2048 \),

(3) \(m_2(4, q) < q^3 - 2q^2 + 3q\sqrt{q} + 8q - 9\sqrt{q} - 6. \)

Proof. Assume, by way of contradiction, that \(K \) is a complete \(k \)-cap of \(\text{PG}(4, q) \) with \(k \geq q^3 - 2q^2 + 3q\sqrt{q} + 8q - 9\sqrt{q} - 6 \). Then \(t \leq q^3 + q^2 + q + 2 - q^3 + 2q^2 - 3q\sqrt{q} - 8q + 9\sqrt{q} + 6 \), so \(t \leq 3q^2 - 3q\sqrt{q} - 7q + 9\sqrt{q} + 8 \). We obtain a contradiction in several stages.

(I) \(K \) contains no plane \(q \)-arc

Assume, by way of contradiction, that \(\pi \) is a plane with \(|\pi \cap K| = q \); let \(\pi \cap K = Q \).

(a) **Suppose that** \(\delta_1, \delta_2, \ldots, \delta_5 \) **are distinct hyperplanes containing** \(\pi \), **such that**

(7) \(|\delta_i \cap K| \geq q^2 - 2q + 3\sqrt{q} + 2, i = 1, 2, \ldots, 5 \)

By Theorem 1.6 each \(\delta_i \cap K \) can be extended to an ovoid \(O_i \) of \(\delta_i, i = 1, 2, \ldots, 5 \). Hence \(O_i \cap \pi \) is a \((q+1)\)-arc \(Q \cup \{N_i\}, i = 1, 2, \ldots, 5 \). Since \(Q \) is contained in two
(q + 1)-arcs at least three of the points \(N_i\) coincide, say \(N_1 = N_2 = N_3\). The joins of \(N_1\) to the points of \(\delta_i \cap K\), with \(i = 1, 2, 3\), are tangents of \(K\). Hence

\[
\sigma_1(N_i) \geq 3(q^2 - 3q + 3\sqrt{q} + 2) + q.
\]

so

\[
\sigma_1(N_1) \geq 3q^2 - 8q + 9\sqrt{q} + 6.
\]

As \(K\) is complete, \(\sigma_1(N_1) \leq t\). So

\[
3q^2 - 8q + 9\sqrt{q} + 6 \leq 3q^2 - 3q\sqrt{q} - 7q + 9\sqrt{q} + 8,
\]

that is

\[
3q\sqrt{q} - q - 2 \leq 0,
\]

clearly a contradiction.

(b) Assume that there are at most 4 hyperplanes \(\delta\) of \(\text{PG}(4, q)\) containing \(\pi\) with \(|\delta \cap K| \geq q^2 - 2q + 3\sqrt{q} + 2\)

Then counting points of \(K\) in hyperplanes containing \(\pi\) gives

\[
k < (q - 3)(q^2 - 3q + 3\sqrt{q} + 2) + 4(q^2 - q) + q,
\]

that is,

\[
k < q^3 - 2q^2 + 3q\sqrt{q} + 8q - 9\sqrt{q} - 6.
\]

(Remark that any hyperplane containing \(\pi\), has at most \(q^2\) points in common with \(K\).)

But \(k \geq q^3 - 2q^2 + 3q\sqrt{q} + 8q - 9\sqrt{q} - 6\), clearly a contradiction.

(II) There exists no hyperplane \(\delta\) of \(\text{PG}(4, q)\) such that

\[
q^2 + 1 > |\delta \cap K| \geq q^2 - 2q + 3\sqrt{q} + 2
\]

Suppose, by way of contradiction, that such a \(\delta\) exists. Let \(\delta \cap K = K'\). Then \(K'\) can be extended to an ovoid \(O\) of \(\delta\). Let \(N \in O \setminus K'\) and let \(N' \in K'\). Consider the \(q + 1\) planes of \(\delta\) containing the line \(NN'\). Each of these planes meets \(O\) in a \((q+1)\)-arc, so by I each such plane meets \(K'\) in at most a \((q-1)\)-arc.

Assume, by way of contradiction, that none of these intersections is a \((q-1)\)-arc. Counting the points of \(K'\) on these \(q + 1\) planes gives

\[
|K'| \leq (q + 1)(q - 3) + 1,
\]

so

\[
|K'| \leq q^2 - 2q - 2.
\]

As \(|K'| \geq q^2 - 2q + 3\sqrt{q} + 2\), there arises \(3\sqrt{q} + 4 \leq 0\), a contradiction.

So we may assume that \(|\pi \cap K'| = q - 1, \pi \subset \delta, NN' \subset \pi\). Consider all hyperplanes of \(\text{PG}(4, q)\) containing the plane \(\pi\). Let \(\theta\) be the number of such hyperplanes \(\pi'\) for which

\[
|\pi' \cap K| \geq q^2 - 2q + 3\sqrt{q} + 2.
\]

By assumption \(\theta \geq 1\).
First assume \(\theta \geq 4 \), hence there are at least 4 hyperplanes \(\pi'_1, \pi'_2, \pi'_3, \pi'_4 \) containing \(\pi \) such that
\[
|\pi'_i \cap K| \geq q^2 - 2q + 3\sqrt{q} + 2.
\]
Consequently \(\pi'_i \cap K \) can be extended to an ovoid \(O_i \) of \(\pi'_i \), with \(i = 1, 2, 3, 4 \). It follows that \(O_i \cap \pi \) is a \((q + 1)\)-arc \((\pi \cap K) \cup \{N_i', N''_i\}, i = 1, 2, 3, 4 \). The \((q - 1)\)-arc \(\pi \cap K \) is extendable to a unique \((q + 2)\)-arc \(R \) of \(\pi \), and each \((q + 1)\)-arc of \(\pi \) containing \(\pi \cap K \) belongs to \(R \). So \(\pi \cap K \) is contained in exactly \(3(q+1) \)-arcs of \(\pi \). It follows that there is at least one point \(N \) which belongs to 3 of the 4 pairs \(\{N_i', N''_i\} \). So the number of tangents \(\sigma_1(N) \) of \(K \) containing \(N \) is at least
\[
(19) 3(q^2 - 2q + 3\sqrt{q} + 2 - q + 1) + q - 1 = 3q^2 - 8q + 9\sqrt{q} + 8.
\]
As \(\sigma_1(N) \leq t \), there arises
\[
(20) 3q^2 - 3q\sqrt{q} - 7q + 9\sqrt{q} + 8 \geq t \geq \sigma_1(N) \geq 3q^2 - 8q + 9\sqrt{q} + 8,
\]
so
\[
(21) 3q\sqrt{q} - q \leq 0,
\]
a contradiction.

Finally, assume \(\theta \leq 3 \). Counting the points of \(K \) in the \(q + 1 \) hyperplanes containing \(\pi \), we obtain
\[
(22) k < (q - 2)(q^2 - 2q + 3\sqrt{q} + 2 - q + 1) + 3(q^2 - q + 1) + q - 1,
\]
so
\[
(23) k < q^3 - 2q^2 + 3q\sqrt{q} + 7q - 6\sqrt{q} - 4.
\]
As
\[
(24) k \geq q^3 - 2q^2 + 3q\sqrt{q} + 8q - 9\sqrt{q} - 6,
\]
there arises
\[
(25) q - 3\sqrt{q} - 2 < 0,
\]
a final contradiction.

(III) For a point \(N \) not on \(K \), there do not exist planes \(\pi_1 \) and \(\pi_2 \) such that \(\pi_1 \cap \pi_2 = \{N\} \) and such that \(\pi_1 \cap K \) is a \((q + 1)\)-arc with nucleus \(N \), \(i = 1, 2 \).

Suppose, by way of contradiction, that such planes \(\pi_1, \pi_2 \) exist. Let \(\delta \) be a hyperplane containing \(\pi_1 \). Then \(\delta \cap K \) contains the \(q + 1 \) tangents of \(\pi_1 \cap K \) through \(N \) and one tangent of \(\pi_2 \cap K \) through \(N \). So \(\delta \cap K \) has at least \(q + 2 \) tangents through \(N \). Hence \(|\delta \cap K| < q^2 + 1 \).

Suppose that
\[
(26) |\delta \cap K| < q^2 - 2q + 3\sqrt{q} + 2
\]
for any such hyperplane \(\delta \). Counting points of \(K \) in hyperplanes containing \(\pi_1 \) gives
\[
(27) k < (q + 1)(q^2 - 3q + 3\sqrt{q} + 1) + q + 1,
\]
so
\[
(28) k < q^3 - 2q^2 + 3q\sqrt{q} - q + 3\sqrt{q} + 2.
\]
As \(k \geq q^3 - 2q^2 + 3q\sqrt{q} + 8q - 9\sqrt{q} - 6 \), there arises a contradiction.
Consequently there exists a hyperplane \(\delta \) through \(\pi_1 \) for which
\[
q^2 + 1 > |\delta \cap K| \geq q^2 - 2q + 3\sqrt{q} + 2,
\]
contradicting II.

(IV) The tangents of \(K \) through any point \(N \) not on \(K \) lie in a hyperplane
Let \(\delta \) be a hyperplane not containing \(N \) and let \(\mathcal{V} \) be the set of the intersections of \(\delta \) with all tangents of \(K \) through \(N \). We will show that each point of \(\mathcal{V} \) is on at least two lines contained in \(\mathcal{V} \).

Let \(R \in \mathcal{V} \) and let \(r = RN \). Assume, by way of contradiction, that for at most one plane \(\pi \) containing \(r \) we have \(|\pi \cap K| \geq q - 1 \). So
\[
k \leq (q^2 + q)(q - 3) + (q + 1),
\]
that is,
\[
k \leq q^3 - 2q^2 - 2q + 1.
\]
As \(k \geq q^3 - 2q^2 + 3q\sqrt{q} + 8q - 9\sqrt{q} - 6 \), there arises \(3q\sqrt{q} + 10q - 9\sqrt{q} - 7 \leq 0 \), a contradiction.

Hence we may assume that for distinct planes \(\pi, \pi' \) containing \(r \) we have
\[
|\pi \cap K|, |\pi' \cap K| \in \{q - 1, q + 1\}.
\]
(By I no plane intersects \(K \) in a \(q \)-arc.)

We distinguish two cases.

(a) At least one of the planes \(\pi, \pi' \) intersects \(K \) in a \((q - 1) \)-arc
Say \(|\pi \cap K| = q - 1 \). Assume, by way of contradiction, that for no hyperplane \(\delta' \) containing \(\pi \) we have \(|\delta' \cap K| = q^2 + 1 \). Counting points of \(K \) in hyperplanes containing \(\pi \) gives by II
\[
k < (q + 1)(q^2 - 2q + 3\sqrt{q} + 2 - q + 1) + q - 1,
\]
that is,
\[
k < q^3 - 2q^2 + 3q\sqrt{q} + q + 3\sqrt{q} + 2.
\]
As \(k \geq q^3 - 2q^2 + 3q\sqrt{q} + 8q - 9\sqrt{q} - 6 \), there arises \(7q - 12\sqrt{q} - 8 < 0 \), a contradiction.

So for at least one hyperplane \(\delta' \) containing \(\pi \) we have \(|\delta' \cap K| = q^2 + 1 \). But then \(|\pi \cap K| = q + 1 \), again a contradiction.

(b) \(|\pi \cap K| = |\pi' \cap K| = q + 1 \)
If \(N \) is the nucleus of both \(\pi \cap K \) and \(\pi' \cap K \), then there are two lines of \(\mathcal{V} \) through \(R \), namely \(\pi \cap \delta \) and \(\pi' \cap \delta \).

Therefore suppose that \(N \) is not the nucleus of \(\pi \cap K \). If for at most one hyperplane \(\delta' \) containing \(\pi \) we have \(|\delta' \cap K| = q^2 + 1 \), then counting points of \(K \) in hyperplanes containing \(\pi \) gives
\[
k < q^2 + 1 + q(q^2 - 3q + 3\sqrt{q} + 1),
\]
so
\[
k < q^3 - 2q^2 + 3q\sqrt{q} + q + 1.
\]
As \(k \geq q^3 - 2q^2 + 3q\sqrt{q} + 8q - 9\sqrt{q} - 6 \), there arises \(7q - 9\sqrt{q} - 7 < 0 \), a contradiction.
Consequently there are at least two hyperplanes \(\delta_1 \) and \(\delta_2 \) containing \(\pi \) for which \(\delta_i \cap K = O_i \) is an ovoid, \(i = 1, 2 \). then there is a plane \(\pi_i \) of \(\delta_i \) containing \(N \) such that \(N \) is the nucleus of the \((q+1) \)-arc \(\pi_i \cap O_i = K_i, i = 1, 2 \). As \(N \) is not the nucleus of \(\pi \cap K \), we have \(\pi \neq \pi_1 \neq \pi_2 \neq \pi \). The tangents of \(K_i \) (which contain \(N \)) meet \(\delta \) in the points of a line \(l_i \), containing \(R \), with \(i = 1, 2 \), and \(l_1 \neq l_2 \).

Consequently each point of \(V \) is on at least two lines contained in \(V \).

If there existed two skew lines in \(V \), there would be two planes \(\pi'_1 \) and \(\pi'_2 \) on \(N \), with \(\pi'_1 \cap \pi'_2 = \{N\} \) and \(N \) the nucleus of the \((q+1) \)-arcs \(\pi'_1 \cap K \) and \(\pi'_2 \cap K \). This is in contradiction with III. It follows that the lines of \(V \) all have a common point or all lie in a common plane. As each point of \(V \) is on at least two lines of \(V \), all lines of \(V \) lie in a plane. Hence \(V \) is subset of a plane, and so all tangents of \(K \) containing \(N \) lie in a hyperplane.

(V) The final contradiction

The final contradiction will be obtained by counting all tangents of \(K \).

Consider the function

\[
G(x) = x(q^3 + q^2 + q + 2 - x).
\]

It attains its maximum value for

\[
x = \frac{1}{2}(q^3 + q^2 + q + 2).
\]

We have

\[
q^3 > k \geq q^3 - 2q^2 + 3q\sqrt{q} + 8q - 9\sqrt{q} - 6 > \frac{1}{2}(q^3 + q^2 + q + 2),
\]

so

\[
kt = k(q^3 + q^2 + q + 2 - k) = G(k) > G(q^3) = q^3(q^2 + q + 2).
\]

All tangents containing a point \(N \) not on \(K \) lie in a hyperplane, which contains at most \(q^2 + 1 \) points of \(K \). An ovoid of a hyperplane containing \(N \) has exactly \(q+1 \) tangents containing \(N \). Hence \(N \) is contained in at most \(q^2 \) tangents of \(K \).

Counting the pairs \((N,l)\), with \(N \notin K \), \(l \) a tangent of \(K \) containing \(N \), there arises

\[
(q^4 + q^3 + q^2 + q + 1 - k)q^2 \geq k tq,
\]

so

\[
(q^4 + q^3 + q^2 + q + 1 - q^3 + 2q^2 - 3q\sqrt{q} - 8q + 9\sqrt{q} + 6)q \geq kt,
\]

so

\[
(q^4 + 3q^2 - 3q\sqrt{q} - 7q + 9\sqrt{q} + 7)q \geq kt > q^3(q^2 + q + 2),
\]

that is,

\[
q^3 - q^2 + 3q\sqrt{q} + 7q - 9\sqrt{q} - 7 < 0,
\]

a contradiction.
3. New bound for \(m_2(n, q) \), \(n \geq 5 \)

Theorem 3.1. For \(q \) even, \(q \geq 2048 \), \(n \geq 5 \)

\[
m_2(n, q) < q^{n-1} - 2q^{n-2} + 3q^{n-3} - 9q^{n-4} - 2(q^{n-5} + \cdots + q + 1) + 1.
\]

Proof By 6.14(ii) of [7] for \(n \geq 5 \) and \(q > 2 \), we have

\[
m_2(n, q) \leq q^{n-4} m_2(4, q) - q^{n-4} - 2(q^{n-5} + \cdots + q + 1) + 1.
\]

From Theorem 2.1 the result follows.

References

[12] J. A. Thas, On \(k \)-caps in \(\text{PG}(n, q) \), with \(q \) even and \(n \geq 3 \), *Discrete Math.*, to appear.

Ghent University, Department of Mathematics, Krijgslaan 281, S25, B-9000 Ghent, Belgium

E-mail address: joseph.thas@ugent.be