Advanced search
1 file | 394.27 KB Add to list

Longitudinal radiomics of cone-beam CT images from non-small cell lung cancer patients : evaluation of the added prognostic value for overall survival and locoregional recurrence

Author
Organization
Abstract
Background and purpose: The prognostic value of radiomics for non-small cell lung cancer (NSCLC) patients has been investigated for images acquired prior to treatment, but no prognostic model has been developed that includes the change of radiomic features during treatment. Therefore, the aim of this study was to investigate the potential added prognostic value of a longitudinal radiomics approach using cone-beam computed tomography (CBCT) for NSCLC patients. Materials and methods: This retrospective study includes a training dataset of 141 stage I-IV NSCLC patients and three external validation datasets of 94, 61 and 41 patients, all treated with curative intended (chemo) radiotherapy. The change of radiomic features extracted from CBCT images was summarized as the slope of a linear regression. The CBCT slope-features and CT-extracted features were used as input for a Cox proportional hazards model. Moreover, prognostic performance of clinical parameters was investigated for overall survival and locoregional recurrence. Model performances were assessed using the Kaplan-Meier curves and c-index. Results: The radiomics model contained only CT-derived features and reached a c-index of 0.63 for overall survival and could be validated on the first validation dataset. No model for locoregional recurrence could be developed that validated on the validation datasets. The clinical parameters model could not be validated for either overall survival or locoregional recurrence. Conclusion: In this study we could not confirm our hypothesis that longitudinal CBCT-extracted radiomic features contribute to improved prognostic information. Moreover, performance of baseline radiomic features or clinical parameters was poor, probably affected by heterogeneity within and between datasets.
Keywords
Non-small cell lung cancer, Radiomics, Cone-beam CT, Longitudinal, Overall survival, MULTIVARIABLE PREDICTION MODEL, INDIVIDUAL PROGNOSIS, DIAGNOSIS TRIPOD, FEATURES, REGRESSION

Downloads

  • van Timmeren-2019-Longitudinal radiomics of co.pdf
    • full text
    • |
    • open access
    • |
    • PDF
    • |
    • 394.27 KB

Citation

Please use this url to cite or link to this publication:

MLA
van Timmeren, Janna E et al. “Longitudinal Radiomics of Cone-beam CT Images from Non-small Cell Lung Cancer Patients : Evaluation of the Added Prognostic Value for Overall Survival and Locoregional Recurrence.” RADIOTHERAPY AND ONCOLOGY 136 (2019): 78–85. Print.
APA
van Timmeren, J. E., van Elmpt, W., Leijenaar, R. T., Reymen, B., Monshouwer, R., Bussink, J., Paelinck, L., et al. (2019). Longitudinal radiomics of cone-beam CT images from non-small cell lung cancer patients : evaluation of the added prognostic value for overall survival and locoregional recurrence. RADIOTHERAPY AND ONCOLOGY, 136, 78–85.
Chicago author-date
van Timmeren, Janna E, Wouter van Elmpt, Ralph TH Leijenaar, Bart Reymen, René Monshouwer, Johan Bussink, Leen Paelinck, et al. 2019. “Longitudinal Radiomics of Cone-beam CT Images from Non-small Cell Lung Cancer Patients : Evaluation of the Added Prognostic Value for Overall Survival and Locoregional Recurrence.” Radiotherapy and Oncology 136: 78–85.
Chicago author-date (all authors)
van Timmeren, Janna E, Wouter van Elmpt, Ralph TH Leijenaar, Bart Reymen, René Monshouwer, Johan Bussink, Leen Paelinck, Evelien Bogaert, Carlos De Wagter, ELHASEEN ELAMIN, Yolande Lievens, Olfred Hansen, Carsten Brink, and Philippe Lambin. 2019. “Longitudinal Radiomics of Cone-beam CT Images from Non-small Cell Lung Cancer Patients : Evaluation of the Added Prognostic Value for Overall Survival and Locoregional Recurrence.” Radiotherapy and Oncology 136: 78–85.
Vancouver
1.
van Timmeren JE, van Elmpt W, Leijenaar RT, Reymen B, Monshouwer R, Bussink J, et al. Longitudinal radiomics of cone-beam CT images from non-small cell lung cancer patients : evaluation of the added prognostic value for overall survival and locoregional recurrence. RADIOTHERAPY AND ONCOLOGY. 2019;136:78–85.
IEEE
[1]
J. E. van Timmeren et al., “Longitudinal radiomics of cone-beam CT images from non-small cell lung cancer patients : evaluation of the added prognostic value for overall survival and locoregional recurrence,” RADIOTHERAPY AND ONCOLOGY, vol. 136, pp. 78–85, 2019.
@article{8615763,
  abstract     = {Background and purpose: The prognostic value of radiomics for non-small cell lung cancer (NSCLC) patients has been investigated for images acquired prior to treatment, but no prognostic model has been developed that includes the change of radiomic features during treatment. Therefore, the aim of this study was to investigate the potential added prognostic value of a longitudinal radiomics approach using cone-beam computed tomography (CBCT) for NSCLC patients.
Materials and methods: This retrospective study includes a training dataset of 141 stage I-IV NSCLC patients and three external validation datasets of 94, 61 and 41 patients, all treated with curative intended (chemo) radiotherapy. The change of radiomic features extracted from CBCT images was summarized as the slope of a linear regression. The CBCT slope-features and CT-extracted features were used as input for a Cox proportional hazards model. Moreover, prognostic performance of clinical parameters was investigated for overall survival and locoregional recurrence. Model performances were assessed using the Kaplan-Meier curves and c-index.
Results: The radiomics model contained only CT-derived features and reached a c-index of 0.63 for overall survival and could be validated on the first validation dataset. No model for locoregional recurrence could be developed that validated on the validation datasets. The clinical parameters model could not be validated for either overall survival or locoregional recurrence.
Conclusion: In this study we could not confirm our hypothesis that longitudinal CBCT-extracted radiomic features contribute to improved prognostic information. Moreover, performance of baseline radiomic features or clinical parameters was poor, probably affected by heterogeneity within and between datasets.},
  author       = {van Timmeren, Janna E and van Elmpt, Wouter and Leijenaar, Ralph TH and Reymen, Bart and Monshouwer, René and Bussink, Johan and Paelinck, Leen and Bogaert, Evelien and De Wagter, Carlos and ELAMIN, ELHASEEN and Lievens, Yolande and Hansen, Olfred and Brink, Carsten and Lambin, Philippe},
  issn         = {0167-8140},
  journal      = {RADIOTHERAPY AND ONCOLOGY},
  keywords     = {Non-small cell lung cancer,Radiomics,Cone-beam CT,Longitudinal,Overall survival,MULTIVARIABLE PREDICTION MODEL,INDIVIDUAL PROGNOSIS,DIAGNOSIS TRIPOD,FEATURES,REGRESSION},
  language     = {eng},
  pages        = {78--85},
  title        = {Longitudinal radiomics of cone-beam CT images from non-small cell lung cancer patients : evaluation of the added prognostic value for overall survival and locoregional recurrence},
  url          = {http://dx.doi.org/10.1016/j.radonc.2019.03.032},
  volume       = {136},
  year         = {2019},
}

Altmetric
View in Altmetric
Web of Science
Times cited: