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Angiosperms develop intensively branched root systems that are accommodated with
the high capacity to produce plenty of new lateral roots throughout their life-span. Root
branching can be dynamically regulated in response to edaphic conditions and provides
the plants with a soil-mining potential. This highly specialized branching capacity has
most likely been key in the colonization success of the present �owering plants on our
planet. The initiation, formation and outgrowth of branching roots in Angiosperms are
dominated by the plant hormone auxin. Upon auxin treatment root branching through
the formation of lateral roots can easily be induced. In thisstudy, we questioned whether
this strong branching-inducing action of auxin is part of a conserved mechanism that was
already active in the earliest diverging lineage of vascular plants with roots. In Selaginella,
an extant representative species of this early clade of rootforming plants, components of
the canonical auxin signaling pathway are retrieved in its genome. Although we observed
a clear physiological response and an indirect effect on root branching, we were not
able to directly induce root branching in this species by application of different auxins.
We conclude that the structural and developmental difference of the Selaginella root,
which branches via bifurcation of the root meristem, or the absence of an auxin-mediated
root development program, is most likely causative for the absence of an auxin-induced
branching mechanism.
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INTRODUCTION

Roots, the hidden half of plants, anchor the plant body to the ground and absorb water and
nutrients. The evolution of roots has been a very important innovation for plants to successfully
colonize the terrestrial environment over about 400 million years ago (Raven and Edwards, 2001).
The branching capacity of roots was of utmost importance in thecolonization of plants, as it allows,
beside a strong anchor, exploration of the soil and foraging of nutrients and water.

In angiosperms such asArabidopsis, roots branch by the formation of lateral roots, which initiate
from specialized pericycle cells. Auxin, a powerful plant growthregulator, plays a key role in this
biological process by stimulating and activating pericycle cells to specify lateral root founder cells
(Himanen et al., 2002; Dubrovsky et al., 2008; De Rybel et al., 2010; Möller et al., 2017). The
importance of auxin signaling in promoting lateral root formation through several Aux/IAA-
ARF modules has been well studied (Fukaki et al., 2002; De Rybel et al., 2010; De Smet et al.,
2010; Moreno-Risueno et al., 2010; Goh et al., 2012; Du and Scheres, 2018). Accordingly, polar
auxin transport inhibitors, such as 1-n-naphthylphthalamic acid (NPA) and 2,3,5-triiodobenzoic
acid (TIBA), were found to inhibit lateral root branching through blocking auxin e�ux
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(Karabaghli-Degron et al., 1998; Reed et al., 1998; Casimiro et al.,
2001; Himanen et al., 2002). In addition to polar auxin transport
inhibitors, cytokinin can also inhibit lateral root initiation
possibly through a separate signaling pathway (Li et al., 2006;
Chang et al., 2013). Similar to lateral root initiation, auxin
signaling and auxin transport are crucial in root meristem
and lateral root meristem establishment (Sabatini et al., 1999;
Benkova et al., 2003; Blilou et al., 2005; Dello Ioio et al., 2008;
Du and Scheres, 2017, 2018).

In contrast to lateral branching roots, lycophyte roots
branch via bifurcation of the root tip, also called dichotomous
branching (Webster and Steeves, 1964; Otreba and Gola, 2011;
Gola, 2014). The lycophyte clade is the most ancient clade
with rooting plants. Selaginella is an important representative
of the lycophytes (Banks, 2009), in particular as it includes
Selaginella moellendor�i, the �rst lycophyte with a sequenced
genome (Banks et al., 2011). Roots of Selaginella originate from
rhizophores, root primordia-bearing organs that develop on
stems. The root meristem originates from a single tetrahedral
apical stem cell and is anatomically similar to the root meristem
in ferns. This meristem is however very di�erent to seed plants
(Motte and Beeckman, 2018). Root dichotomous branching
occurs through the bifurcation of the meristem, presumably
via the activation of two new apical stem cells (Gola, 2014).
As such, two new root meristems establish within the root tip
(Imaichi and Kato, 1989; Otreba and Gola, 2011).

Auxin signaling and auxin transport are highly conserved
within land plants and key components of these pathways
are already present in Selaginella (Viaene et al., 2013, 2014;
Bennett et al., 2014; Kato et al., 2018; Mutte et al., 2018).
In addition, the auxin �ow toward the Selaginella root apex
(Wochok and Sussex, 1974) suggests an important role of auxin
in the root meristem as well. Considering its importance in root
initiation and root meristem establishment in many land plants,
a role of auxin in the initiation of dichotomous root branching
in Selaginella could be anticipated as well. This putative role
was previously suggested based on heavily branching roots upon
auxin treatment inSelaginella kraussiana(Sanders and Langdale,
2013), but to our knowledge, no data on the induction of root
branching are available up to date. To �ll this gap, we report
here on the e�ect of auxin on root initiation and dichotomous
branching in Selaginella moellendor�i. Surprisingly, we found
that auxin does not induce the root bifurcation itself.

MATERIALS AND METHODS

Plant Material and Growth Conditions
Selaginella moellendor�i(Selaginella) plants were obtained from
the lab of Jo Ann Banks at Purdue University. Plants are
routinely propagated on sterile half-strength Murashige and
Skoog (1/2MS) medium (Duchefa Biochemie) supplemented
with 0.8% (w/v) agar, pH 5.8, in Sterivent boxes (Duchefa
Biochemie) in a growth room at 24� C with light intensity 20.25–
43.2mmol/m2/s (cool white �uorescent lamps) and regime of
16 h light and 8 h dark. To induce rhizophores or roots, shoot
apical segments, presenting two branches (further referred as
explants), were transferred into Petri dish plates with 1/2MS.

After a few days, rhizophores and roots started to emerge,
as illustrated inFigure 1 and Video S1showing growth of an
explant from 8 days post transfer onwards.

To test the promotive/inhibitory e�ect of auxin compounds
as well as potential inhibitors on the root bifurcation, explants
incubated for 12 days on 1/2MS were transferred to the treatment
medium and only roots that just underwent a new branching
event were used for analysis. For this purpose, all roots were
preliminary screened at 11 and 12 days of incubation with a
stereomicroscope. Roots that bifurcated between day 11 and
day 12 were annotated as newly branched roots (Figure 1D or
Figure 1E). Microscopic analysis of these roots showed that the
newly formed tips never contained two meristems (n D 58),
i.e., the next dichotomous branching was not initiated yet
(Figures 1G,H). After transfer to the treatment medium, each
root tip was observed daily with a stereomicroscope to evaluate
bifurcation. The branching percentage was calculated as the
number of bifurcated apices divided by the total number of
root apices coming from newly branched roots. The number of
branching events in a period of 13 days was counted per root
apex coming from a newly branched root. In case of indole-3-
acetic acid (IAA) treatments, yellow plastic sheets coveringthe
plates were used to prevent IAA degradation from light.

Root Morphology
Explants or roots were subjected to daily stereomicroscopic
observation to record the number of new emerging rhizophores
and bifurcating roots. To determine root length elongation, the
Petridish plates were scanned with a �atbed scanner (EPSON
Expression 11000XL) and the length of the root segment
between two branching sites was measured with ImageJ software
(Abramo� et al., 2004). The elongation rate was calculated by
dividing the length between two branching sites by the time in
days between the two branching events.

Microscopy
Selaginella root tips were �rst �xed in 50% methanol and
10% acetic acid and after clearing subjected to a modi�ed
pseudo-Schi� propidium iodide staining as described
previously (Truernit et al., 2008). Analysis was done with
a Zeiss LSM5 Exciter confocal microscope with an argon
ion laser at 488 nm as the excitation source and a detection
�lter at 505 nm. For all samples, z-stacks were taken
to ensure the possible detection of meristematic regions
in di�erent planes.

RESULTS

Auxins Do Not Affect the Formation of
Root-Bearing Rhizophores in Selaginella
In Selaginella moellendor�i(Selaginella), new roots are derived
from rhizophores, root-like organs forming on the stem
(Figure 1A). In accordance with the positive e�ect of auxin
on adventitious rooting in seed plants, an auxin-dependent
e�ect on the formation of new rhizophores in Selaginella
might be anticipated as well. In order to evaluate this putative
e�ect, we investigated the e�ect of auxins on the formation of
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rhizophores on Selaginella shoot explants. Hitherto, Selaginella
shoot explants of approximately 1 cm were isolated from
in vitro growing plants and transferred to growth media
with di�erent auxins. The number of rhizophores on explants
after 13 days of auxin treatments does not signi�cantly di�er
from the control (Figure 2). Thus, auxins do not promote
the formation of rhizophores in Selaginella. Consistently,

treatments with auxin transport inhibitors or a cytokinin,
which mostly work antagonistically toward auxin in seed
plants, did not or only in a limited extent a�ect rhizophore
formation (Figure 2). NPA treatments showed a signi�cant
but very modest decrease in rhizophores, indicating rather an
indirect role of auxin and auxin transport during rhizophore
establishment and emergence.

FIGURE 1 | Rhizophore and dichotomous root branching in Selaginella.(A) Rhizophore emerged from the stem.(B–F) Frames fromVideo S1 showing the process of
dichotomous root branching. Newly branched roots as in(D,E) were used as starting material in the branching experiments. The time is indicated in hours. Scale bars:
1 mm. (G) Representative confocal image of a newly branched root.(H) Magni�cation of apex 1 in (G) shows one single IC. The inset is a magni�cation of the square.
IC, initial cell. Scale bars: 50mm.

FIGURE 2 | Effects of auxins, polar auxin transport inhibitors and a cytokinin on rhizophore emergence. Selaginella explants with newly branched roots were
incubated with dimethyl sulphoxide (DMSO) or different concentrations of treatments for 13 days: indole-3-acetic acid (IAA), indole-3-butyric acid (IBA),
1-naphthaleneacetic acid (NAA), 2,4-dichlorophenoxyacetic acid (2,4-D), naphthylphthalamic acid (NPA), 2,3,5-triiodobenzoic acid (TIBA) or 6-benzylaminopurine
(BA). Number of rhizophores emerging post treatments was recorded on 13 d post treatments. Error bars represent SD.n (number of plates)D 4 (except for 10mM
TIBA,n D 3) with on average 5 explants per plate. *representsp-value � 0.05 (Kruskal-Wallis test).
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Auxins Affect Root Development in
Selaginella
In Selaginella, roots branch dichotomously (Figures 1B–H,
Video S1). To examine the e�ect of auxins on root development,
shoot explants were �rst isolated and incubated on hormone-free

growth medium to allow the spontaneous formation of
rhizophores and roots. To standardize the starting material,
explants with a root that recently bifurcated were selected
and transferred to an auxin-containing medium. Microscopic
inspection of newly formed root tips after bifurcation shows

FIGURE 3 | Root growth after treatments with auxins, NPA, TIBA, and BA.(A) Explants with newly branched roots were treated with different concentrations of
auxins, auxin transport inhibitors or the cytokinin BA for 4days and root morphology was observed. Scale bars: 1 mm.(B) shows the effects of treatments on root
elongation rate over the time frame between two branching events. Data is not presented for the treatments that severelyinhibited branching or obstructed the
observation of possible branching events. Error bars represent SD. n (number of plates)D 4 (except for 10mM TIBA,n D 3) with on average 10 root samples per
plate. *representsp-value � 0.05 (Kruskal-Wallis test).
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that these apices, without exception, only contain one single
meristem. We were able to clearly recognize the described
tetrahedral initial cell (IC) and its derivatives form the root
meristem in root anatomy of Selaginella (Figures 1G,H). The
presence of recently branched root tips in the starting material
was thus crucial to dispose of a clear de�nable stage 0 that canbe
used for all the treatments.

On the short term, the auxin treatments, especially at higher
concentrations, inhibited root elongation, caused thickening

of the root tips, induced callus-like tissue and stimulated
root hair elongation (Figure 3). The root elongation rate,
calculated between two consecutive branching events, was
severely inhibited even at low auxin concentrations. In contrast,
the auxin transport inhibitor TIBA and a low concentration (2.5
mM) of NPA showed no or a limited e�ect on the root elongation
and morphology. Only high concentrations (10mM; 25 mM) of
NPA did more severely a�ect the root morphology (Figure S1).
None of the treatments induced laterally positioned root

FIGURE 4 | Effect of auxins, polar auxin transport inhibitors and a cytokinin on Selaginella dichotomous root branching. Selaginella explants with newly branched
roots were incubated with different concentrations of auxins, auxin transport inhibitors, or the cytokinin BA.(A) Selaginella root on 0 and 8 days after IAA (2.5mM)
treatment. Arrows of different colors indicate branching derived from different apices. Scale bar: 1 mm.(B) Number of branching events per root tip after 13 days.
(C–F) Percentage of root tips that branched during 13 days of treatments. Error bars represent SD.n (number of plates)D 4 (except for 10mM TIBA,n D 3) with on
average 10 root samples per plate. *representsp-value � 0.05 (Kruskal-Wallis test).
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FIGURE 5 | Selaginella root meristem of(A) a DMSO-treated root or(B) a root
treated with 25 mM NPA for 7 days. Scale bars: 50mm.

branches, showing that the absence of lateral roots in Selaginella
is not due to a limited auxin availability. There was, however, a
positive e�ect on the bifurcation of roots. In accordance to the
previous observations of (Sanders and Langdale, 2013), auxin
treatment resulted in more branching and a higher branching
frequency (Figures 4A,B). When we followed the �rst branching
of individual root tips, in particular IAA and IBA induced
much more root tips to bifurcate (Figures 4C,D). NAA and
2,4-D, even at a concentration of 0.25mM, and all auxins
at higher concentrations induced callus, which obstructedthe
observation of possible branching events (Figure 3A, Figure S2).
The auxin transport inhibitors had in most cases no or only a
weak e�ect on the branching (Figures 4B,E,F). Only at higher
NPA concentrations, we noticed a strong inhibition of the root
branching (Figures 4B,E), with a complete inhibition at 25
mM (data not shown). This however concurred with a growth
arrest of the root tip and completely degenerated root meristem
(Figure 5). Hence, it seems that auxin transport only a�ects the
root meristem bifurcation when it is almost completely blocked,
which in particular disturbs the meristem organization.

Auxin treatments induce only branches after 4 days, which is
the same time required to obtain a bifurcation in the hormone-
free control. If auxin would be capable in inducing the root
meristem bifurcation itself, a much faster induction wouldhave
been anticipated.

Auxins Do Not Induce Root Meristem
Bifurcation in Selaginella
To ascertain whether the bifurcation-promoting e�ect of auxin
is direct or not, the e�ect of transient auxin treatments on
root branching was assessed. 1mM IAA was selected for this
experiment as it had shown the highest potency in accelerating
branching over long treatments. Shoot explants with a newly
branched root were transferred to 1mM IAA for either 1 or 2
days and then transferred back to either hormone-free or IAA
medium. In contrast to continuous auxin application (transfer
IAA to IAA), none of the transient treatments (IAA to 1/2MS)
induced extra root branching compared to the untreated samples
(1/2MS to 1/2MS) (Figure 6). This observation strengthens our
previous observation that auxins do not induce the bifurcation

of the root meristem itself in Selaginella but shorten the timing
between two branching events.

To further con�rm that auxins do not induce root branching
in Selaginella, microscopic analysis at earlier time points was
performed using a modi�ed pseudo-Schi� propidium iodide
staining and confocal microscopy. We were able to clearly
recognize the described Selaginella root anatomy in which
one tetrahedral initial cell (IC) and its derivatives form the
root meristem (Figures 1G,H). To observe early stages in
the meristem bifurcation process, we �rst collected multiple
DMSO-treated root samples at di�erent days after a new
branch was formed. Several samples showed an early stage of
meristem bifurcation at 3 days (Figure 7A). However, newly
branched roots treated for 3 days with 1mM IAA did not
show any meristem bifurcation (n D 11). Conversely, a higher
auxin concentration hardly a�ected the induction of meristem
bifurcation: either a concentration of 2.5mM (Figure 7B, n D
13) or 5mM (n D 5) IAA yielded only 1 divided meristem after
3 days. Hence, auxins and auxin signaling seem to advance root
branching most likely by promoting processes taking place after
the early events during root meristem bifurcation and do not
directly induce the bifurcation event itself in Selaginella.

DISCUSSION

Auxin is, in particular regarding to root development, a
predominant plant growth regulator with a highly conserved
signaling pathway within land plants (Kato et al., 2018;
Mutte et al., 2018). Auxins were also reported to induce root
cultures inSelaginella microphylla(Bandyopadhyay et al., 2013).
In accordance with these �ndings, we did �nd evidence of a
certain level of physiological conservation. Indeed, typicalauxin
responses such as root hair elongation, callus induction or root
elongation inhibition occurred inSelaginella moellendor�ias
well. In contrast, auxins did not induce root-bearing rhizophores
formation nor dichotomous root branching in this species. This
is suggestive for the existence of an auxin independent meristem
initiation and branching mechanism. Polar auxin transport
mechanisms are conserved as well (Viaene et al., 2013, 2014;
Bennett et al., 2014; Bennett, 2015) and clearly have an important
impact on the growth of Selaginella species (Wochok and Sussex,
1973, 1974, 1975; Sanders and Langdale, 2013; Matsunaga et al.,
2017). However, the inhibition of polar auxin transport is
not able to block root branching inSelaginella moellendor�i,
which further supports a potential auxin-independent root
branching mechanism. Only high concentrations of NPA resulted
in a reduction in root branching, but does not delay the
timing in branching, and can be interpreted as a presumably
indirect e�ect.

Sanders and Langdale (2013)previously showed strongly
branching root tips upon auxin treatment and hence suggested
a role of auxin in this branching. Similarly, we also observed
on the long term, in particular with high auxin concentrations,
consecutive branches with shorter time intervals. However,as
there is no di�erence in meristem formation, as shown by our
microscopic observations, and as transient auxin treatments up
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FIGURE 6 | Effect of short auxin treatment on dichotomous root branching. Selaginella explants with newly branched roots were treated with DMSO or 1mM IAA for 1
(A) or 2 (B) days. Explants were then transferred to hormone-free or 1mM IAA-containing media. Error bars represent SD.n (number of plates)D 3 with on average
15 root samples per plate. *representsp-value � 0.05 (Kruskal-Wallis test).

FIGURE 7 | Effect of auxin treatment on bifurcation of root apical meristem.
Newly branched roots of Selaginella explants treated by DMSO and IAA were
sampled for confocal microscopy daily from 0 to 3 d post treatment. (A) A
newly bifurcated root meristem 3 days post DMSO treatment. Two new
meristems could be clearly recognized.(B) A root meristem treated for 3 days
with 2.5 mM IAA. RP, root primordium. Scale bar: 50mm.

to 48 h do not result in an increased branching, the inductionof
root branching is clearly not directly a�ected by auxin. Hence, the
increased root branching rather seems to be the consequenceof
an acceleration in development after branching which could have
been resulted from shorter cell division cycles.

Possibly, the fundamental structural di�erences of Selaginella
roots (Motte and Beeckman, 2018) are causative for the
absence of an auxin-induced branching mechanism. The root
meristem and cell divisions within the meristem are patterned
di�erently in lycophytes compared to seed plants and therefore
possibly adopted a di�erent controlling program as well.
The strong branching capacity of roots in the angiosperms
moreover required the development of pluripotent pericycle
cells. Although a pericycle layer is present in Selaginella species
(Webster and Steeves, 1964), our observations suggests the
absence of such pluripotency in the early land plants.

The fossil record shows that Lycophyte roots evolved
independently from other clades (Raven and Edwards, 2001;
Kenrick, 2002; Friedman et al., 2004; Boyce, 2005, 2010; Doyle,
2013; Hetherington and Dolan, 2018, 2019), but gene expression
pro�les suggested the presence of a root developmental program
in a common ancestor or at least a parallel recruitment of largely
the same root developmental program from a common ancestor
(Huang and Schiefelbein, 2015). Based on our observations,
this common program did, however, not contain the elements
for the auxin-mediated meristem induction or root branching,
which might only have been evolved later on. Supportive for
this, lateral root formation in the fernCeratopteris richardii,
an earlier diverging lineage than the angiosperms, occurs
also independently from auxin (Hou et al., 2004). Moreover,
orthologs of important root meristem or lateral root factors
downstream of auxin such asWOX5 or LBD16are not found
in the lycophyte clade (Nardmann et al., 2009; Coudert et al.,
2013; Zhang et al., 2017). Hence, it seems that at least the
root branching mechanisms downstream of auxin were only
introduced during evolution after the origin of lycophytes,
and further corroborates that roots originated multiple
times during evolution.

In conclusion, by providing the �rst extensive evaluation of
the e�ect of auxins on Selaginella root branching, we showed that
root branching is not induced by auxins in this representative
of an early diverging lineage of land plants. Despite conserved
auxin signaling genes and conserved auxin responses, auxin itself
seems to be not important for the root branching program and
only acquired this role later during evolution.
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The Supplementary Material for this article can be found
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00154/full#supplementary-material

Figure S1 | Root growth after NPA, TIBA and BA treatments. Explants with newly
branched roots were treated for 4 days and root morphology was observed. Scale
bars: 1 mm.

Figure S2 | Effect of applied NAA, 2,4-D and BA on dichotomous root branching.
Selaginella explants with newly branched roots were incubated with DMSO or
different concentrations of treatments for 13 days: NAA(A), 2,4-D (B), and BA
(C). Error bars represent SD.n (number of plates)D 4 with on average 10 root
samples per plate.� representsp-value � 0.05 (Kruskal-Wallis test).

Video S1 | Selaginella shoot explant transferred to 1/2MS. The video shows the
emergence of rhizophores and the subsequent development ofroots from
8 days onwards.
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