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Summary 

Thanks to the development of Next-Generation Sequencing technologies, the field of genomics 

has changed rapidly and dramatically in the past decades. This leads to a vast expansion of an 

array of genomic resources. In this PhD thesis, I used and developed bioinformatics methods to 

generate and improve three genomic resources for perennial ryegrass (Lolium perenne L.): (i) a 

reference genome sequence, (ii) a complete structurally and functionally annotated gene set, 

and (iii) a comprehensive overview of the genome sequence diversity within this species. These 

resources are of great use in understanding the evolution and biology of perennial ryegrass, in 

explaining species-specific morphology and physiology, as well as within-species phenotypic 

variation within a species. 

Perennial ryegrass is the most widely cultivated grass species in temperate regions. It is of 

interest for grazing, hay and silage production as it has a long growing season, and high yield 

potential and high nutritive value. The development of genomic resources for perennial ryegrass 

suffers from several major challenges. First, the genome size and repetitive content hampers 

obtaining a complete and contiguous reference genome sequence. Currently the best available 

draft genome sequence represents only half of the actual genome size, is highly fragmented and 

only partially anchored onto pseudo-chromosomes (Byrne et al., 2015). Second, the 

corresponding gene annotation set is purely evidence-based and our analyses showed that this 

gene set is incomplete. Moreover, this gene set lacks a high-quality functional annotation. Finally, 

the perennial ryegrass genome is highly heterogeneous because of its outbreeding nature. This 

leads to difficulties in the identification of genomic sequence variation. 

Despite the strong increase in the number of plant genome sequences, we found that no clearly 

defined measures to assess completeness both at the genome assembly and gene space level 

existed at the time of the start of this PhD. With hundreds of plant genome sequences available 

and many more to come, and little consensus in the literature on how to report their quality, we 

investigated how completeness should be estimated. We therefore defined the concept of the 

‘expected’ genome size and gene space, to which completeness can be expressed. The expected 

gene space can either be based on experimental evidence, or on evolutionary conservation 



principles. These measures can now be used to assess whether the fraction of missing genes 

reported by the analysis, are indeed missing from the genome sequence, or were missed during 

gene annotation.  

Completeness analysis showed that the current publicly available perennial ryegrass draft 

genome sequence (Byrne et al., 2015) contained a very large fraction of the gene space, but 1,709 

core gene families (24%) were missing from the gene annotation set. We have improved the gene 

annotation set by integrating evidence-based and ab initio gene models, and have calibrated 

parameters using a set of 503 manually curated, high quality gene models. The resulting genes 

were functionally annotated, and incorporated into the PLAZA comparative genomics platform 

that offers a framework for functional, evolutionary, and comparative plant genomics (Proost et 

al., 2009; Van Bel et al., 2012; Proost et al., 2015; Van Bel et al., 2018).  

A complete and contiguous reference genome sequence is required to study genome 

architecture and evolution. In a collaborative effort with Aarhus University and the University of 

Tübingen, we assembled a novel, chromosome-scale genome reference sequence for perennial 

ryegrass, using a combined approach consisting of the most recent technologies. The repetitive 

fraction of the genome was assembled using additional PacBio SMRT sequencing; hybrid 

scaffolding with optical mapping further improved scaffold length; and chromosomal 

conformation capture (Hi-C) was a final step to order and orient the scaffolds into pseudo-

chromosomes. This brings the perennial ryegrass genome sequence quality on par with other 

major grass Poaceae genomes, such barley (5 Gb) and wheat (17 Gb), that were only recently 

obtained using a similar approach (Mascher et al., 2017; Appels et al., 2018). Together with an 

annotated gene set, this genome sequence can be used in future studies on genome evolution 

and species-specific biology through comparative genomics using the PLAZA platform. 

We were interested in the identification of genomic sequence variation in 503 candidate genes 

involved in the control of plant development and architecture. This was done for a collection of 

743 individuals, derived from breeding material, current cultivars and natural accessions to 

comprehensively represent the perennial ryegrass germplasm. To overcome challenges in variant 

calling, two complementary strategies were used to obtain a complete and reliable variant set. 
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First, four variant calling pipelines were used and automatically integrated to reach maximal 

sensitivity. We compared hard filtering with precision-based filtering to obtain a high quality 

variant set. Highly multiplex amplicon sequencing was used as an independent genotyping 

technology to empirically estimate an appropriate precision threshold. Second, de novo assembly 

followed by overlap-layout-consensus clustering was used to reconstruct divergent alleles that 

were missed using variant calling based on short read mapping onto a single reference genome 

sequence. This approach is broadly applicable to other highly diverse outbreeding species and 

provides important insights in the pitfalls and solutions of bioinformatics analysis for population-

scale resequencing. 

Genomic sequence variants may affect gene function and/or regulation and could therefore 

result in phenotypic variation. Predicting the effect of genomic sequence variants using structural 

information is a reverse genetics approach, as it first identifies mutations based on DNA variants 

and then studies the associated phenotype. This allows for the identification of carriers of rare 

defective alleles that can be used for validation of causal polymorphisms and functional gene 

analysis, or carriers can be incorporated into the breeding program. For instance, we identified 

naturally occurring premature stop codons in one-third of the 503 candidate genes investigated, 

including the single copy genes GIGANTEA (LpGI-01) and ENHANCED RESPONSE TO ABSCISIC ACID 

1 (LpERA1-01). After annotating 18 members of the complete FLOWERING LOCUS T gene family 

in the L. perenne genome, we illustrate how molecular knowledge on essential amino acid 

residues can also be taken into account, and we have identified several genotypes with sequence 

variation in the external loop and at key residues of the anion ligand binding site.  

Alternatively, association genetics studies aim to statistically associate phenotypic variation with 

genotypic variation. This is a useful forward-genetics approach for the dissection of quantitative 

and complex traits that are regulated by multiple genes. We have designed a high-throughput 

genotyping assay based on multiplex amplicon sequencing and have screened breeding 

populations for associations with two important traits for perennial ryegrass breeding: flowering 

time and leaf elongation. Out of 28 candidate genes, LpFT-03 was found to associate with heading 

date, and we confirmed the existence of haplotypes previously identified by Skot et al. (2011). 

LpMADS1 controls vernalization-induced flowering, and was found to associate with maximal leaf 



length after autumn growth. Although the association was not found with other leaf elongation 

traits such as spring growth rate, this is an interesting candidate marker as the associated 

polymorphism is located in the first intron, which is involved in regulation of LpMADS1 expression 

(Yan et al., 2003; Fu et al., 2005; Hemming et al., 2009). 
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Samenvatting 

De ontwikkeling van next-generation sequencing technologieën heeft het genomics 

onderzoeksveld sterk veranderd tijdens de afgelopen decennia, en leidt tot een steeds snellere 

ontwikkeling van diverse genomische hulpbronnen. In dit proefschrift gebruikte en ontwikkelde 

ik bio-informatica methoden om drie genomische hulpbronnen voor Engels raaigras (Lolium 

perenne L.) te genereren of te verbeteren: (i) een referentie genoomsequentie, (ii) een volledige 

structureel en functioneel geannoteerde genen set, en (iii) een uitgebreid overzicht van de 

diversiteit van de genoomsequentie binnen dit species. Deze hulpbronnen zijn in de toekomst 

van groot nut bij het begrijpen van de evolutie en biologie van Engels raaigras, in het verklaren 

van soort-specifieke morfologie en fysiologie, evenals fenotypische variatie binnen deze soort. 

Engels raaigras is de meest gecultiveerde grassoort in gematigde streken. Het is van belang voor 

begrazing en hooi- en kuilvoerproductie, dankzij een lang groeiseizoen, een hoog 

opbrengstpotentieel en een hoge voedingswaarde. De ontwikkeling van genomische 

hulpbronnen voor Engels raaigras kent verschillende grote uitdagingen. Ten eerste is het 

verkrijgen van een volledige en continue genoomsequentie moeilijk door de genoomgrootte en 

de fractie repetitieve sequenties. De best beschikbare genoomsequentie vertegenwoordigt 

slechts de helft van de werkelijke genoomgrootte, is sterk gefragmenteerd en slechts gedeeltelijk 

verankerd op pseudo-chromosomen (Byrne et al., 2015). Ten tweede is de bijbehorende gen 

annotatie set niet compleet en missen deze genen een functionele annotatie. Tenslotte is het 

genoom van Engels raaigras zeer heterozygoot vanwege zijn uitkruisende aard. Dit leidt tot 

problemen bij de identificatie van genomische sequentievariatie. 

Ondanks de steeds sterkere toename van het aantal beschikbare plantengenoomsequenties, 

stelden we bij het begin van dit doctoraat vast dat er geen duidelijk gedefinieerde maten 

beschikbaar waren om de volledigheid ervan te beoordelen, zowel voor de genoom assembly als 

de gen annotatie. Daarom hebben we onderzocht hoe volledigheid geschat moet worden, en 

definieerden het concept van de 'verwachte' genoomgrootte en gen inhoud om volledigheid uit 

te drukken. Zowel experimenteel bewijs als evolutionaire principes kunnen aangewend worden 

om de verwachte gen inhoud te bepalen. Zo kunnen de maten voor de volledigheid van de 



genoom assembly en gen annotatie set kunnen gebruikt worden om te beoordelen of de 

gerapporteerde fractie ontbrekende genen, afwezig was in de genoomsequentie, of dat gemist 

werden bij de gen annotatie. 

Analyse van de volledigheid van de huidig beschikbare genoomsequentie en gen annotatie set 

(Byrne et al., 2015) toonde aan dat de gen inhoud goed vertegenwoordigd is in de 

genoomsequentie, maar dat 1,709 core gene families (24%) ontbreken in de gen annotatie set. 

We verbeterden deze gen annotatie set door een integratie van de beschikbare gen modellen 

met ab initio gen modellen, en kalibreerden parameters met behulp van een set van 503 manueel 

gecureerde gen modellen. De resulterende genen werden functioneel geannoteerd en 

opgenomen in het PLAZA comparative genomics platform dat een raamwerk biedt voor 

functionele, evolutionaire en vergelijkende genoom analyse voor planten (Proost et al., 2009; 

Van Bel et al., 2012; Proost et al., 2015; Van Bel et al., 2018). 

Een volledige en continue referentie genoomsequentie is vereist om de architectuur en de 

evolutie van het genoom te bestuderen. In samenwerking met Universiteit Aarhus en Universiteit 

Tübingen, hebben we een nieuwe referentie genoomsequentie voor Engels raaigras 

samengesteld, door gebruik te maken van een combinatie van de meest recente technologieën. 

De repetitieve fractie van het genoom werd geassembleerd met behulp van aanvullende PacBio 

SMRT-sequencing; de combinatie met optical mapping verbeterde de scaffold lengte; en 

chromosomal conformation capture (Hi-C) was een laatste stap om de scaffolds te ordenen en te 

oriënteren in pseudo-chromosomen. Dit brengt de kwaliteit van de genoomsequentie van Engels 

raaigras op hetzelfde niveau als andere belangrijke gewassen, zoals gerst (5 Gb) en tarwe (17 Gb), 

die pas recent werden bekomen met een vergelijkbare strategie (Mascher et al., 2017; Appels et 

al., 2018). Samen met een geannoteerde genen set kan deze genoomsequentie in de toekomst 

worden gebruikt om de genoomevolutie en de biologie van Engels raaigras te bestuderen via 

vergelijkende genoom analyse met behulp van het PLAZA-platform. 

We waren geïnteresseerd in de identificatie van genomische sequentievariatie in 503 kandidaat-

genen die betrokken zijn bij de controle van plantontwikkeling en architectuur. Dit werd gedaan 

voor 743 individuen, afkomstig van veredelingspopulaties, huidige cultivars en natuurlijke 
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accessies, als representatie van de genenpool van Engels raaigras. Twee complementaire 

strategieën werden gebruikt om een complete en betrouwbare set van varianten te verkrijgen, 

en zo de moeilijkheden van het bepalen van genomisch sequentievariatie te overkomen. Ten 

eerste werden vier variant calling pipelines gebruikt en automatisch geïntegreerd om maximale 

sensitiviteit te bereiken. Hard filtering werd vergeleken met precision-based filtering voor het 

bekomen van een set van varianten van hoge kwaliteit. Multiplex amplicon sequencing werd 

gebruikt als een onafhankelijke genotyperingstechnologie om de precision threshold empirisch in 

te schatten. Ten tweede werd de novo assembly, gevolgd door overlap-layout-consensus 

clustering gebruikt voor het reconstrueren van sterk divergente allelen die gemist worden 

wanneer gebruik gemaakt wordt van variant calling gebaseerd op het aligneren van korte reads 

op een referentie genoomsequentie. Deze aanpak is ook van toepassing op andere, zeer diverse 

soorten en biedt belangrijke inzichten in de valkuilen en oplossingen van bio-informatica analyses 

bij het sequeneren van populaties. 

Genomische sequentievarianten kunnen de gen functie en/of regulatie beïnvloeden en kunnen 

daarom resulteren in fenotypische variatie. Het voorspellen van het effect van genomische 

sequentievarianten met behulp van structurele informatie is een reverse genetics-benadering, 

omdat het eerst mutaties op basis van DNA-varianten identificeert en vervolgens het 

bijbehorende fenotype bestudeert. We identificeerden bijvoorbeeld van nature voorkomende 

premature stop codons in één derde van de 503 kandidaat genen, waaronder GIGANTEA (LpGI-

01) en ENHANCED RESPONSE TO ABSCISIC ACID 1 (LpERA1-01). Na annotatie van de 18 leden van 

de volledige FLOWERING LOCUS T genfamilie in het L. perenne-genoom, illustreren we hoe 

moleculaire kennis van essentiële aminozuurresiduen ook in rekening gebracht kan worden, en 

hebben we verschillende genotypes geïdentificeerd met sequentievariatie in de externe lus en 

bij belangrijke residuen van de anion ligandbindingsplaats. De dragers van deze interessante 

allelen kunnen gebruikt worden voor de validatie van polymorfismen die causaal zijn voor 

fenotypische variatie, voor functionele gen analyse, en voor incorporatie in een 

veredelingsprogramma. 

