Advanced search
1 file | 837.26 KB Add to list

Prediction of implantation after blastocyst transfer in in vitro fertilization : a machine-learning perspective

(2019) FERTILITY AND STERILITY. 111(2). p.318-326
Author
Organization
Keywords
blastocyst transfer, IVF, machine learning, prediction model, random forest, SINGLE-EMBRYO-TRANSFER, LIVE BIRTH, OVARIAN STIMULATION, ONGOING PREGNANCY, IVF, SUCCESS, PROBABILITY, CHANCE, MODELS, NEED

Downloads

  • (...).pdf
    • full text
    • |
    • UGent only
    • |
    • PDF
    • |
    • 837.26 KB

Citation

Please use this url to cite or link to this publication:

MLA
Blank, Celine et al. “Prediction of Implantation After Blastocyst Transfer in in Vitro Fertilization : a Machine-learning Perspective.” FERTILITY AND STERILITY 111.2 (2019): 318–326. Print.
APA
Blank, Celine, Wildeboer, R. R., De Croo, I., Tilleman, K., Weyers, B., De Sutter, P., Mischi, M., et al. (2019). Prediction of implantation after blastocyst transfer in in vitro fertilization : a machine-learning perspective. FERTILITY AND STERILITY, 111(2), 318–326.
Chicago author-date
Blank, Celine, Rogier Rudolf Wildeboer, Ilse De Croo, Kelly Tilleman, Basiel Weyers, Petra De Sutter, Massimo Mischi, and Benedictus C. Schoot. 2019. “Prediction of Implantation After Blastocyst Transfer in in Vitro Fertilization : a Machine-learning Perspective.” Fertility and Sterility 111 (2): 318–326.
Chicago author-date (all authors)
Blank, Celine, Rogier Rudolf Wildeboer, Ilse De Croo, Kelly Tilleman, Basiel Weyers, Petra De Sutter, Massimo Mischi, and Benedictus C. Schoot. 2019. “Prediction of Implantation After Blastocyst Transfer in in Vitro Fertilization : a Machine-learning Perspective.” Fertility and Sterility 111 (2): 318–326.
Vancouver
1.
Blank C, Wildeboer RR, De Croo I, Tilleman K, Weyers B, De Sutter P, et al. Prediction of implantation after blastocyst transfer in in vitro fertilization : a machine-learning perspective. FERTILITY AND STERILITY. 2019;111(2):318–26.
IEEE
[1]
C. Blank et al., “Prediction of implantation after blastocyst transfer in in vitro fertilization : a machine-learning perspective,” FERTILITY AND STERILITY, vol. 111, no. 2, pp. 318–326, 2019.
@article{8616371,
  author       = {{Blank, Celine and Wildeboer, Rogier Rudolf and De Croo, Ilse and Tilleman, Kelly and Weyers, Basiel and De Sutter, Petra and Mischi, Massimo and Schoot, Benedictus C.}},
  issn         = {{0015-0282}},
  journal      = {{FERTILITY AND STERILITY}},
  keywords     = {{blastocyst transfer,IVF,machine learning,prediction model,random forest,SINGLE-EMBRYO-TRANSFER,LIVE BIRTH,OVARIAN STIMULATION,ONGOING PREGNANCY,IVF,SUCCESS,PROBABILITY,CHANCE,MODELS,NEED}},
  language     = {{eng}},
  number       = {{2}},
  pages        = {{318--326}},
  title        = {{Prediction of implantation after blastocyst transfer in in vitro fertilization : a machine-learning perspective}},
  url          = {{http://dx.doi.org/10.1016/j.fertnstert.2018.10.030}},
  volume       = {{111}},
  year         = {{2019}},
}

Altmetric
View in Altmetric
Web of Science
Times cited: