The proliferation of Duchenne muscular dystrophy fibroblasts cultured under inflammatory conditions is reduced by methylprednisolone through modulation of NFAT5 localization in the cell

Sandrine Herbelet1,*, Amanda Gonçalves2, Jo Vandesompele3, Jan L. De Bleecker4,*

Introduction

Duchenne muscular dystrophy (DMD) is characterized by chronic inflammation and impaired muscle regeneration (Abdel-Salam et al., 2009). The major debilitating factor in DMD is the formation of fibrotic scar tissue (Banker and Engel, 2004). This scar tissue is an excess in extracellular matrix formation (ECM), especially collagen. Two major components induce fibrosis: chronic inflammation and chronic proliferation of fibroblast-like cells (Mann et al., 2001).

The major cell type involved in fibrosis is the fibroblast, producer of collagen. Fibroblasts are sensitive to several cytokines. CD4+ Th1 cells and CD8+ T cells produce IFN-γ, which exerts a pro-fibrotic role by mediating increased TNF-α production in macrophages. Amongst other cytokines, fibroblasts react to IL-1β and produce it in turn (autocrine function), inducing proliferation and ECM production (Kendall and Feghali-Bostwick, 2014).

Material and methods

DMD fibroblasts were cultured in vivo

• TNF-ααα
• IFN-γγγ

Addition of cytokines for 24 h or 15 d

A part of the cultures received a clinical dose of methylprednisolone every other 3 days during 15 d: 0.75 mg/kg

Immunofluorescence microscopy (IF):
• NFAT5 polyclonal (27201, Santa Cruz, USA).
• Tubulin (1:1000) (Sigma Aldrich, USA).

RT-qPCR: following the protocol of Vandesompele et al., 2002

IncuCyte ZOOM: (Essen Bioscience, Hertfordshire, UK). The IncuCyte software acquired and analyzed data at fixed points in each well. (4 images well every 2 h for 15 d).

Statistics: SPSS 25.0 (IBM, Armonk, New York, USA).

Results

Immunofluorescence microscopy (IF):

Western blotting:

WB Total NFAT5 protein amounts decreased after 15 d exposure to cytokines + methylprednisolone (MP) (n=3 passages).

RT-qPCR:

RT-qPCR: Relative mRNA NFAT5 expression is not significantly decreased after 15 d exposure to cytokines + methylprednisolone (n=1 passage).

Results and conclusion

IncuCyte:

DMD fibroblasts show reduced NFAT5 staining, decreased NFAT5 protein expression and reduced proliferation after 15 d exposure to cytokines + methylprednisolone (n=3 passages).

Affiliations and references

1. Department of Neurology, Ghent University, and Ghent University Hospital, Ghent, Belgium.
2. Institute for Functional Genomics, Ghent University, Ghent, Belgium.
3. Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
4. VIB-University of Ghent (VIB-UGent), Ghent, Belgium.

References

1. Haxhiu V, Vanghele P, Detera-Wadleigh S, Ghent University Hospital, Ghent, Belgium.
3. Vanghele P, Detera-Wadleigh S, Vandendriessche V, Ghent University Hospital, Ghent, Belgium.
4. Haxhiu V, Vanghele P, Detera-Wadleigh S, Ghent University Hospital, Ghent, Belgium.
5. Haxhiu V, Vanghele P, Detera-Wadleigh S, Vandendriessche V, Ghent University Hospital, Ghent, Belgium.
6. Haxhiu V, Vanghele P, Detera-Wadleigh S, Vandendriessche V, Ghent University Hospital, Ghent, Belgium.
8. Haxhiu V, Vanghele P, Detera-Wadleigh S, Vandendriessche V, Ghent University Hospital, Ghent, Belgium.

The proliferation of Duchenne muscular dystrophy fibroblasts cultured under inflammatory conditions is reduced by methylprednisolone through modulation of NFAT5 localization in the cell