Daartegenover staan associatie genetica studies, die zijn gericht op het statistisch associëren van 

fenotypische variatie met genotypische variatie. Dit is een forward genetics-benadering voor het 



ontleden van kwantitatieve en complexe kenmerken die door meerdere genen worden 

gereguleerd. Bloeitijdstip en bladelongatie zijn twee belangrijke eigenschappen voor de 

veredeling van Engels raaigras. We ontwikkelden een kost-efficiënte high-throughput 

genotyperingsmethode op basis van multiplex amplicon sequencing, en zochten in 

veredelingspopulaties naar associaties met deze twee eigenschappen. Uit 28 kandidaat-genen 

bleek LpFT-03 te associëren met de bloeitijdstip en we bevestigden het bestaan van haplotypes 

die eerder al geïdentificeerd werden door Skot et al. (2011). LpMADS1 controleert de door 

vernalisatie geïnduceerde bloei en associeert met maximale bladlengte na herfstgroei. Hoewel 

de associatie niet werd gevonden met andere bladelongatiekenmerken, zoals de groeisnelheid 

tijdens de lente, is dit een interessante kandidaat-merker omdat het geassocieerde polymorfisme 

zich in het eerste intron bevindt, dat betrokken is bij regulatie van LpMADS1-expressie (Yan et 

al., 2003; Fu et al., 2005; Hemming et al., 2009). 
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1 Introduction 

In this PhD thesis, I used and developed bioinformatics methods to generate or improve genomic 

resources for perennial ryegrass (Lolium perenne L.). Genomic resources, such as a reference 

genome sequence, a complete structurally and functionally annotated gene set, and a 

comprehensive overview of the genome sequence diversity within a species, are of great use in 

understanding the evolution and biology of an organism, to help explain species-specific 

morphology and physiology, as well as phenotypic variation within the species. Genomics is the 

study of whole genomes of organisms, using high-throughput DNA sequencing methods and 

bioinformatics to sequence, assemble and analyze the structure and function of genomes, 

including the gene content. Thanks to the development of Next-Generation Sequencing (NGS) 

technologies, the field of genomics has changed rapidly and dramatically in the past decades. 

1.1 Perennial ryegrass 

Perennial ryegrass is the most widely cultivated grass species in temperate regions. It is native to 

Europe, temperate Asia and North Africa, and is widely distributed throughout the world, 

including North and South America, Europe, New Zealand and Australia (Hannaway et al., 1999). 

It is a major constituent of amenity grass mixtures for lawns and sports turfs, but more 

importantly, it is used as forage crop. It is of interest for grazing, hay and silage production as it 

has a long growing season, a high yield potential and high nutritive value. Perennial ryegrass is a 

grass from the family Poaceae, the fourth largest family of flowering plants. It belongs to the 

Pooideae subfamily, together with major cereals of the tribe Triticeae (including wheat, barley 

and oat) (Figure 1.1), and other lawn and pasture grasses, such as Italian ryegrass and Festuca. 

The perennial ryegrass genome consist of seven chromosomes and is naturally diploid. Because 

perennial ryegrass is allogamous (outbreeding), individual plants are highly heterozygous and the 

perennial ryegrass genome is highly diverse both within and across natural accessions and 

breeding populations. This is established through a gametophytic self-incompatibility (SI) 

mechanism that is widespread in the grass family (Baumann et al., 2000). 
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Figure 1.1 Species tree including perennial ryegrass (L. perenne). Based on the species tree available for PLAZA 4.0 
Monocots (Van Bel et al., 2018). 

The ultimate goal of a breeding program is to create new varieties that meet the requirements 

of the end-users. For a grassland species, such as perennial ryegrass, this means to improve its 

characteristics to withstand adverse environmental conditions and to increase its overall growth 

and vigour. At ILVO, perennial ryegrass breeding started in 1932 (then called Rijksstation voor 

Plantenveredeling). Overall, forage breeding has resulted in increased yield, persistency and rust 

resistance and decreased aftermath heading (Sampoux et al., 2010). Dry matter yield per unit of 

nitrogen input continues to be an important primary objective in making the most efficient use 

of land resources to meet increasing global demands for food, feed, fiber and fuel. As perennial 

ryegrass is a major feed source for livestock, high digestibility and an optimal nutritional 

composition of the forage help to minimize input costs through increased forage use (Humphreys 

et al., 2010). Climate change and increased pressure for adopting more sustainable agricultural 

practices are creating new challenges for ryegrass breeding (Helgadóttir et al., 2016). In Belgium 

and other western European regions, winters are getting warmer and summers drier, meaning 

that forage crops will have to use nutrients and water more efficiently to maximize yield.  

Thanks to advances in molecular biology and high-throughput genotyping technology, the focus 

of plant breeding is gradually shifting from phenotype-based to genotype-based selection. The 

introduction of NGS technologies leads to a vast expansion of an array of genomic resources that 
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can be used for a wide range of applications. Examples include the study of species-specific 

biology and genome evolution by comparing the genome sequences of closely related species 

(Pfeifer et al., 2013); synteny-based transfer of QTL information between closely related species 

such as rice, barley, and members of the Festuca-Lolium complex (Armstead et al., 2004; Curley 

et al., 2004); identification of candidate genes involved in physiological or morphological 

processes (Skot et al., 2007); identification of functional alleles and their carriers (Shinozuka et 

al., 2012); development of genetic markers and the use of genome sequence variants for high-

throughput marker systems (Byrne et al., 2013; Blackmore et al., 2016). These applications are 

essential to further develop new breeding strategies such as genomic selection that will improve 

and accelerate the breeding process (Fe et al., 2016). 

 

 

  

Definition box 

Contig 

First result of genome assembly, contiguous sequence derived from overlapping short DNA fragments. 

Scaffold 

Scaffolds are created by chaining contigs together, and contain information on the relative position and 

orientation of the contigs. Gaps between contigs are represented by NNN’s. 

Reference genome sequence 

Backbone DNA sequence representative for the haploid genome, ideally on chromosome scale. 

Gene structure prediction 

Identification of the location and structure of a gene. 

Gene function prediction 

Assigning functions to genes, such as a biological or biochemical role. 

Synteny 

Conserved gene content and order among species evolved from a common ancestral genome. 

Gene family 

Group of genes descended from an ancestral gene by duplication and speciation events.  

Genomic sequence variation 

Differences in chromosomal DNA sequence across individuals of the same species. 



Chapter 1 

4 
 

The main genomic resources for perennial ryegrass that are central to this PhD are shown in 

Figure 1.2. A reference genome sequence, gene annotation set and genomic diversity are highly 

interconnected, as they are often used together. The quality and completeness of these central 

resources, therefore, have a major impact on the development of the other genomic resources 

and analyses. Yet, the development of these genomic resources for perennial ryegrass suffers 

from several major challenges. Obtaining a complete and contiguous reference genome 

sequence is challenging because the perennial ryegrass genome is large and highly repetitive. 

Currently the best available draft genome sequence represents only half (1.1 Gbp) of the actual 

genome size (2.1 Gbp), is highly fragmented (48k scaffolds) and only partially anchored onto 

pseudo-chromosomes (Byrne et al., 2015). A second problem is that the corresponding gene 

annotation set (28k genes) is purely evidence-based, and while it contains high quality gene 

models, our analyses (Veeckman et al., 2016) show that this gene set is incomplete (see Chapter 

2). Moreover, this gene set lacks a high-quality functional annotation. Finally, the perennial 

ryegrass genome is highly heterogeneous because of its outbreeding nature. This leads to 

Figure 1.2 Overview of genomic resources that are central to this PhD. A reference genome is the representative 
DNA sequence of the genome of an organism and is the backbone sequence used for many downstream analyses. 
The gene set contains information on the location and structure of the genes in the reference genome. Resequencing 
individuals of the same species gives insight in the genomic diversity that exists within a species. 
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difficulties in the identification of genomic sequence variation when applying commonly used 

variant calling algorithms that were developed for species with much lower levels of sequence 

diversity. 

In the remainder of this chapter, I will elaborate on the use of these resources in general, their 

state at the start of this PhD, and highlight the methods and approaches that were developed 

during this PhD to improve them. 

1.2 Reference genome assembly and gene annotation set 

Figure 1.3 shows the relation between the reference genome and gene set, and their respective 

applications. The reference genome sequence is the basic genomic resource for many 

applications. This is the backbone used for gene structure prediction that identifies the location 

and structure of genes. By combining both reference genome sequence and gene set, the gene 

content and gene order is known. Genome evolution can then be studied through comparative 

genomics, as the gene order is conserved across closely related species (synteny), because they 

are derived from a common ancestral genome. Similarly, gene content can be compared across 

Figure 1.3 Overview of genomic resources and applications related to the reference genome and set of annotated 
genes. 
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species to identify gene family expansion, contraction, gene loss and gain that further define 

species-specific biology. Comparative genomics analyses become possible by integration of 

perennial ryegrass into the PLAZA comparative genomics platform (Proost et al., 2009). 

Additionally, PLAZA also provides a framework for gene function prediction by projecting 

functional annotations through orthology within gene families. 

Plant genome assembly 

A genome is the genetic material of an organism and consists of a DNA sequence containing all 

of the hereditary instructions for creating and maintaining life, as well as instructions for 

reproduction, to build a body, and to respond to the environment. The development of high-

throughput DNA sequencing technologies has made genome sequencing much cheaper and 

easier, and the number of complete genome sequences is growing rapidly (Figure 1.4). A 

reference genome sequence represents a complete and contiguous genome sequence of a single 

representative individual of a species of interest, with a cumulative scaffold length equal to the 

haploid genome size. 

The genome of Arabidopsis thaliana was the first plant genome to be fully sequenced and 

assembled in the year 2000, and was still entirely based on Sanger sequencing. This was a major 

milestone not only for plant research, but also for genome sequencing. Since then, there has 

Figure 1.4 Exponential increase of the number of sequenced plant genomes. Source: PlabiPD (www.plabipd.de) 

0

50

100

150

200

250

300

2000 2002 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Dicots Monocots Total



Introduction 

 

7 
 

been an exponential increase in the number of available plant genomes, thanks to the shift to 

NGS technologies. Genome sequencing of other model species and crops followed, such as rice 

(Yu et al., 2002), maize (Schnable et al., 2009) and wheat (Mayer et al., 2014; Appels et al., 2018), 

and currently genome sequences of more than 250 plant species are available (Figure 1.4). The 

completeness, contiguity and sequence accuracy of a reference genome sequence determine its 

quality, which is highly variable among newly sequenced plant genomes. Very often, improved 

versions are released in the years following the first draft genome sequence, illustrating that a 

reference genome sequence is dynamic and subject to continuously ongoing research. 

The main goal of genome assembly is to create a genome sequence with the longest possible 

contiguous sequences and the smallest number of mis-assemblies, thus representing the actual 

DNA sequence of the chromosomes. Before starting to assemble a new genome, it is important 

to first estimate the genome size, repetitive content, level of heterozygosity and ploidy, and GC 

content. The larger the genome, the more sequencing data is required to cover all genome 

positions at sufficient read depth. Ideally, the genome size is estimated by flow cytometry, but 

the genome size of related species can also give a first indication. Second, it is important to 

estimate the repetitive sequence content. Repeats are sequences that occur in multiple copies 

in the genome, at different locations. Both the amount and dispersion of repeats affect the 

assembly process as repeats are typically collapsed leading to a fragmented assembly, with 

contigs that often end where a repeat region starts (Phillippy et al., 2008). Highly heterozygous 

regions will be reconstructed as independent sequences, leading to redundant sequences for a 

single chromosomal locus. Conversely, highly homologous sequences in polyploid genomes will 

collapse. Finally, Illumina sequencing is biased against sequences with low or extremely high GC-

content, resulting in low or even no coverage, thus effectively excluding such regions from the 

assembly (Dominguez Del Angel et al., 2018). 

New technologies and strategies for the assembly of large and complex plant genomes 

The assembly of large and complex plants genomes is still a big challenge. The genome size and 

large amount of repetitive sequences are the main reasons why the genome assembly for L. 

perenne and other closely related species such as barley, wheat and oat require new strategies 
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and a combination of innovative sequencing and assembly technologies to obtain a chromosome-

scale assembly. 

The short read length of NGS technologies limits contiguous de novo genome assembly, due to 

repetitive elements and large structural variations that are common in plant genomes. A new 

generation of sequencing methods has been developed as single-molecule sequencing 

technology, also known as the ‘third’ generation. The most popular platforms are the single-

molecule real time (SMRT) sequencing technology of Pacific Biosciences (PacBio) and Oxford 

Nanopore Technologies (ONT). These platforms sequence directly individual DNA molecules and 

produce reads: the PacBio platform sequences a DNA template multiple times to generate a 

contiguous long read with average length > 10 kb and up to 60kb (Weirather et al., 2017), while 

with ONT the maximal read length is theoretically only limited by the length of the DNA fragment, 

resulting in read length of several hundreds kb (Jiao and Schneeberger, 2017). Although third 

generation sequencing platforms overcome the read length limitation, they come with other 

limits, such as higher sequencing cost per base, lower throughput and higher sequencing error 

rate (Carneiro et al., 2012). Therefore, hybrid assembly is now the more common approach for 

plant genome assembly, using long-read sequencing data for scaffolding and contiguity, 

combined with error correction by Illumina short-read data with high read depth and relatively 

low error rate (Badouin et al., 2017; Jiao et al., 2017; Zou et al., 2017). 

Optical mapping is a technique for constructing an ordered, genome-wide restriction map and 

was originally developed by Dr. David C. Schwartz in the 1990s (Schwartz et al., 1993). An 

endonuclease creates single-strand nicks in long DNA molecules at a specific recognition site, 

wherever it occurs in the genome. Fluorescently labeled nucleotides are incorporated at these 

sites, resulting in a characteristic fingerprint for each DNA molecule. Integration of sequence 

contigs with optical maps (hybrid scaffolding) in which the distance between restriction sites is 

estimated helps bridging repetitive regions, and is therefore often used to improve assembly 

contiguity. It also allows to order and orient scaffolds, to identify and correct possible chimeric 

joints in the assembly and to estimate gap sizes (Zhou et al., 2009; Chamala et al., 2013; Tang et 

al., 2014). Optical mapping is very useful in assisting the assembly of polyploid and highly 

heterozygous plant genomes. 
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A third technique is based on the conformation of chromatin in the nucleus. Hi-C probes this 

three-dimensional architecture of whole genomes, by coupling proximity-based ligation with 

massively parallel sequencing (Belton et al., 2012). First, adjacent chromatin segments are 

covalently linked. Next, the chromatin is digested with a restriction enzyme, and the DNA 

fragments that are covalently linked together are ligated. Meanwhile, a biotin-labelled nucleotide 

is incorporated at the ligation junction, enabling selective purification followed by deep paired-

end sequencing. The primary application for which Hi-C was developed is to detect and study 

chromatin interactions. However, as most interactions are intra-chromosomal, and the number 

of interactions decreases with increasing distance, the information that is embedded in Hi-C can 

also be used to assemble scaffolds into a chromosomal context (Oddes et al., 2018). Several Hi-

C-based scaffolding methods have been developed, such as LACHESIS (Burton et al., 2013), 

GRAAL and 3D DNA (Dudchenko et al., 2017). The first step of Hi-C scaffolding is grouping 

scaffolds into chromosomes. Next, the genomic order of scaffolds within each chromosome is 

determined, as well as the distance between neighboring scaffolds. Finally, the scaffolds are 

oriented with respect to other scaffolds in the chromosome. The results are typically represented 

in a genome-wide interaction matrix, reflecting the interaction frequencies between genomic 

loci, also called a contact probability map. Most interactions are intra-chromosomal, resulting in 

a high interaction frequency along the diagonal, representing the chromosomal order of 

scaffolds. 

Genome annotation 

The next step in a genome project is annotation of protein coding genes, as well as other features 

such as non-coding RNAs and regulatory and repetitive sequences. Gene prediction comprises 

the identification of the location and structure of genes (gene structure prediction) and their 

function (gene function prediction) (Figure 1.3). 

There are two fundamentally different methods for gene structure prediction: (i) intrinsic (ab 

initio) methods use only the features embedded in the genome sequence, such as coding 

potential (including translational start and stop sites, open reading frame length and codon 

usage), and splice site prediction, to computationally predict gene structures; or (ii) extrinsic 
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methods use transcript mapping and protein homology with closely related species to predict 

transcribed regions based on experimental evidence. Each method is associated with inherent 

advantages and disadvantages. While intrinsic methods rely on statistical models that need to be 

trained and optimized, they allow for predicting fast evolving species-specific genes and genes 

with specific expression behavior that are unlikely to be captured by experimental evidence. 

Whereas extrinsic methods are more universally applicable, they require a large amount of high 

quality protein sequences and transcripts derived from a broad range of conditions to account 

for variation in gene expression.  

Once the location and structure of the genes is defined, biologically relevant information is 

assigned to the gene and corresponding mRNA and protein sequences. This process is known as 

gene function prediction. Functional elements may include putative names for protein-coding 

genes, gene ontology terms, functional sites and protein domains. The assignment of functional 

elements to genes allows for further understanding of specific genome properties and similarities 

to closely related species. Second, this is an additional quality check for the gene annotation set, 

by detection of genes that are annotated with terms associated with transposable elements, 

annotated with suspicious domains, or lack functional elements (Dominguez Del Angel et al., 

2018). 

Using conserved gene order to study genome evolution 

As increasingly more plant genome sequences become available across the whole plant kingdom, 

the comparison of genes and genomes from different species becomes possible. This allows for 

the study of plant genome architecture, a better understanding of the function and location of 

genes, and provides insight in evolutionary relationships. Consequently, the field of comparative 

genomics is rapidly evolving and has uncovered the complexity of plant genomes and their 

evolutionary history, which often involves extensive duplications, reshuffling and gene reduction 

(Maere et al., 2005; Cui et al., 2006; Flagel and Wendel, 2009; Magadum et al., 2013). 

According to the evolution theory, closely related species are derived from a common ancestral 

species, hence share a common ancestral genome. Evolution theory further predicts that 

genomes from closely related species contain a similar gene content and gene order, which can 
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be recognized through DNA sequence similarity between the extant species. Species-specific 

genomic changes, such as chromosomal rearrangements, gene duplication and gene loss, that 

occurred since a speciation event, may have led to species-specific biology.  

Syntenic regions are chromosomal regions that share a common order of homologous genes that 

are derived from a common ancestral genome (Tang et al., 2011). Synteny provides a framework 

that gives insight in the evolutionary processes leading to diversity in chromosome number and 

chromosome structure, e.g. the chromosome translocation involving the long arms of 

chromosomes 4 and 5 that is characteristic for some Triticeae species, such as barley, is absent 

in perennial ryegrass (Pfeifer et al., 2013). Additionally, synteny allows for the transfer of genetic 

markers and generation of genetic maps if there is no genome sequence available. For instance, 

synteny was used to identify QTLs for heading date in perennial ryegrass based on the 

chromosomal position of the heading date locus in rice (Armstead et al., 2004). 

Using gene content to study species-specific biology 

Homologous sequences descend from a common ancestral sequence. Sequence homology 

among DNA or protein sequences is inferred from sequence similarity through sequence 

alignment. Clustering genes based on sequence similarity results in the construction of gene 

families. This is a group of related genes that share a common ancestral gene. Two sequences 

can share ancestry because of different scenarios (Figure 1.5): (i) orthologs are related sequences 
Figure 1.5 Example of homologous relationships between genes. Orthologs are related sequences in different 
organisms as a result of a speciation event. Paralogs are related sequences within a single organism as a result of a 
gene duplication event. Ath: Arabidopsis thaliana, Osa: Oryza sativa. 
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in different organisms as a result of a speciation event, while (ii) paralogs are related sequences 

within a single organisms as a result of a gene duplication event. They share similar sequence 

characteristics, and often have a similar structure and function. Different molecular events can 

alter the number of gene family members in a given species: (1) gene duplication increases gene 

family size, (2), gene deletion decreases family size, and (3) creation of new genes creates new 

gene families. As gene duplication increases the gene copy number, initial functional redundancy 

can lead to sub-functionalization, neo-functionalization or non-functionalization. These changes 

may contribute to the distinguishable characteristics that differentiate a species from 

descendants of the same common ancestor. 

Current draft genome sequence and gene annotation set in perennial ryegrass 

As many other grass genomes, the perennial ryegrass genome is large and complex: the total 

genome size was estimated to be 2068 Mbp, and 76% of the genome was estimated to be 

repetitive (Byrne et al., 2015). Sequencing and assembling the genome is therefore a challenging 

task. As low copy number regions tend to assemble well, a gene-space assembly is much easier 

to obtain and will contain the bulk of gene-coding regions. Multiple draft genome sequences of 

the ryegrass genome exist (Mollison et al., 2016), but the synteny-based draft genome published 

by Byrne et al. (2015) has currently the highest quality in terms of completeness and contiguity. 

This assembly was generated using de novo shotgun assembly of Illumina reads and a nine-fold 

coverage PacBio sequence reads to fill the gaps. This resulted in an assembly of 1128 Mbp 

consisting of 48,128 scaffolds with a minimum length of 1 Kbp and an N50 of 70.1 Kbp. The 

completeness of the gene space assembled in the backbone genome sequence was estimated 

using CEGMA: 239 out of 248 CEGMA proteins were present at partial or complete level (96.4%), 

suggesting that a very large fraction of the gene space was covered. The gene annotation set 

contained 28,455 genes and was generated with a conservative evidence-based approach using 

the MAKER2 annotation pipeline (Holt and Yandell, 2011). There were on average 2.1 genes per 

scaffold as the genes originated from 13,725 scaffolds, accounting for 796 Mbp of the assembly 

(70.6%). 
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As most ongoing studies are based on these central genomic resources (reference genome 

sequence and gene set), we analyzed if their quality is essentially fit-for-purpose and investigated 

how these resources could be improved. 

Highly fragmented and incomplete reference genome sequence cannot be used to study 

genome evolution 

The draft genome sequence of perennial ryegrass represents only half of the total genome size, 

and the assembly is fragmented in 48k scaffolds. This means that both completeness and 

contiguity need to improve to study genome evolution and species-specific biology through 

comparison of gene order and gene content with closely related species such as Brachypodium 

distachyon and barley (Hordeum vulgare). Detailed studies of gene order sheds light on genome 

evolutionary processes and is the basis for transfer of QTL information between species, one of 

the practical applications of a genome assembly. 

Genetic mapping experiments have established a remarkable conservation of gene content and 

order in the Poaceae family , although genome sizes vary as much as 40-fold between some of 

the species, and despite the fact that they diverged as long as 60 million years ago (Moore et al., 
Figure 1.6 Schematic representation of the GenomeZipper approach to obtain a gene map for barley chromosome 
1H. Genetically anchored barley markers have been integrated with rice and sorghum genes located in syntenic 
regions to give an enriched tentative ancestral gene scaffold. WCA1H sequence reads as well as barley EST sequences 
have been associated with this chromosome matrix and give rise to an ordered integrated gene map of barley 
chromosome 1H. Source: Mayer et al. (2009) 
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1995). The GenomeZipper uses a reverse engineering approach to obtain an ordered gene map 

exploiting synteny with closely related grass species rice, sorghum and B. distachyon (Mayer et 

al., 2009) (Figure 1.6). Even before the draft genome sequence became available, the 

GenomeZipper had been implemented in perennial ryegrass and was proven useful for map-

based cloning and QTL fine mapping (Brazauskas et al., 2013; Pfeifer et al., 2013; Arojju et al., 

2016).  

The GenomeZipper was also used to project 13,411 scaffolds and 11,311 genes onto a putative 

chromosomal position and led to a synteny-based linear scaffold order of the perennial ryegrass 

draft genome sequence (Byrne et al., 2015). However, any research aimed at investigating 

genome evolution, gene order and gene content must be based on a primary assembly that is 

essentially independent from any synteny-based assumptions.  

Are all genes present and annotated in the draft genome assembly? 

CEGMA was used to estimate the completeness of the gene space in draft genome sequence 

(Byrne et al., 2015). The resulting completeness score of 96.4% suggests that a very large fraction 

of the gene space was covered. CEGMA is based on the presence of 248 single copy, core 

eukaryotic genes (Parra et al., 2007), a small set compared to the total number of genes in a plant 

genome. Furthermore, this core eukaryotic gene set does not account for plant-specific genes, 

neither for the fact that many plant genes are duplicated. Gene annotation of the draft genome 

assembly was purely evidence-based, implicating that fast-evolving genes and genes with specific 

expression behavior are most likely to be missed.  

Only by improving both the reference genome sequence, and the gene annotation set, it will 

become possible to dissect the perennial ryegrass genome, study gene and genome evolution, 

and define the species-specific biology in comparison with closely related species such as barley 

and other grasses of the Festuca-Lolium complex.  

1.3 De novo variant discovery by short-read resequencing 

Figure 1.7 shows the relation between the reference genome and genomic diversity. Sequencing 

cost has decreased drastically with the development of NGS technologies, and enables genome 

resequencing on a large scale. Unbiased discovery of a priori unknown genomic sequence 
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variants relies on de novo resequencing of individuals and aligning short read sequencing data to 

a common central reference genome sequence, followed by variant calling. The resulting catalog 

of genomic sequence variants provides insight in the genome sequence diversity that is present 

within a species. 

 

Access to genomic diversity through population-scale resequencing 

After the first reference genome sequence had been established for various crops and model 

organisms, the next logical consequence of the dramatic reduction in sequencing costs using NGS 

technologies was to sequence large numbers of additional individuals of the same species. A 

catalog of A. thaliana whole-genome sequence variation was generated within the 1,001 

Genomes Project by resequencing at least 1,001 strains (Weigel and Mott, 2009a; Cao et al., 

2011). The 3,000 Rice Genomes Project is a similar project, on an even larger scale (The 3,000 

Rice Genomes Project, 2014). Resequencing hundreds or thousands of individuals of the same 

species has revealed a huge genomic diversity, indicating that a single reference genome is not 

sufficient as a representation of the species. 

Figure 1.7 Overview of genomic resources and applications related to the identification of genomic sequence 
variation.  
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Genomic sequence variants 

Genomic sequence variation comprises the differences in chromosomal DNA sequence. The 

major sources of genomic variation are mutation and reshuffling of mutations through 

recombination. A mutation is a permanent change in DNA sequence, occurring during DNA 

replication or induced by external factors, such as chemicals and radiation. Mutations can be 

neutral (no effect), deleterious (harmful) or beneficial. Genomic sequence variation is therefore 

the basis of phenotypic variation and adaptation, and the ultimate driving force of evolutionary 

change. 

Genomic sequence variants range from small-scale to large-scale variants, depending on the 

length of the affected sequence. There are two types of small-scale genomic sequence variants. 

The most abundant type is a single nucleotide polymorphism (SNP), which is the substitution of 

a single nucleotide. Insertions and deletions (indels) affect multiple nucleotides, as a stretch of 

up to several hundreds of nucleotides is inserted into or deleted from the genome. Structural 

variations describe genomic sequence variation on a large scale, and comprises copy number 

variations (CNV), large-scale indels and chromosomal rearrangements, such as translocations. 

These variants are likely to disrupt local gene order (micro-synteny), or affect substantial sections 

of chromosomal arms (macro-synteny). 

Using short-read data to identify small-scale genomic sequence variation  

While the sequencing cost continues to decrease, and the volume of resequencing data increases 

accordingly, the analysis and interpretation of large-scale sequencing data remains challenging 

and is the main bottleneck to valorization of NGS data. Variant calling (VC) is a bioinformatics 

method to identify variants from DNA sequence data. VC is a multistep procedure, organized in 

two phases (Figure 1.8): (1) reads are aligned to determine their corresponding location on the 

reference genome sequence, and (2) variants are identified by locally comparing the read 

sequence to the reference sequence. Alleles are different versions that occur at the same variant 

position. False positive variants are introduced by mistakes during read alignment, and by 

considering sequencing errors as a sequence variant. The latter is challenging, as true alleles 

should still be detected in regions with low read depth. During the last decade, many read 
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aligners and variant callers have been developed and composed into diverse pipelines for high-

quality variant identification (Liu et al., 2013).  

Figure 1.8 shows a general overview of a common VC pipeline. The first part involves pre-

processing of raw NGS reads to prepare read alignment files. This involves mapping reads to the 

reference genome and indel realignment. Re-aligning reads near detected indels improves 

identification of indels, as indels can lead to incorrect sequence read mapping, causing false 

negative and positive SNP and indel calls (Alkan et al., 2011). Sometimes an additional step is 

necessary to mark PCR duplicates. DNA fragments can be PCR-amplified during library 

preparation. PCR duplicates arise from multiple PCR products derived from the same template 

molecule binding on the flow cell. These duplicates need to be removed, as they can lead to false 

positive variant calls (Ebbert et al., 2016). The second part involves the actual variant discovery. 

Most VC tools are able to identify variants in multiple samples simultaneously. A VC identifies the 

variant sites and then assigns a genotype call for each variant site to each sample. This produces 

a raw variant set that still needs post-processing to filter out false positive variant positions and 

to obtain a high-quality variant set. Variant calling is a multistep procedure, and each step is 

associated with its own biases and uncertainties. First, identification of variants from NGS data is 

challenging because of the base call errors during sequencing (0.1-10%). Variant callers 

incorporate statistical methods to model the read errors and to identify real differences between 

Figure 1.8 General workflow for variant calling, starting from raw NGS data to obtain a set of variants and 
corresponding genotype calls. 



