Advanced search
2 files | 3.64 MB Add to list

MSqRob : analysis of label-free proteomics data in an R/Shiny environment

Author
Organization
Keywords
MSqRob, R, Shiny, statistics, biostatistics, data analysis, differential protein abundance, label-free quantification, differential proteomics, peptide-based linear model, robust ridge regression, M estimation, Huber weights, empirical Bayes variance estimation, tandem mass spectrometry, overfitting, outliers, missing values

Downloads

  • presentation Eubic Winter School 2017 3.pdf
    • full text
    • |
    • open access
    • |
    • PDF
    • |
    • 2.18 MB
  • poster Eubic Ludger.pdf
    • full text
    • |
    • open access
    • |
    • PDF
    • |
    • 1.45 MB

Citation

Please use this url to cite or link to this publication:

MLA
Goeminne, Ludger, et al. “MSqRob : Analysis of Label-Free Proteomics Data in an R/Shiny Environment.” EuBIC Winter School, Abstracts, 2017.
APA
Goeminne, L., Gevaert, K., & Clement, L. (2017). MSqRob : analysis of label-free proteomics data in an R/Shiny environment. In EuBIC Winter School, Abstracts. Semmering, Austria.
Chicago author-date
Goeminne, Ludger, Kris Gevaert, and Lieven Clement. 2017. “MSqRob : Analysis of Label-Free Proteomics Data in an R/Shiny Environment.” In EuBIC Winter School, Abstracts.
Chicago author-date (all authors)
Goeminne, Ludger, Kris Gevaert, and Lieven Clement. 2017. “MSqRob : Analysis of Label-Free Proteomics Data in an R/Shiny Environment.” In EuBIC Winter School, Abstracts.
Vancouver
1.
Goeminne L, Gevaert K, Clement L. MSqRob : analysis of label-free proteomics data in an R/Shiny environment. In: EuBIC Winter School, Abstracts. 2017.
IEEE
[1]
L. Goeminne, K. Gevaert, and L. Clement, “MSqRob : analysis of label-free proteomics data in an R/Shiny environment,” in EuBIC Winter School, Abstracts, Semmering, Austria, 2017.
@inproceedings{8616173,
  author       = {{Goeminne, Ludger and Gevaert, Kris and Clement, Lieven}},
  booktitle    = {{EuBIC Winter School, Abstracts}},
  keywords     = {{MSqRob,R,Shiny,statistics,biostatistics,data analysis,differential protein abundance,label-free quantification,differential proteomics,peptide-based linear model,robust ridge regression,M estimation,Huber weights,empirical Bayes variance estimation,tandem mass spectrometry,overfitting,outliers,missing values}},
  language     = {{eng}},
  location     = {{Semmering, Austria}},
  title        = {{MSqRob : analysis of label-free proteomics data in an R/Shiny environment}},
  year         = {{2017}},
}