Advanced search
1 file | 1.17 MB

Three-species competition with non-deterministic outcomes

Tim Depraetere (UGent) , Aisling Daly (UGent) , Jan Baetens (UGent) and Bernard De Baets (UGent)
(2018) CHAOS. 28(12).
Author
Organization
Abstract
Theoretical and experimental research studies have shown that ecosystems governed by non-transitive competition networks tend to maintain high levels of biodiversity. The theoretical body of work, however, has mainly focused on competition networks in which the outcomes of competition events are predetermined and hence deterministic, and where all species are identical up to their competitive relationships, an assumption that may limit the applicability of theoretical results to real-life situations. In this paper, we aim to probe the robustness of the link between biodiversity and non-transitive competition by introducing a three-dimensional winning probability parameter space, making the outcomes of competition events in a three-species in silico ecosystem uncertain. While two degenerate points in this parameter space have been the subject of previous studies, we investigate the remaining settings, which equip the species with distinct competitive abilities. We find that the impact of this modification depends on the spatial dimension of the system. When the system is well mixed, it collapses to monoculture, as is also the case in the non-transitive deterministic setting. In one dimension, chaotic patterns emerge, which tend to maintain biodiversity, and a power law relates the time that species manage to coexist to the degree of uncertainty regarding competition event outcomes. In two dimensions, the formation of spiral wave patterns ensures that biodiversity is maintained for moderate degrees of uncertainty, while considerable deviations from the non-transitive deterministic setting have strong negative effects on species coexistence. It can hence be concluded that non-transitive competition can still produce coexistence when the assumption of deterministic competition is abandoned. When the system collapses to monoculture, one observes a "survival of the strongest" law, as the species that has the highest probability of defeating its competitors has the best odds to become the sole survivor.
Keywords
SPECIES COEXISTENCE, PAPER, BIODIVERSITY, COMMUNITY, STABILITY, DYNAMICS, PROMOTES, GAME, PHYTOPLANKTON, ORGANIZATION

Downloads

  • (...).pdf
    • full text
    • |
    • UGent only
    • |
    • PDF
    • |
    • 1.17 MB

Citation

Please use this url to cite or link to this publication:

Chicago
Depraetere, Tim, Aisling Daly, Jan Baetens, and Bernard De Baets. 2018. “Three-species Competition with Non-deterministic Outcomes.” Chaos 28 (12).
APA
Depraetere, T., Daly, A., Baetens, J., & De Baets, B. (2018). Three-species competition with non-deterministic outcomes. CHAOS, 28(12).
Vancouver
1.
Depraetere T, Daly A, Baetens J, De Baets B. Three-species competition with non-deterministic outcomes. CHAOS. 2018;28(12).
MLA
Depraetere, Tim et al. “Three-species Competition with Non-deterministic Outcomes.” CHAOS 28.12 (2018): n. pag. Print.
@article{8607192,
  abstract     = {Theoretical and experimental research studies have shown that ecosystems governed by non-transitive competition networks tend to maintain high levels of biodiversity. The theoretical body of work, however, has mainly focused on competition networks in which the outcomes of competition events are predetermined and hence deterministic, and where all species are identical up to their competitive relationships, an assumption that may limit the applicability of theoretical results to real-life situations. In this paper, we aim to probe the robustness of the link between biodiversity and non-transitive competition by introducing a three-dimensional winning probability parameter space, making the outcomes of competition events in a three-species in silico ecosystem uncertain. While two degenerate points in this parameter space have been the subject of previous studies, we investigate the remaining settings, which equip the species with distinct competitive abilities. We find that the impact of this modification depends on the spatial dimension of the system. When the system is well mixed, it collapses to monoculture, as is also the case in the non-transitive deterministic setting. In one dimension, chaotic patterns emerge, which tend to maintain biodiversity, and a power law relates the time that species manage to coexist to the degree of uncertainty regarding competition event outcomes. In two dimensions, the formation of spiral wave patterns ensures that biodiversity is maintained for moderate degrees of uncertainty, while considerable deviations from the non-transitive deterministic setting have strong negative effects on species coexistence. It can hence be concluded that non-transitive competition can still produce coexistence when the assumption of deterministic competition is abandoned. When the system collapses to monoculture, one observes a {\textacutedbl}survival of the strongest{\textacutedbl} law, as the species that has the highest probability of defeating its competitors has the best odds to become the sole survivor.},
  articleno    = {123124},
  author       = {Depraetere, Tim and Daly, Aisling and Baetens, Jan and De Baets, Bernard},
  issn         = {1054-1500},
  journal      = {CHAOS},
  language     = {eng},
  number       = {12},
  pages        = {12},
  title        = {Three-species competition with non-deterministic outcomes},
  url          = {http://dx.doi.org/10.1063/1.5046795},
  volume       = {28},
  year         = {2018},
}

Altmetric
View in Altmetric
Web of Science
Times cited: