Introduction

- Worldwide 35 million people are HIV-infected
- HIV infection evolved from a deadly to a chronic disease
- Current treatment can suppress HIV but **not offer a cure**
- Condemned to lifelong treatment due to a latent reservoir

Problem

- Study HIV latency & explore **new treatment strategies**
- **Primary cell models** for main reservoir of HIV: CD4 T cells
- Focus on **lncRNAs** in HIV latency and cure research

Goal

Methods

- **Worldwide 35 million** people are HIV-infected
- HIV infection evolved from a deadly to a chronic disease
- Current treatment can suppress HIV but **not offer a cure**
- Condemned to lifelong treatment due to a latent reservoir

Problem

- Study HIV latency & explore **new treatment strategies**
- **Primary cell models** for main reservoir of HIV: CD4 T cells
- Focus on **lncRNAs** in HIV latency and cure research

Goal

Methods

- IncRNA discovery via total RNAseq, ribodepleted (4 biological replicates per model, Illumina HiSeq 2500, 30-50M reads per sample)
- Downstream analysis: Differential expression, ddPCR validation, pathway analysis and T cell subset analysis

Results

1. **Differential Expression: lncRNAs**
 - Digital PCR validated lncRNAs
 - RP11-347C18.3, RP11-539L10.2, PVT1

2. **Pathway analysis: Guilt-by-association**
 - Pathways (Biocarta)
 - P53 Detailed View
 - Latency therapy

3. **Focus on PVT1**
 - Digital PCR validation
 - Pathways associated
 - CD4 T cell subsets

Conclusion

- **IncRNA** contribute to HIV latency
- **IncRNA linked to pathways** for possible therapy
- **PVT1 is prioritized candidate** for further research
- Functional validation with targeted knockdown studies are required