Chapter 1 

18 
 

reads and the reference genome sequence. Second, there are biases related to read mapping: 

the accuracy of read mapping can vary significantly with the read quality, alignment errors 

frequently occur in regions with small indels and reads can fail to align to regions of high 

divergence (Bertels et al., 2014). Third, different variant callers have different biases towards 

specific types of genomic sequence variants, and towards the reference or alternative allele 

(Hwang et al., 2015). Finally, filtering variants to obtain a high quality variant set is not 

straightforward. The VCF format is the standard format to report variant positions and 

corresponding genotype calls for each sample. Commonly used VC pipelines all employ this 

format to report the final variant set, but all slightly differ on the quality score annotations of the 

variants. As a consequence, there is no general variant filtering protocol and some callers come 

with their own filtering parameters and criteria (Li, 2014).  

Challenges and current strategies for variant discovery in perennial ryegrass 

Because the perennial ryegrass genome is large and consist of 76% repetitive sequences, reduced 

representation libraries are often used for de novo variant discovery and genotype calling in large 

collections of samples.  

Before a reference genome sequence became available, transcriptome sequencing (RNA-Seq) 

was the most efficient strategy to get access to genomic sequence variation in transcribed 

genomic regions. However, transcript assembly is a major challenge, because of the high levels 

of heterozygosity. The large amount of polymorphisms hamper De Bruijn graph assembly, causing 

transcript fragmentation and redundant assembly of allelic contigs and has led to the 

development of new strategies to create a reference transcriptome (Ruttink et al., 2013). Despite 

the challenges in transcript profiling and assembly, RNA-Seq has become an important method 

for high-throughput discovery of gene-associated SNPs that are important for genetic analyses 

and genome-assisted breeding approaches in perennial ryegrass  (Studer et al., 2012; Ruttink et 

al., 2013; Farrell et al., 2014; Shinozuka et al., 2017). 

Genotyping-by-Sequencing (GBS) is a fast and robust approach for reduced-representation 

sequencing and genome-wide SNP discovery, by sequencing the ends of genomic fragments 

obtained by digestion with restriction enzymes. Repetitive regions can be avoided by using 
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methylation sensitive restriction enzymes, thereby simplifying bioinformatics analysis and 

improving the accuracy of SNP calling (Gore et al., 2009). GBS is increasingly being used in 

perennial ryegrass for SNP discovery (Byrne et al., 2013) to characterize the genetic diversity, for 

genetic linkage mapping and QTL analysis (Hegarty et al., 2013) and genome-wide association 

studies (GWAS) (Kopecký and Studer, 2014). There is, however, no a priori control over which 

genes are tagged as only one-third of the GBS tags are be located in the gene space. Moreover, 

GBS tags typically span only 100-300 bp, and with about 60,000 loci, GBS covers about 0.1% of 

the genome.  

Identification of genomic sequence variants is associated with specific challenges in variant 

calling, as the presence of many SNPs and small indels hampers read alignment, and 

distinguishing true variants from read errors is more difficult at low depth regions. Moreover, 

different VC pipelines are reported to produce low concordant variant sets (O'Rawe et al., 2013) 

and there is no high quality, reference variant set for perennial ryegrass available to optimize VC 

parameters and variant filtering. 

1.4 Identification of interesting genomic sequence variants 

A genotype is the genetic make-up of an individual, while a phenotype describes all the physical 

traits and characteristics of an individual and is the combined result of the expression of the 

genotype and the interaction between genotype and environment. Genomic sequence variants 

may have an effect on gene function and/or regulation and could therefore result in phenotypic 

variation. The detection and exploitation of genomic variation that is responsible for variation in 

a phenotypic trait is of great interest for plant breeders, as these are heritable characteristics 

that can be selected for. 
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There are two main strategies to detect the most interesting variants from a large collection of 

genomic sequence variants (Figure 1.9). The effect of sequence variation on gene function and 

regulation can be computationally predicted using gene structure information, combined with 

positions of conserved and/or essential amino acids. This allows for the identification of carriers 

of interesting alleles in breeding populations and natural accessions that can be used for further 

functional analysis, or can be incorporated into the breeding program. Alternatively, association 

genetics studies aim to statistically associate phenotypic variation with genotypic variation. This 

is a useful forward genetics approach for the dissection of quantitative and complex traits that 

are regulated by multiple genes.  

Variant effect prediction based on structural sequence features 

Predicting the effect of genomic sequence variants using gene structure information is a reverse 

genetics approach, as it first identifies mutants based on DNA variants and then studies the 

Figure 1.9 Overview of genomic resources and applications related to genomic sequence variation. AA: amino acid, 
CG: candidate gene, GWAS: genome-wide association study, GWAFF: genome-wide allele frequency fingerprint. 
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associated phenotype. The effect of a small-scale genomic sequence variant (SNP or indel) 

depends on its position with respect to coding genes: 

- If a variant occurs within a coding region, it is categorized based on the possible effects 

on the resulting protein sequence. A variant can affect a codon in different ways. Because 

the genetic code is redundant, not all changes in nucleotide sequence result in the change 

of an amino acid. These nucleotide changes are called synonymous substitutions. There 

are three types of non-synonymous variants, i.e. variants affecting the encoded amino 

acid. If a coding codon is converted into a stop codon, the variant is classified as a 

nonsense variant. Conversely, a stop codon can be turned into a coding codon, resulting 

in a longer protein. If the variant results in a change in amino acid, the variant is called 

missense. The effect on protein function or 3D structure can be predicted based on the 

evolutionary conservation level and the chemical differences between the amino acids 

(Flanagan et al., 2010). Indels with a length divisible by three in coding regions will cause 

insertions and deletions of amino acids into the protein, but may also result in a nonsense 

variant. If the length of the indel is not divisible by three, this will cause a frame shift 

where all codons downstream are shifted to an other reading frame. This often results in 

disrupted protein domains, a malformed protein or nonsense-mediated decay, where the 

mRNA is eliminated because it contains a premature stop codon. 

- If a variant is not located in a coding region, i.e. noncoding variants, the effects are more 

difficult to predict computationally. These variants can disrupt the DNA sequence motifs 

that are located in promoters and enhancers, such as transcription factor binding sites. 

This may create new motifs or disrupt an existing motif, or influence affinity for 

transcription factor binding, thereby affecting gene regulation. Variants located in introns 

may affect splicing, resulting in gain or loss of splice donor and acceptor sites. In addition, 

variants located in 5’UTR, introns, or 3’UTR may affect folding or stability of the mRNA, 

thus affecting post-transcriptional regulation. 
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Association genetics studies link phenotypic variation to genotypic variation 

Combining high-throughput genotypic and phenotypic data has enabled large-scale marker-trait 

association analysis to dissect the genetic architecture of plant traits. Association genetics is a 

forward genetics approach to identify interesting variants in large collections of genomic 

sequence variation that explains a particular phenotype. Association mapping (AM), also known 

as linkage disequilibrium (LD) mapping, is a commonly used method to link phenotypic variation 

to genotypic variation by exploiting historical recombination events at the population level. This 

is especially useful for the dissection of complex traits that are quantitative and may be controlled 

by multiple genes. AM has been introduced in plants in 2001 (Thornsberry et al., 2001) and has 

since then been applied in a variety of crops (Huang et al., 2010; Tadesse et al., 2015; Gyawali et 

al., 2017). AM studies can be divided into two categories: (i) candidate gene AM, which relates 

variants in selected genes that are involved in biological, physiological or morphological 

processes related to phenotypic traits of interest, and (ii) genome-wide AM, to find signals of 

association for various complex traits starting from genome-wide genotyping data. 

GWAS have now been carried out successfully in many crops, to unravel the genetic architecture 

of agronomically relevant traits and identify candidate loci for subsequent validation. Rice and 

maize are two major models for crop GWAS, as thousands of inbred lines have been genotyped 

and multiple trials have been conducted for several traits (Huang and Han, 2014). GWAS have 

been successfully extended to genetic studies in other crops, such as barley, sorghum and wheat. 

Nevertheless, sequence-based GWAS is still rare in wheat as most studies use more affordable 

technologies such as diversity arrays technology (DArT) (Jia et al., 2018). 

AM studies in perennial ryegrass are often candidate gene based, because of the rapid LD decay 

in allogamous species (Skot et al., 2005; Skot et al., 2007; Asp et al., 2011; Yu et al., 2015; van 

Parijs et al., 2016). Additionally, GBS is increasingly being used in Genome-Wide Association 

Studies (GWAS) (Kopecký and Studer, 2014). Although GBS is mainly used for genotyping single 

individuals, it is more and more used for Genome-Wide Allele Frequency Fingerprinting of 

perennial ryegrass populations (GWAFF) (Byrne et al., 2013; Fe et al., 2016). The output of an AM 

study may have a dual purpose: (i) the identification of an associating variant can lead to a 
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candidate gene involved in the regulation of expression of a trait of interest, providing insight in 

the underlying molecular mechanism, and (ii) variants linked to phenotype can be used as 

molecular markers for marker-assisted selection. 

The conversion of genomic sequence variants into genetic markers allows for cost-effective 

marker-assisted selection strategies and genome-wide fingerprinting. SNPs have become the 

most popular markers in breeding programs because of their abundance, stability over 

generations and the ability to detect them with high-throughput genotyping methods. Indels are 

often not taken into account because of their low confidence identification with short reads. By 

developing more accurate sequencing technologies or better variant calling algorithms, indel 

variation could be used more often if indels could be identified as easy and accurate as SNPs. 

Molecular markers can be integrated in a breeding program using marker-assisted selection. This 

works fine for simple traits, by selecting individuals with QTL-associated markers that have major 

effects, and not significantly associated markers are neglected. Improving complex quantitative 

traits using QTL-associated marker detection has been unsuccessful due to the difficulty of 

finding the same QTL across multiple environments (due to QTL by environment interactions) or 

in different genetic backgrounds. Additionally, the main disadvantage of AM is the low power of 

detecting rare variants that may be associated with relevant traits (Crossa et al., 2017). In 

contrast, genomic selection (GS) aims to predict breeding and/or genetic values, by combining all 

molecular markers and phenotypic data in a training population to obtain genomic estimated 

breeding values of individuals in a testing population that have been genotyped but not 

phenotyped (Meuwissen et al., 2001). GS is better suited to improve complex traits with low 

heritability as it is typically based on models incorporating information from all available markers, 

while significantly reducing the cost per breeding cycle and time required to develop a new 

variety. GS often results in a good prediction at the expense of low interpretability, thereby 

generating a trade-off between model interpretability and model complexity (Gianola and van 

Kaam, 2008). The implementation of GS in perennial ryegrass breeding has been tested, and 

showed good perspectives. Problems resulting from low LD can be reduced by the intentional 

inclusion of structure and related families in the breeding population (Fè et al., 2015; Faville et 

al., 2016). GS in perennial ryegrass is gaining interest, and has already successfully been 
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performed for key agronomic traits, such as heading date, rust resistance and seasonal biomass 

yield (Guo et al., 2018; Pembleton et al., 2018). 

1.5 Genomic resources in related crop species 

This final paragraph of the introduction provides an overview of the development and usage of 

different genomic resources in related crop species, such as rice, maize, and barley and wheat, 

which are closely related to perennial ryegrass. It provides a perspective on the current status of 

genomics in these crops, as well as the opportunities that genomic resources provide to study 

the biology of a crop in relation to its evolution, diversity and biology.   

Rice (Oryza sativa) is one of the most important crops in the world. It is the smallest of the major 

cereal crop genomes and estimated genome size is 400 to 430 Mb. It was the first sequenced 

crop genome (International Rice Genome Sequencing and Sasaki, 2005), following the publication 

of the A. thaliana genome in 2000.  Because of the remarkable conservation of gene content and 

order of grass species (Poaceae) (Gale and Devos, 1998), rice has served as a model for other 

crops with larger genomes, such as maize and wheat. Population-scale genomic studies have 

unraveled introgression of genes during domestication and diversification of Asian rice (Sweeney 

and McCouch, 2007; Choi et al., 2017). More recently, the 3000 Rice Genomes Project 

resequenced more than 3,000 rice accessions from 89 countries. A pan-genome analysis 

discovered 29 million SNPs, 2.4 million short indels, over 90,000 structural variants and more 

than 10,000 novel genes. Phylogenetic analysis has revealed five varietal groups (Wang et al., 

2018). These resources serve as the foundation for the discovery of novel alleles through 

bioinformatics and/or genetic approaches, as well as to understand the genomic diversity within 

O. sativa. It is a great help for advancing rice breeding technology for future rice improvement 

(The 3,000 Rice Genomes Project, 2014). 

The maize genome is much larger (2.4 Gbp) and more complex compared to the rice genome, 

creating new challenges for assembling a reference genome sequence. The first maize reference 

sequence was based on Sanger sequencing and published in 2009 (Schnable et al., 2009). 

Although this assembly consisted of 100k contigs that were arbitrarily ordered and oriented, it 

has enabled a rapid progress in maize genomics (Edwards et al., 2013). The most recent version 
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of the maize reference genome was obtained using third-generation sequencing and optical 

mapping, enabling the characterization of the repetitive portion of the genome and the 

identification of lineage-specific expansions (Jiao et al., 2017). As maize is one of the most diverse 

crops in the world and breeders have exploited this genetic diversity to create the highest yielding 

grain crop in the world (Whitt et al., 2002). The maize HapMap project is a large-scale 

resequencing project, covering pre-domestication and domesticated maize varieties from all over 

the world, and has revealed a tremendous amount of genetic variation (Gore et al., 2009; Chia et 

al., 2012; Bukowski et al., 2018). Structural variations were found to be enriched at loci associated 

with important traits. The identification of small sequence variants required an entirely new 

computational pipeline to resolve genotyping errors derived from incorrect mapping of short 

reads. Additionally, the B73 genome reference represents 91% of the genome and captures only 

70% of the low-copy gene fraction of all maize inbred lines (Gore et al., 2009). Mapping reads 

from each individual onto a common reference genome to identify sequence variations resulted 

in incorrect mapping, either to the paralogous loci or highly repetitive regions (Bukowski et al., 

2018). This limits the use of a genome from a single individual as a reference, and this has become 

a limiting factor to study the genetic diversity within a species. 

The innovation in NGS technologies and third-generation sequencing methods has greatly 

accelerated the assembly of plant genomes. However, large genome sizes, high repetitiveness 

due to transposable elements are characteristic for some major crops, thereby displaying unique 

challenges for genome assembly (Schatz et al., 2012). Good examples are barely (5 Gbp), rye (7.9 

Gbp) and wheat (17 Gbp), all members of the Triticeae family and closely related to perennial 

ryegrass. First attempts to assemble these genomes resulted in draft genome sequences that are 

highly fragmented, and do not represent the full genome size because of the repetitive content 

(The International Barley Genome Sequencing et al., 2012; Jia et al., 2013; Ling et al., 2013; Mayer 

et al., 2014; Bauer et al., 2017). Nevertheless, genomic resources have been successfully 

developed for barley and wheat, and have been applied in GWAS and marker-assisted breeding. 

Examples are high-density SNP arrays that allow genotyping large populations (Cavanagh et al., 

2013; Bayer et al., 2017), and de novo genotyping GBS-based platforms that can be used 
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regardless of prior knowledge of genomics, genome size, organization or ploidy (Poland et al., 

2012). 
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2 Thesis Outline & Objectives 

Innovation in genomics has already proven its strength for many major crops, such as rice, maize, 

barley and wheat. High-throughput sequencing methods and bioinformatics are instrumental to 

characterize plant genomes and genetic diversity, and ultimately to accelerate crop 

improvement. In this PhD thesis, I used and developed bioinformatics methods to generate and 

improve three genomic resources for perennial ryegrass (L. perenne L.): (i) a reference genome 

sequence, (ii) a complete structurally and functionally annotated gene set, and (iii) a 

comprehensive overview of the genome sequence diversity within the genepool. The 

experimental chapters of this thesis each deal with objectives related to these genomic 

resources. 

Objective 1 – Defining completeness measures for plant genome projects and application for 

perennial ryegrass. 

Completeness, or rather incompleteness, of a reference genome sequence and gene annotation 

set has a great impact on further downstream analyses, such as comparative genome analysis to 

study genome architecture and evolution. Despite the strong increase in the number of genome 

sequences, we found that no clearly defined measures for genome and gene space completeness 

existed at the start of this PhD. As completeness is expressed as the ratio of the ‘observed’ and 

the ‘expected’, the determination of what is expected in terms of genome size or gene space is 

fundamental in the definition of a completeness measure. In Chapter 3, we investigated how 

completeness should be estimated in plant genome projects, for both genome assemblies and 

gene annotation sets, and formulated guidelines for future plant genome projects. Hence, we 

estimated the completeness of the draft genome sequence of L. perenne and the corresponding 

gene annotation set, to assess whether the gene space was fully assembled and annotated. 

Objective 2 – Developing a strategy to generate a complete and reliable catalog of sequence 

variation for L. perenne from Illumina short read sequencing data. 

The identification of genomic sequence variation in perennial ryegrass is challenging because of 

three reasons: (i) the genome of perennial ryegrass individuals is highly heterozygous because of 
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the outbreeding nature of this species, (ii) the high levels of polymorphisms in transcribed regions 

(Ruttink et al., 2013; Farrell et al., 2014; Paina et al., 2014) can interfere with accurate read 

mapping, and (iii) commonly used VC pipelines generate low concordant variant sets. There is 

currently no straightforward way to de novo identify genomic sequence variants from short read 

data. Moreover, at the start of this PhD, there was no high quality variant set available that was 

representative for the perennial ryegrass genepool that could be used to calibrate VC parameters 

and quality control. Our objective was to develop a strategy to generate a complete and reliable 

catalog of sequence variation from Illumina short read data for L. perenne (Chapter 4). For this, 

we resequenced 503 candidate genes putatively involved in plant growth and development in a 

collection of 736 individuals derived from natural accessions, breeding populations and current 

cultivars. This strategy is broadly applicable to other highly diverse outbreeding species and 

provides important insights in the pitfalls and solutions of bioinformatics analysis of population-

scale genomic resequencing studies. The resulting catalog of genomic sequence variation is 

currently the most comprehensive gene-anchored variant set in L. perenne that is functionally 

annotated and can be mined for interesting variants, either through reverse or forward genetics 

approaches. In the future, this catalog can be used for association genetics studies with 

phenotypic traits related to plant architecture and cell wall digestibility. 

Objective 3 – Mining interesting sequence variants in the L. perenne genepool as candidates for 

a reverse genetics approach. 

In outbreeding species, defective alleles occur in natural populations at low frequency and 

usually occur in a recessive heterozygous state (Marroni et al., 2011). Identification of carriers of 

these rare defective alleles allows the validation of causal polymorphisms and functional gene 

analysis by generation of lines that are homozygous through dedicated crosses. The catalog of 

genomic sequence variation is a rich resource to mine for rare defective alleles, given an 

appropriate detection method. An association genetics approach is typically insensitive to detect 

the effect of alleles with low frequency in the genotype collection, as the number of replicate 

observations is too low, leading to a decreased statistical power. In contrast, the effect of SNPs 

and indels on protein function or activity can be computationally predicted. We first tested this 

in a straightforward approach relying on the genetic code for protein translation, and screened 
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for high-impact effects, such as frameshifts and premature stop codons (Chapter 4). A 

complementary, more advanced approach relies on evolutionary conservation of amino acid 

residues, or experimental evidence of amino acids critical for protein function or activity obtained 

from orthologs in related species. This approach was the objective of Chapter 5, where we 

demonstrate how to mine for sequence variants at critical amino acid residues for the well-

studied FLOWERING LOCUS T gene family. 

Objective 4 – Screening breeding populations for associations with two important agronomic 

traits. 

Flowering time and leaf elongation are regulated by multiple genes, and are important agronomic 

traits for perennial ryegrass breeding. As genetic variation is the foundation of phenotypic 

variation, we want to test whether variations in heading date and leaf length observed in a 

population can be explained by the genotypic variation in candidate genes controlling these 

traits. In Chapter 6, a candidate gene association mapping study was performed in five breeding 

populations and a natural accession, to detect alleles associating with heading date and leaf 

length. A high-throughput genotyping assay for 28 candidate genes was developed, based on the 

catalog of genomic sequence variation generated in Chapter 4, to accurately determine the 

alleles present in each genotype. Given a sufficient phenotypic range within a population, 

accurate genotyping, and statistical power through a balanced representation of genotypic 

classes (i.e. presence of different alleles), we want to identify alleles responsible for a difference 

in phenotype, and to determine their effect on the traits of interest. This approach is a forward 

genetics approach, and contrasting to the approach of Objective 3. Moreover, this is an example 

of how we can exploit the catalog of genomic sequence variation to design a targeted, high-

throughput genotyping assay. 
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Objective 5 – Improving the annotation of the L. perenne gene space, as well as generating a 

chromosome-scale reference genome sequence. 

As closely related species are derived from a common ancestral species, their genomes contain 

a similar gene content and gene order. Species-specific genomic changes, such as chromosomal 

rearrangements, gene duplication and gene loss, that occurred since a speciation event, may 

have led to species-specific biology. The detection of these signals through comparative 

genomics requires complete and contiguous reference sequences and corresponding annotation 

sets for all comparator species. The draft genome sequence of L. perenne represents half of the 

genome size and covers the full gene space (Byrne et al., 2015), but gene annotation was 

incomplete (see Chapter 3). In Chapter 7, we present currently unpublished results on the 

improvement of this gene annotation set, as well as a functional annotation. This improves the 

value of the draft genome sequence, as it will be better suited for the identification of candidate 

genes and the study of the protein coding capacity. However, the draft genome sequence is 

highly fragmented, incomplete, and anchored to pseudo-chromosomes through projection of 

synteny with genomes of related species (Byrne et al., 2015). It is not suited for the study of 

genome architecture and evolution, as the chromosomal assembly itself is not independent from 

any synteny-based assumptions. Chapter 7 presents a novel complete chromosome-scale draft 

genome sequence for perennial ryegrass, making use of the most recent advances in sequencing 

and assembly of complex plant genomes, namely the combination of long-read sequencing, 

optical mapping and chromosomal conformation capture (Hi-C) sequencing. This reference 

sequence, together with a corresponding annotation set, is an important advance for genomics 

in perennial ryegrass. Finally, this chapter covers a general overview and discussion of the 

genomic resources developed, and their further applications and value for the community. 
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3 Are We There Yet? Reliably Estimating the Completeness of Plant 
Genome Sequences1 

 

 

Genome sequencing is becoming cheaper and faster thanks to the introduction of next-

generation sequencing techniques, leading to a considerable increase in the number of available 

genome sequences. In the last few years, dozens of new plant genome sequences have been 

released, ranging from small to gigantic repeat-rich, or polyploid genomes. Most genome 

projects have a dual purpose: delivering a contiguous and complete genome assembly, together 

with a full catalog of correctly predicted genes. Frequently, the completeness of a species’ gene 

catalog is measured using a set of marker genes that are expected to be present. It is vital to 

understand that this expectation can be defined along an evolutionary gradient, ranging from 

highly conserved genes to species-specific genes. Furthermore, large-scale population 

resequencing studies have revealed that gene space is fairly variable even between closely 

related individuals. This clearly limits the definition of the ‘expected’ gene space, and, 

consequently, the accuracy of different estimates used to assess genome and gene space 

completeness. We argue that, based on the desired applications of a genome sequencing project, 

different completeness scores for the genome assembly and/or gene space should be 

determined. In addition, based on examples from recent literature comprising several dicot and 

monocot genomes, we outline some pitfalls and recommendations as to which methods are most 

suitable to estimate the completeness during the subsequent steps of genome assembly and 

annotation. 

  

                                                        

 

1  This chapter is based on Veeckman, E., Ruttink, T., and Vandepoele, K. (2016). Are We There Yet? Reliably 
Estimating the Completeness of Plant Genome Sequences. Plant Cell 28, 1759-1768. Author contribution, see page 
49. 
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3.1 Introduction 

The ever-decreasing cost together with the expanding capacity of genome sequencing using NGS 

techniques leads to a fast increase in the number of available genome sequences. As of 2016, 

over 100 plant genomes have been sequenced, ranging from small (e.g. Utricularia gibba, 80 

Mbp) to gigantic, repeat-rich, or polyploid genomes (e.g. Triticum aestivum, 17 Gbp), with many 

more expected in the years to come (Weigel and Mott, 2009b; Chia et al., 2012; Michael and 

Jackson, 2013; Li et al., 2014). Ideally, a genome assembly represents a complete and contiguous 

genome sequence with a cumulative scaffold length equal to the haploid genome size (Figure 

3.1, box A). In addition, a complete set of annotated genes offers a starting point for a detailed 

characterization of gene functions, biochemical and regulatory pathways, or QTLs. Genes are the 

nodes in a biological network, which offers valuable insights into protein complexes, regulatory 

Figure 3.1 Framework for genome assembly and gene space completeness estimation. Box A shows the workflow 
for genome assembly and annotation. A representative genotype is selected for sequencing and the whole-genome 
shotgun reads are assembled into incrementally longer contiguous scaffolds. In a final step, gene prediction provides 
the description of repetitive regions and the annotation of genes. Boxes B and C represent the estimation of genome 
assembly and gene space completeness, respectively. Measures for the expected and observed size of the genome 
assembly and gene space are shown, connected by specific methods. Box D shows how the expected gene space can 
be estimated along an evolutionary scale, ranging from evolutionarily highly conserved to species-specific genes. 
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interactions and metabolic processes that determine the physiological and biochemical 

properties of a cell, an organ or an organism (Bassel et al., 2012). 

Clearly, comparative genomics and evolutionary studies thus require complete genomes and 

gene sets. Well-assembled genome sequences are necessary to characterize different classes of 

repetitive elements, to identify large-scale gene co-linearity across related species, and to 

reconstruct the organization and evolution of transposable elements (Bennetzen and Wang, 

2014). Moreover, a complete catalog is required to test if the gain or loss of biochemical or 

signaling pathways in specific plant species can explain the structural and physiological 

adaptations required to survive in extreme environments. The absence of specific genes in the 

genome, and not just the assembly, should be independently confirmed using e.g. de novo 

assembled transcripts (Olsen et al., 2016) or hybridization-based molecular techniques. 

The N50 is a commonly used contiguity measure denoting that 50% of the total assembly length 

is contained in scaffolds of length N50 or longer. Over the last 15 years, genome assemblies 

display a large range of N50 values and indicate low contiguity even for relatively small genomes 

(Supplemental Figure 1), suggesting that fragmented draft genomes are generated for many 

plants. As this wealth of new plant genome sequences and gene catalogs expands, so does the 

variety of methods to measure their quality and completeness (Earl et al., 2011; Salzberg et al., 

2012). Consequently, there are no uniform metrics or standards yet in place to estimate the 

completeness of a genome assembly or the annotated gene space, despite their importance for 

downstream analyses. 

3.2 Material and Methods 

Data 

In total, twelve species including rosids and monocots were used to compare gene space 

completeness measures. Based on an initial list of 18 studies that used CEGMA to assess the 

completeness of a sequencing project within flowering plants, assembled sequence information 

could be retrieved for ten species. These datasets covered seven rosid species (C. rubbella, C. 

arietinum L., N. nucifera Gaertn., P. veris, P. communics L. ‘Bartlett’, R. raphanistrum, V. angularis) 

and three monocots (L. perenne, P. equestris, S. italica). A. thaliana and O. sativa were also 
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included as the oldest, high-quality reference genomes, which were sequenced using a gold-

standard BAC-clone based approach and are thoroughly expert curated (Supplemental Table 1). 

Core Eukaryotic Genes Mapping Approach (CEGMA) 

The CEGMA completeness score reports the number of conserved eukaryotic genes that could 

be found in the genome assembly using an accurate mapping protocol (Figure 3.1 C). Partial and 

complete CEGMA scores refer to the presence of a gene fragment or a complete copy, 

respectively. For the ten species included in the comparison, the complete CEGMA score was 

extracted from the corresponding genome paper. The CEGMA score of A. thaliana is equal to 

100%, as this species was one of the six eukaryotic species used to define the CEGMA core gene 

set. As CEGMA has been frequently used in plant genome sequencing projects, we do not discuss 

BUSCO in great detail, although most reported features hold for both methods. Whereas CEGMA 

only works on raw genome or transcript sequences and performs gene prediction prior to the 

completeness estimation, BUSCO can be applied on a genome sequence as well as on an 

annotated gene set. 

Transcript mapping score 

For twelve species, EST sequences were obtained from the NCBI Nucleotide EST database 

(downloaded on October 12, 2015). The EST sequences were mapped to their respective 

reference genome using GMAP with default parameters (Wu and Watanabe, 2005). We collected 

all EST sequences that are publicly available for A. thaliana (186 libraries, ranging from 1 to 

541,852 ESTs per library, 1,529,700 ESTs in total) and O. sativa (220 libraries, ranging from 1 to 

53,637 ESTs per library, 987,327 ESTs in total). For A. thaliana and O. sativa, all ESTs were also 

mapped on simulated incomplete genomes. To simulate genome fragmentation, the genome 

was cut into pieces of 10kb and incomplete genomes were constructed by randomly selecting 

50%, 75%, 80%, 90%, 95%, and 100% of these fragments. Next, we randomly sampled ESTs, to 

construct bin sizes containing 100 up to 300,000 ESTs, and for each bin we estimated which 

fraction was mapped onto the genome. Optionally, an extra filtering step was applied retaining 

only EST mappings with >90% coverage. For each bin size, the mean and standard deviation of 

the transcript mapping score was calculated over 100 random replicates per bin size. In a second 
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approach, each EST was assigned to its original EST library, and the transcript mapping score was 

calculated per EST library.  

CoreGF completeness score 

Three sets of PLAZA Core Gene Families (coreGFs) have been defined: green plants, based on 

conserved genes in 25 species including angiosperms, mosses and green algae (2928 coreGFs); 

rosids, based on conservation in 12 species (6092 coreGFs); and monocots, based on 

conservation in 5 species (7076 coreGFs) (Van Bel et al., 2012). A BLAST-based sequence similarity 

search is applied per set of transcript sequences or predicted proteins to detect the presence of 

a coreGF, using one representative protein per coreGF. The representation across all individual 

coreGFs is summarized in a global weighted coreGF score, where large gene families get a smaller 

weight than single-copy families, as the former have a higher probability to be detected.  

Expression and gene function bias of CEGMA and coreGFs 

Gene function bias was determined through Gene Ontology enrichment analysis using the PLAZA 

3.0 Dicots Workbench (Proost et al., 2015) for the CEGMA core genes and the coreGFs of green 

plants and rosids. The expression bias was assessed through A. thaliana gene expression analysis 

using the Compendium2 from the CORNET database (De Bodt et al., 2010). Highly similar 

experiments were removed by clustering the experiments using a 0.95 Pearson Correlation 

Coefficient threshold and taking into account the sample descriptions available in Gene 

Expression Omnibus. This resulted in an expression atlas of 75 experiments. Expression bias was 

determined for all expressed A. thaliana genes, the CEGMA core genes and the coreGFs of green 

plants and rosids. For each gene in these gene sets, we counted the number of experiments in 

which the gene is expressed (expression value > 27.5) and summarized the values in an expression 

breadth histogram. 

3.3 Defining the expected genome size and gene space  

The common approach to all reported measures of completeness is simple to grasp (Figure 3.1, 

box B, C). First, one measures the size of the assembled genome (i.e. total assembly length) or 

the gene space (i.e. the number of genes), in the following referred to as the ‘observed’. Second, 

one selects a reference to define the expected genome size or gene space, here referred to as 
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the ‘expected’. To define the expected genome size, one can use either physical measurements 

(e.g. nuclear weight) or computational methods that analyze the sequence space (such as k-mer 

spectra). Furthermore, to define the expected gene space, one can either rely on evolutionary 

conservation and use the gene space of related species as reference (inter-species comparisons). 

Alternatively, one can define a species-specific measure of the gene space by transcriptome or 

Expressed Sequence Tag (EST) sequencing in the species itself (intra-species comparisons; Figure 

3.1, box D). Clearly, these methods rely on starkly contrasting assumptions, as further detailed 

below. Third, the comparison method (e.g. BLAST or read mapping) inherently assumes 

directionality and sets the external reference as the expected ‘100%’. The observed measure is 

then expressed as a fraction of the expected, and interpreted as completeness score for the 

genome assembly or gene space. Given the diversity of approaches, it is important to understand 

the underlying concepts to provide consistent and realistic measures of genome and gene space 

completeness.  

The genome can be partitioned into two main fractions with contrasting characteristics in terms 

of assembly and annotation. The repetitive DNA, mostly contained in heterochromatin, is difficult 

to assemble using short shotgun reads and this partition is commonly collapsed or absent from 

draft genome assemblies. It generally contains transposable elements and relatively few coding 

genes. In contrast, the non-repetitive sequence space, mostly contained in euchromatin, is 

relatively easy to assemble and is commonly assumed to contain the gene-rich partition. It is 

important to realize that methods to estimate genome or gene space completeness target these 

partitions of the genome differently, and although completeness scores may seem related, they 

should not be extrapolated between the two levels. 

Here, we will outline the challenges of estimating the completeness of the genome assembly and 

annotated gene space. We first explain how the ‘expected’ is defined for different measures of 

completeness and comment on the assumptions made by each method, including their strengths 

and weaknesses. Next, we will compare different measures of completeness in twelve recently 

published plant genomes and highlight several cases where dissimilar completeness scores are 

the consequence of technical issues of assembly or annotation, or due to strong gene function 

or expression biases in the expected gene space. Finally, we will provide some guidelines to 
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determine more robust completeness scores and comment on the challenges of future plant 

genome projects, such as defining the ‘expected’ gene space in the context of pan genome 

sequencing. 

3.4 Estimating the completeness of a genome assembly 

The first step in a genome assembly workflow (Figure 3.1, box A) is selecting an individual that is 

representative of the species. For this individual, shotgun libraries are constructed with variable 

insert sizes, ranging from 100 bp to over 100 kb for paired-end, mate-pair, PacBio, Moleculo or 

BAC libraries. Sequencing will yield reads of variable length, ranging from 100 bp to more than 

10 kb, depending on the applied sequencing technology. These reads are then assembled into 

incrementally longer contiguous sequences in three steps. First, contigs are constructed through 

de novo assembly based on the overlap of short reads or de Bruijn k-mer graphs. Secondly, the 

contigs are ordered into scaffolds using mate-pairs, BAC-end sequences, or hybrid assembly with 

long PacBio reads. Finally, the scaffolds are ordered and anchored into pseudomolecules or 

linkage groups representing chromosomes using optical mapping, cytogenetic mapping, Hi-C 

sequencing, genetic maps, population sequencing or physical maps such as BAC minimal tiling 

paths (Mascher et al., 2013; Mendelowitz and Pop, 2014; Flot et al., 2015). 

Two main factors affect the completeness and contiguity of the assembly: the level of 

heterozygosity and the length, abundance, and dispersal of duplicated regions or repetitive 

sequences (Wendel et al., 2016). Genome assembly algorithms attempt to reconstruct unique 

sequences in order to separate recently duplicated regions, closely related gene family members, 

or highly conserved protein domains. As a result, allelic sequences in highly heterozygous species 

are often also reconstructed as independent sequences, thereby inflating the total assembly 

length (e.g. Malus domestica (Velasco et al., 2010)). Conversely, repeat regions are typically 

collapsed during assembly of short reads, thereby severely reducing the total assembled genome 

size and interrupting scaffold contiguity (e.g. Lolium perenne (Byrne et al., 2015)). Apart from 

their effect on the total assembly length, high levels of heterozygosity also reduce contiguity. 

Highly polymorphic regions disturb sequence alignment during de novo assembly, lead to bubbles 

and branches in de Bruijn graphs, and cause breakpoints when de Bruijn graphs are resolved into 



Chapter 3 

38 
 

contiguous sequences. Some of these issues may be overcome in the near future using third 

generation long read sequencing technologies. 

The expected genome size of an organism can be measured using the physical properties of the 

nuclear genome: by reassociation kinetics of high molecular weight genomic DNA (Cot assay), 

pulsed field gel electrophoresis or, ideally, flow cytometry after DNA staining. These methods use 

standards of known molecular weight or reference species with a defined nuclear DNA mass 

(Zonneveld et al., 2005). The total assembled scaffold length (in Mbp) can then be expressed as 

a fraction of the molecular weight of the nuclear DNA (in pg), using the standard average 

molecular weight of 1 pg per 978 Mb for the conversion. Strikingly, closely related species may 

display considerable variation in genome size, hence limiting the accuracy of inter-species 

comparative measures of completeness (Garcia et al., 2014). In contrast, flow cytometry-based 

measurements of genome size turn out to be fairly constant across individuals within a species 

(Dolezel and Bartos, 2005), thus providing accurate estimates of the expected genome size within 

that species.  

Alternatively, the expected genome size and repetitive sequence content can be estimated using 

computational methods, such as k-mer frequency spectra of the shotgun sequencing reads (Chor 

et al., 2009). Furthermore, the percentage of the shotgun reads or BAC-end sequences that map 

onto the scaffolds yields a genome completeness score that indicates whether the shotgun read 

sequences have all been incorporated into the scaffolds. The read depth profile may further 

identify wrongly assembled, collapsed, or duplicated regions (Hunt et al., 2013; Rahman and 

Pachter, 2013). Conversely, one can control over-assembly by analyzing if all scaffolds are 

supported by read data. Just as the assembly algorithms are sensitive to genetic diversity and 

heterozygosity while searching for sequence overlap to build contiguous scaffolds, these 

assembly completeness methods rely on sequence identity for read mapping, thus, completeness 

scores are inherently sensitive to mismatch stringency parameters in highly heterozygous 

genomes (Wendel et al., 2016). 
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3.5 Estimating the completeness of the annotated gene space 

In an ideal scenario, genome annotation describes repetitive regions and the complete set of 

protein-coding genes and various classes of non-coding RNAs with a correctly identified gene 

structure. However, gene prediction does become challenging in the absence of extrinsic data, 

such as EST/RNA-Seq transcript data of the species under investigation or well-characterized 

proteins from related species. Re-training gene prediction software to learn codon biases or 

specific splicing motifs is both important to obtain high-quality gene models and to identify 

species-specific genes lacking homologs in other plant families. Gene prediction benchmarks 

exist for different eukaryotic model species and automated self-learning gene prediction 

approaches have been developed (Korf, 2004). However, in the absence of large species-specific 

transcript databases generic gene prediction tools have been used for several plant genomes, 

compromising validation of the quality and completeness of the predicted gene catalog. Recently 

developed methods like MAKER-P and BRAKER1 offer a practical solution for some of these 

issues, provided that sufficient extrinsic information is available (Campbell et al., 2014; Hoff et 

al., 2016). 

If the N50 is smaller than the average size of a gene, one can expect to annotate many partial 

gene models due to gene splitting, resulting in an over-estimation of the number of genes in the 

genome. Clearly, such erroneous gene models will compromise the correct delineation of 

homologous gene families and orthologous genes, as well as the detection of protein domains 

This obstructs the interpretation of gene family expansion or gene loss and any other 

downstream gene-based analysis, such as gene expression quantification through RNA-Seq, 

annotation of ChIP-Seq binding events or gene network analysis. For several plant genomes, gene 

catalogs have been created based on incomplete genome assemblies after separating gene-rich 

regions from repetitive DNA using methyl-filtration or high-Cot enrichment methods (Rabinowicz 

et al., 1999; Yuan et al., 2003). However, it is not entirely clear yet to what extent these 

approaches capture specific gene loci embedded within large repetitive regions. 
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Defining the expected gene space on a gliding evolutionary scale 

One approach to define the expected gene space is to use evolutionarily highly conserved 

reference gene sets, which are also expected to be present in the newly assembled genome 

(Figure 3.1, box D). This requires the definition of the taxonomic range over which genes are 

expected to be conserved, relative to the species under investigation. This approach inherently 

poses a crucial trade-off between the level of evolutionary conservation and the number of genes 

in the reference set. We first illustrate this with the Core Eukaryotic Genes Mapping Approach 

(CEGMA). The CEGMA reference gene set comprises 458 genes that are highly conserved in six 

eukaryotic species (Homo sapiens, Drosophila melanogaster, Arabidopsis thaliana, 

Caenorhabditis elegans, Saccharomyces cerevisiae, and Schizosaccharomyces pombe), and which 

are assumed to be encoded in essentially all eukaryotic genomes. Notably, CEGMA was originally 

created to build a robust set of gene annotations to train gene prediction software in the absence 

of experimental transcriptome data, but it is not meant to provide a complete catalog of genes 

in a genome. Nevertheless, a subset of 248 single-copy core eukaryotic genes is frequently used 

to estimate genome completeness, where the CEGMA completeness score expresses the fraction 

of the 248 genes that can be accurately mapped onto the genome assembly (Figure 3.1, box C). 

BUSCO, a method similar to CEGMA, recently defined a set of 429 single-copy orthologs to 

estimate completeness as well as the duplicated fraction of a eukaryotic genome sequence 

(Simao et al., 2015).  

The CEGMA gene set dates back to the last common eukaryotic ancestor, and thus any 

extrapolation of the completeness score based on such a limited set of highly conserved proteins 

will fail to account for many genes unique to plant biology. In addition, as most plant genomes 

encode more than 20,000 genes, any bias present in such a small set of conserved core genes can 

lead to errors in the estimated completeness scores. We found that more than half of the 248 

CEGMA genes from A. thaliana are expressed across all the different conditions and organs 

contained in a non-redundant A. thaliana expression atlas (Figure 3.2 A). This reveals that many 

genes expressed in specific plant organs or developmental stages are missing. Gene Ontology 

enrichment further demonstrates the gene function bias in the 248 core eukaryotic genes: 

housekeeping functions (DNA metabolism, RNA processing, translation and glucose metabolism) 
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are over-represented and the CEGMA set does not cover genes functioning in biological 

processes conserved in green plants such as photosynthesis, biosynthesis of plant-specific 

hormones, and hormone-mediated signaling (Figure 3.2 B). In summary, comparative genome 

studies aiming to identify genomic adaptations required for growth in a specific environmental 

niche (e.g. loss or gain of genes or pathways) should not rely on validating the genome annotation 

completeness using evolutionarily highly conserved reference sets, because these are blind to 

lineage-specific genes.  

In contrast, transcript mapping is a highly species-specific completeness method which is 

independent of evolutionary conservation between species. This method uses large-scale EST or 

RNA-Seq transcript sequencing to estimate how many of the transcribed genes are present in the 

gene space partition of the genome assembly of a given species (here referred to as ‘transcript 

mapping’). The expected gene space is now defined as the total number of transcript sequences, 

either specifically generated to guide genome annotation of the sequenced genotype, or derived 

from public resources. A comparison of transcript mapping at the levels of the genome assembly 

and the annotated gene catalog indicates the completeness of the gene prediction. Depending 

Figure 3.2 Gene function and expression biases associated with CEGMA and coreGFs in A. thaliana. Gene function 
and expression biases were determined for the CEGMA set (248 or 458 single-copy core genes) and the coreGFs for 
green plants (2928 gene families) and rosids (6092 gene families). (A) Gene function biases were estimated using 
Gene Ontology (GO) enrichment analysis of the PLAZA 3.0 Workbench. GO terms with at least two-fold enrichment 
are shown (p < 0.01). (B) Expression biases were determined by counting the number of microarray experiments in 
which a gene is expressed and compared to the expression breadth of the complete gene set of A. thaliana. 
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on the library preparation method used, also genes encoding different types of RNA (e.g. rRNAs, 

tRNAs, snRNA, long non-coding RNAs) can be included.  

In reality, de novo assembly often first leads to reconstruction of a partition of the genome that 

contains the euchromatic, gene rich, unique sequences in the genome, and alternative strategies 

of library preparation and assembly algorithms are needed to reconstruct the heterochromatic, 

repeat-rich sequence partition. With this in mind, we simulated fragmented and incomplete 

genomes of A. thaliana and Oryza sativa to evaluate the influence of transcript mapping 

parameters on the gene space completeness. In short, we fragmented the genome in 10kb 

sequences and randomly subsampled genomic fragments to simulate decreasing levels of 

completeness (50-100%). Random subsampling of a given fraction of the entire genome creates 

a reference that contains, proportionally, a ‘known’ fraction of the gene space, independent of 

whether the repetitive DNA partition is included in the reference or not. We collected 1,5M and 

1M publicly available EST sequences for A. thaliana and O. sativa, respectively, and mapped them 

onto the partial reference assemblies. We then calculated mean and standard deviation of the 

transcript mapping score across 100 replicate random subsamples (bins) with varying numbers 

of ESTs (range 100 - 300,000 ESTs) (see Material and Methods). Finally, we compared the 

measured gene space completeness scores to the ‘known’ fraction of the gene space to estimate 

the influence of EST mapping parameters (such as minimum % coverage), and EST library size and 

complexity, because these typically vary across the reported completeness estimates. On 

average, the transcript mapping score is stable (standard deviation < 1%) in bin sizes of at least 

3,000 ESTs, for both A. thaliana and O. sativa (Figure 3.3 A). Transcript mapping estimates the 

completeness of the gene space at 61%, when only 50% of the A. thaliana genome is used as 

reference, while for more complete genomes, the transcript mapping score converges to 97% 

(Figure 3.3 A, upper panel). When partial EST mappings were filtered out (90% coverage filter), 

partial genomes are no longer overestimated, but more complete genomes do seem incomplete 

(Figure 3.3 A, lower panel). The latter might be related to the challenge of correctly aligning 

spliced transcript sequences to their corresponding genomic locus, comprising both exons and 

introns. These results show that it is important to consistently use and report the mapping 

parameters per comparison method. As stated above, it is important to note that transcript  
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  Figure 3.3 Evaluation of transcript 
completeness scores. To estimate the 
relationship between transcript 
completeness score, actual reference 
genome completeness, and EST library 
size and complexity, two approaches 
were compared using A. thaliana or O. 
sativa. For each species, the genome 
was cut into stretches of 10kb and 
fragments were randomly sampled to 
create partial genome references 
containing 50%, 75%, 80%, 90%, 95% 
and 100% of the original genome 
sequence (NF: not fragmented). All 
publicly available EST sequences were 
mapped onto the respective partial 
genomes. In a first approach, all ESTs 
were pooled and random sampling for 
different EST bin sizes (range from 100 
to 300,000) was performed 100 times. 
The mean and standard deviation of 
the transcript completeness scores for 
each bin size and each partial genome 
is given in Box A. The lower panel 
shows mean transcript completeness 
scores and standard deviation 
counting only mapped ESTs with a 
length coverage higher than 90%. Box 
B shows the transcript completeness 
score for each individual EST library 
(indicated by a circle) mapped onto the 
partial genomes. Completeness scores 
per library based on EST mappings with 
a length coverage higher than 90% are 
shown in grey in each panel. 
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mapping scores should not be extrapolated to the completeness of the total genome assembly, 

but only apply to the gene space partition, even if the entire genome reference sequence is used 

for the EST mapping. 

We also evaluated transcript mapping scores per library on various simulated genome 

incompleteness levels for A. thaliana and O. sativa, to further define the relationship between 

transcript completeness score, actual completeness, and EST library size and complexity (Figure 

3.3 B). Both species display more variation in EST mapping score when smaller libraries are used 

to define the ‘expected’ gene space, confirming the results from down-sampling ESTs. If the 

libraries contain more than 10,000 ESTs, the EST mapping scores for A. thaliana libraries converge 

to the same value as for subsampling bins of >10,000 ESTs. For O. sativa, the convergence of EST 

mapping scores is not as clear. This indicates that the minimum library size needed for a reliable 

estimate depends on the species, perhaps as function of size and/or complexity of the genome. 

RNA-seq and de novo unigene assembly or PacBio full-length cDNA sequencing generally 

generates 50,000-100,000 unique transcripts or transcript fragments (Honaas et al., 2016). 

Several transcript libraries can be generated for a fraction of the cost of the entire genome 

sequencing project, which suffices to validate the gene space completeness test.  

The two methods described above define the expected gene space on two extremes of the 

evolutionary scale: CEGMA uses highly conserved eukaryotic genes, while transcript mapping is 

based on the mapping of species-specific cDNA sequences. Although both estimates give a useful 

insight in the completeness of the gene space in the genome assembly, they also have 

shortcomings: the CEGMA set does not represent plant-specific gene functions, while transcript 

mapping is highly dependent on the number of transcript sequences and the complexity captured 

by the different cDNA libraries. Both methods are dependent on the mapping stringency 

parameters, which should be adjusted to account for, respectively, divergence between species 

or genetic diversity within species.  

In practice, the underlying assumptions of both approaches can be combined by applying one or 

more user-defined positions on a branch of the tree of life to define the expected gene space. 

This approach balances between evolutionary conserved genes or species-specific genes. The 
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PLAZA Core Gene Families (here referred to as ‘coreGFs’) are a set of gene families that are highly 

conserved in a majority of plant species within predefined evolutionary lineages (Van Bel et al., 

2012). Three sets of coreGFs have been defined using the PLAZA 2.5 database: green plants (2928 

coreGFs), rosids (6092 coreGFs), and monocots (7076 coreGFs), using a parsimony-based 

selection approach where complete conservation across all species is not required. This approach 

accounts for the observation that genes are indeed occasionally lost in some species and it 

tolerates potential annotation errors in a limited number of species. In contrast to CEGMA and 

BUSCO, coreGFs are not filtered for single-copy genes and can therefore better deal with the 

frequent occurrence of whole-genome duplications in plants (Van de Peer et al., 2009). 

Consequently, the number of coreGF genes is five to ten times higher compared to CEGMA or 

BUSCO gene sets. Similar to BUSCO and transcript mapping, coreGFs can be used to assess the 

completeness of a gene annotation (for further details on the calculation of the coreGF 

completeness scores, see Material and Methods). Expression breadth and gene function 

enrichment analysis reveals that the coreGF gene set is less biased towards ubiquitously 

expressed genes and does not strongly over-represent specific gene functions (Figure 3.3). 

Furthermore, because coreGFs sample conserved gene families at different taxonomic levels 

within green plants, it offers a better representation of the gene function space of flowering 

plants compared to CEGMA.  

Comparison of three gene space completeness measures 

The completeness estimates of two methods based on evolutionary conserved gene sets (CEGMA 

and coreGFs) and transcript mapping were compared (Figure 3.4) using 10 recently published 

plant genome data sets, including rosids and monocots (Supplemental Table 1). The two high-

quality reference genomes of A. thaliana and O. sativa contain almost all of the CEGMA and 

coreGFs core genes (completeness scores > 99%; only 50 and 42 missing coreGFs for A. thaliana 

and O. sativa, respectively, Figure 3.4). In nine species, the CEGMA score is higher than the 

coreGF score. So, reporting only CEGMA scores generally leads to an overestimation of the gene 

space completeness. This difference is at least 5% for more than half of the species while for 

three species it is even larger than 10%. These missing fractions correspond to the projected 
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absence of a few hundred to more than a thousand coreGFs genes. The underlying reasons vary 

and can be illustrated in three specific cases.  

First, in Lolium perenne, the reported CEGMA score of 96% indicates that the genome assembly 

is complete, yet 1709 coreGFs are missing from the predicted gene set. For this genome paper, 

the authors presented a conservative, yet reliable set of annotated genes, by selecting only 

evidence-based gene models, i.e. supported by Brachypodium distachyon protein alignment and 

transcriptome assemblies (Byrne et al., 2015). The transcript mapping score of 96% on the 

genome assembly compared to the coreGF score of 76% on the predicted gene set shows that 

the gene space partition of the genome has been well assembled, but that gene prediction is 

incomplete. Indeed, mapping of B. distachyon proteins on the L. perenne genome assembly 

confirms that at least 924 of the 1709 missing coreGFs can be found using TBLASTN (E-value < 

1e-10). 

Figure 3.4 Comparison of CEGMA, coreGFs and EST mapping for twelve plant genomes. Twelve genomes within 
rosids and monocots were analyzed. Left panel: CEGMA, coreGF and EST completeness scores per genome. The 
reported CEGMA score was obtained from the respective genome publications. We calculated the weighted coreGF 
score of the respective annotated gene sets, using the rosids or monocots coreGFs according to lineage. The EST 
mapping completeness score is the percentage of publicly available EST sequences that could be mapped onto the 
genome. Right panel: the size of the circles and numbers indicate the number of missing coreGFs per genome. 
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Second, it is important to note that the coreGFs are predefined at three evolutionary levels, 

rosids, monocots and green plants. Monocot coreGFs were defined only using gene sets from the 

Poales, which are part of the commelinids. As Phalaenopsis equestris belongs to the Asparagales, 

a sister group to the commelinids, the lower coreGF score could reflect potential gene loss in P. 

equestris and shows the importance of choosing an appropriate phylogenetic level at which an 

evolutionary conserved gene set is defined. 

Third, although coreGF yields a more complete picture of the gene space than CEGMA, it does 

lack species-specific genes. For most species, the transcript mapping score lies within the same 

range as the CEGMA and coreGF score. This is not the case for Cicer arietinum L., for which only 

89% of the ESTs could be mapped on the genome sequence. More than half of the unmapped 

sequences are of non-plant origin, mostly from Fusarium oxysporum, illustrating how 

contaminations inflate the expected gene space and lead to an underestimation of the gene 

space completeness.  

Expect the unexpected 

Population resequencing studies in A. thaliana, rice, potato, and maize have unveiled the 

extensive individual genomic variation, including structural rearrangements, copy number 

variations, insertion-deletions, single nucleotide polymorphisms and sequence repeats. This has 

led to the definition of ‘core’ genome sequences (shared between all members of a species), 

‘dispensable’ genome sequences (present in only one or a few members) and ‘pan’ genome 

sequences (the union, or full genome complement across all members). Hence, the variability of 

sequence conservation extends to the sub-species or individual organism level (Cao et al., 2011; 

Hirsch et al., 2014; Marroni et al., 2014). The dispensable genome contains genes with high 

biological relevance, illustrated by possible roles in adaptation to abiotic and biotic stresses 

(Hardigan et al., 2016), species diversification and development of novel gene functions (Wang 

et al., 2006), and agronomic and metabolic traits (Yao et al., 2015). This clearly limits the 

definition of the 'expected' gene space, and, consequently, the precision and accuracy of 

completeness estimates of both the genome and the gene space.  
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3.6 Conclusions and guidelines 

A complete genome assembly is essential for the study of chromosome structure and repeat 

content. Although a complete gene catalog is an important deliverable of a genome sequencing 

project, the genome assembly should not be restricted to the gene space partition. Here, we 

discussed different measures to assess genome and gene space completeness and illustrated that 

large differences in completeness scores for the same genome can be found. Therefore, we 

advise to assess genome completeness both at the genome assembly and gene space level, to 

reliably estimate the quality of all steps of assembly and annotation. Based on our observations, 

we suggest the following guidelines: 

1. For genome assembly completeness we suggest to report the estimated genome size 

based on k-mer statistics of the raw sequence reads, together with the fraction of reads 

that map onto the assembled genome. In addition, a nuclear weight estimate should also 

be reported, obtained from an experimental method such as PFGE or flow cytometry 

using standardized references. Comparison of these measures highlights the fraction of 

the repeat DNA partition that was not assembled. 

2. To assess the completeness of the gene space, we suggest that both inter-species 

comparisons using a set of conserved core genes as well as intra-species comparisons 

based on transcript libraries from the sequenced species are performed. Ideally, the core 

gene set used to model the expected number of genes ought to be defined at various 

levels of evolutionary conservation, but including a set as large as possible and without 

strong gene function or expression biases. For transcript mapping preferably different 

cDNA libraries covering a range of organs and conditions should be included to secure a 

robust estimate of the expected number of genes. The complexity of EST libraries can be 

difficult to predict in novel organisms, consequently introducing uncertainty in the 

‘expected’ gene space (e.g. Figure 3.3). Assembled transcriptomes, in turn, can be 

compared against the core gene sets to crosscheck complexity and saturation. 

3. Large differences in completeness score between methods based on evolutionary 

conservation like CEGMA or coreGFs and transcript mapping can point to erroneous 

assumptions underlying the expected gene space for inter-species comparisons. For 
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example, in species where large-scale gene loss of specific pathways occurred, application 

of evolutionary-based methods will result in an underestimated gene space 

completeness. Similarly, EST datasets contaminated with sequences from other species 

will underestimate the gene space completeness. 

4. The correct structural annotation of species-specific genes and fast-evolving genes, poses 

big challenges for a full characterization of the gene space. Ideally, gene space 

completeness estimates should be applied on both the genome assembly and on the 

annotated gene set, as large score differences can highlight loci in the genome assembly 

which were missed by the gene prediction. Identifying the missing coreGFs can be used 

for the targeted investigation of specific gene functions. As such, genes that are truly 

missing from the genome assembly can point to the discovery of lineage-specific genome 

evolution, while genes only missing from the predicted gene space indicate that an 

optimization of the gene prediction algorithms, which frequently suffer from the lack of 

proper training in a novel organism, is needed. 

We believe these pointers will help the next generation of plant scientists to assess the quality 

of new genome sequences in a transparent and balanced manner and to formulate a standard 

for delivering better plant genome sequences, which are the templates for new biological 

discoveries. 
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4 Overcoming Challenges in Variant Calling: 
Exploring Sequence Diversity in Candidate Genes for Plant 
Development in Perennial Ryegrass2 

 

 

Revealing DNA sequence variation within the Lolium perenne genepool is important for genetic 

analysis and development of breeding applications. We reviewed current literature on plant 

development to select candidate genes in pathways that control agronomic traits, and identified 

503 orthologues in L. perenne. Using targeted resequencing, we constructed a comprehensive 

catalog of genomic variation for a L. perenne germplasm collection of 736 genotypes derived 

from current cultivars, breeding material and natural accessions. To overcome challenges of 

variant calling in heterogeneous outbreeding species, we used two complementary strategies to 

explore sequence diversity. First, four variant calling pipelines were integrated with the 

VariantMetaCaller to reach maximal sensitivity. Additional multiplex amplicon sequencing was 

used to empirically estimate an appropriate precision threshold. Second, a de novo assembly 

strategy was used to reconstruct divergent alleles for each gene. The advantage of this approach 

was illustrated by discovery of 28 novel alleles of LpSDUF247, a polymorphic gene co-segregating 

with the S-locus of the grass self-incompatibility system. Our approach is applicable to other 

genetically diverse outbreeding species. The resulting collection of functionally annotated 

variants can be mined for variants causing phenotypic variation, either through genetic 

association studies, or by selecting carriers of rare defective alleles for physiological analyses. 

  

                                                        

 

2 This chapter is based on Veeckman, E., Van Glabeke, S., Haegeman, A., Muylle, H., van Parijs, F.R.D., Byrne, S.L., 
Asp, T., Studer, B., Rohde, A., Roldán-Ruiz, I., Vandepoele, K., and Ruttink, T. (2018). Overcoming challenges in variant 
calling: exploring sequence diversity in candidate genes for plant development in perennial ryegrass (Lolium 
perenne). DNA Res, dsy033-dsy033. For author contributions, see page 74. 
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4.1 Introduction 

Perennial ryegrass (Lolium perenne L.) is one of the most widely cultivated grass species in 

Europe. It is of interest for grazing, hay and silage production as it has a long growing season, and 

relatively high yield and nutritive value. Because of its outbreeding nature, individual plants are 

highly heterozygous and the diploid perennial ryegrass genome is highly heterogeneous both 

within and across breeding populations and natural accessions. As genomic variation forms the 

foundation of phenotypic variation, revealing DNA sequence variation within the genepool is 

important for genetic analysis and development of breeding applications (Roldán-Ruiz and 

Kölliker, 2010). 

Several studies used a candidate gene-based approach to associate sequence polymorphisms 

with phenotypic variation. Examples include the association of Late embryogenesis abundant 3 

(LEA3) with drought tolerance (Yu et al., 2013), Brassinosteroid insensitive 1 (BRI1) with shoot 

morphology (Brazauskas et al., 2010), Gibberellic acid insensitive (GAI) with organ growth 

(Auzanneau et al., 2007), Heading date 1 (HD1) with carbohydrate content (Skot et al., 2007), and 

Flowering locus T (FT) with flowering time (Skot et al., 2007; Fiil et al., 2011; Skot et al., 2011). 

While these studies show the power of testing gene-trait associations, the limited number of 

genes per study was mostly due to the high cost of genotyping at the time. However, this 

approach is not amenable to study complex traits related to plant development and phenology, 

which are typically regulated by the interaction of many genes. Therefore, we need versatile and 

cost-efficient methods to characterize the genetic variation in parallel for hundreds of candidate 

genes and hundreds of genotypes. This enables breeders to perform higher resolution screening 

of genetic diversity in their material and link genotypic and phenotypic variation. 

Single nucleotide polymorphisms (SNPs) are the most prevalent type of genomic variation and 

are convenient molecular markers. Two complementary SNP genotyping arrays are available for 

high-throughput screening in perennial ryegrass (Studer et al., 2012; Blackmore et al., 2015). 

These arrays target SNPs in genic regions, but do not allow discovery of new sequence variants. 

In contrast, Genotyping by Sequencing (GBS) allows for simultaneous discovery of genome-wide 

SNPs and genotyping of a large number of individuals or pools, thereby avoiding ascertainment 
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bias. Therefore, GBS has broad applications in plant breeding and genetics studies, including 

linkage maps, genome-wide association studies, genomic selection, and genomic diversity 

studies (Chung et al., 2017). Only short (range about 100-300 bp) fragments are sequenced and 

there is no a priori control over which genes are tagged. In combination with a local short linkage 

disequilibrium that is typical for an outbreeding species as L. perenne (Xing et al., 2007; 

Brazauskas et al., 2010), it can be very difficult to identify SNPs that are causal for the phenotype 

of interest. 

The large size of the L. perenne genome (2 Gbp) and high repetitive sequence content (76%) 

(Byrne et al., 2015) currently precludes whole genome sequencing at sufficient depth in hundreds 

of accessions as has been done in e.g. Arabidopsis, rice and soybean. To study trait genetics in 

forage and turf grasses, we identified hundreds of candidate genes in genetic pathways that 

control plant development and quality traits, and analysed their genome sequence using probe 

capture enrichment for targeted resequencing in a large germplasm collection of 736 genotypes. 

We specifically focussed on genes involved in pathways related to interesting agronomic traits, 

such as plant growth and architecture (important for biomass yield), development and transition 

to flowering (important for seasonal control of growth), cell wall biogenesis (important for 

digestibility) and phytohormone biosynthesis, signalling and response (including abscisic acid, 

auxin, brassinosteroids, cytokinins, ethylene, gibberellic acid and strigolactones). Identifying 

sequence variants in these genes provides insights in the range of naturally occurring genomic 

diversity that can be expected in gene-rich regions of the genome. The variants can be used as 

markers for association genetics studies (as previously described for LEA3, BRI1, GAI, HD1, and 

FT3), and/or to identify alleles with altered amino acid sequence, mRNA splicing, or mRNA 

stability, hence altered gene function or regulation possibly resulting in an altered physiology and 

thereby affecting the phenotype. 

Multiple bioinformatics methods are available to identify sequence variants using next-

generation sequencing (NGS) data, but defining a complete and reliable variant set remains 

difficult. De novo discovery of genomic polymorphisms commonly relies on mapping reads to a 

single reference genome sequence. Although the GATK best practices are the most commonly 
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used variant calling (VC) pipeline, there is no single best VC pipeline available with both good 

sensitivity and precision. Moreover, there is low concordance between VC pipelines, even with 

the same input data (Liu et al., 2013; O'Rawe et al., 2013; Yu and Sun, 2013; Pirooznia et al., 

2014). In addition, each VC pipeline returns different variant annotations that can be used for 

quality filtering. Choosing the appropriate filtering criteria and thresholds (for instance minimum 

read depth) is not straightforward as NGS data typically has a non-uniform distribution of 

coverage (Quail et al., 2012) and estimated quality values may be dataset dependent so that 

optimal settings need to be calibrated for each dataset. The high density of sequence 

polymorphisms in the germplasm collection with respect to the L. perenne genome sequence 

could also hamper variant identification. More divergent alleles could contain the most 

interesting genomic variation, but are also the most difficult to detect as reads that are highly 

divergent from the reference genome may fail to map if the parameters for short read alignment 

are too stringent (Bertels et al., 2014). Hence, if capture and/or mapping efficiency of highly 

divergent sequences precludes their detection, it is to be expected that routine workflows of 

mapping and variant calling lead to an underestimation of the genetic diversity at highly 

divergent regions, a known problem in genome resequencing studies (Gan et al., 2011). 

Here, we present the identification and annotation of 503 L. perenne orthologs of known genes 

that regulate plant growth and development. These genes were resequenced in a germplasm 

collection of 736 genotypes to describe the genomic variation in L. perenne. Two complementary 

strategies were used to obtain a reliable and complete catalog of genomic variation. First, four 

VC pipelines were compared and automatically integrated to reach maximal sensitivity. The 

influence of mapping algorithms was assessed and hard filtering was compared to precision-

based filtering to reach sufficient specificity. Additionally, an alternative strategy consisting of de 

novo assembly followed by overlap-layout-consensus (OLC) clustering was used to circumvent 

read mapping bias and to construct alternative alleles for each gene. This reference independent 

allele reconstruction is particularly important for gene families with highly divergent alleles. We 

demonstrated the benefit of this approach for LpSDUF247 and identified 28 novel alleles that 

were not detected using traditional VC pipelines. This approach is broadly applicable to other 

highly heterozygous outbreeding species. Finally, we used all this information to create a 
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comprehensive catalog of functionally annotated genetic variation across many pathways that 

control growth, development and agricultural traits. 

4.2 Material and Methods 

Candidate gene identification and manual curation 

Gene families of A. thaliana candidate genes were identified using the comparative genomic 

platform PLAZA 3.0 Monocots (Proost et al., 2015). B. distachyon family members were used to 

identify homologous loci in the draft genome sequence of L. perenne (Byrne et al., 2015) using 

BLASTx analysis (E-value 10e-5). At each L. perenne locus, predicted protein sequences were 

added to the corresponding PLAZA 3.0 Monocots gene family. Using protein sequences of all gene 

family members of A. thaliana, B. distachyon and L. perenne, a phylogenetic tree was built with 

MUSCLE (v3.8.31) (Edgar, 2004) and PhyML (Guindon et al., 2010) using default settings, and for 

each A. thaliana candidate gene the closest orthologous L. perenne gene was selected for further 

manual curation. The L. perenne gene models were evaluated using multiple protein sequence 

alignments with MUSCLE using orthologous proteins from B. distachyon, O. sativa, Z. mays, and 

S. bicolor according to PLAZA 3.0 Monocots. Additional RNA-seq data (Ruttink et al., 2013; Farrell 

et al., 2014; Paina et al., 2014) mapped with TopHat (v2.0.13) (Trapnell et al., 2009) using default 

settings, was used to refine gene models and delineate untranslated regions, or to design a new 

gene model if required.  

Probe design, library construction and sequencing 

The coding strand of each of the 503 target regions (gene model and 1,000 bp upstream promoter 

region) was tiled with 120 bp probes, starting every 40 bp using OligoTiler(Bertone et al., 2006). 

Probes showing high sequence similarity to non-targets, other probes, repetitive sequences, 

mitochondrial or chloroplast sequences, or with extreme GC content (<25% or >65%) were 

removed. Finally, 57,693 SureSelect probes of 120 bp (Agilent) were retained, covering 2.3 Mb of 

the intended 2.8 Mb target region, at around 3x tiling. 

Genomic DNA was extracted from freeze-dried leaf material from 736 L. perenne genotypes 

representing current cultivars, breeding material and natural accessions using the 
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cetyltrimethylammonium bromide (CTAB) method(Murray and Thompson, 1980). DNA 

concentration was measured using the Quantus double-stranded DNA assay (Promega, Madison, 

WI, USA). For each genotype, an indexed shotgun sequencing library was prepared from 100 ng 

DNA by (i) Adaptive Focused Acoustic fragmentation on a Covaris S2 instrument (Covaris, Inc.), 

(ii) adapter ligation, and (iii) magnetic bead purification using an adapted protocol of 

Uitdewilligen et al. (2013). The libraries were pooled without normalization into eight pools, each 

containing 96 libraries of individual genotypes. Each pool was used for a probe capture 

hybridization reaction according to the SureSelect protocol (Agilent SureSelectXT2 Target 

Enrichment for Illumina Paired-End Sequencing Library Protocol, v. 1.0). After PCR amplification 

of purified enriched pooled libraries, each pool of 96 libraries was sequenced on one lane of a 

HiSeq2000 using 2x91-PE sequencing (BGI, Shenzhen, China). The raw data is available in the NCBI 

Sequence Read Archive (BioProject PRJNA434356, Accessions SRR6812717 to SRR6813075). 

Read mapping and variant calling 

Raw reads were trimmed and quality filtered by Trimmomatic (v0.32) (Bolger et al., 2014) and 

mapped onto the draft perennial ryegrass genome sequence (Byrne et al., 2015) with default 

settings of BWA-MEM (version 0.7.8-r455) (Li and Durbin, 2009) and GSNAP (version 2016-09-

23) (Wu and Nacu, 2010). Duplicate reads were marked using Picard-tools (release 1.113). Local 

realignment around indels was performed according to the best practices workflow of the 

Genome Analysis Toolkit (GATK) (v.3.7) (McKenna et al., 2010; Van der Auwera et al., 2013). Read 

depth and coverage were calculated on the resulting BAM files using BEDTools (v2.25.0) (Quinlan 

and Hall, 2010).  

Four different VC pipelines were used: SAMtools (version 1.2-115-gb8ff342) (Li et al., 2009), 

Freebayes (v1.0.2-2-g7ceb532) (Garrison and Marth, 2012), GATK Unified Genotyper (GATK UG) 

and GATK HaplotypeCaller (GATK HC) (McKenna et al., 2010; Van der Auwera et al., 2013). Multi-

allelic variants were removed using VCFtools (v0.1.14) (Danecek et al., 2011). For hard filtering, 

a custom Python script was used to remove variant positions and genotype calls with a read 

depth lower than 6 and a genotype quality lower than 30. SNPs and indels were automatically 

integrated by the VariantMetaCaller (v1.0) (Gézsi et al., 2015), in ten and two partitions, 
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respectively. The Estimated Precision (EP) was calculated using a custom Python script based on 

the formulas given in Gézsi et al. (2015). The concordance of SNP and indel sets identified by four 

VC pipelines was determined using information in the INFO field of the VCF file returned by 

VariantMetaCaller and visually represented using Upset (Lex et al., 2014), before and after 

precision-based filtering (EP > 80%). Functional effects of sequence variants were predicted with 

SnpEff (version 4.3T) (Cingolani et al., 2012). To validate consistency of genotype calls in an F1 

segregating population, mendelian inheritance errors (MIE) were defined after precision-base 

filtering (EP > 80%) using PLINK (v1.90b2t), for two parents and their F1 progeny of 29 individuals. 

Variants with a missing genotype call in either one of the parents were excluded from analysis, 

as were MIEs derived from a missing genotype call in one of the 29 F1 progeny.  

Hi-Plex amplicon sequencing 

To generate an independent variant set, 78 genotypes were selected for resequencing of 171 

amplicon regions of 80-140 bp. Of these, 147 amplicons overlap with 28 candidate genes. Primers 

were designed with Primer3 (Untergasser et al., 2012) and divided into two highly multiplex (Hi-

Plex) PCR-reactions according to their amplification efficiency. DNA was extracted using the CTAB 

method (Murray and Thompson, 1980) and DNA concentration was measured using the Quantus 

double-stranded DNA assay (Promega, Madison, WI, USA). Per sample, the final DNA 

concentration was adjusted to 40 ng/µL and the amplicons were PCR-amplified while adding 

sample specific indices. Libraries were prepared using the KAPA Hyper Prep PCR-free Kit 

according to manufacturer directions (Kapa Biosystems, USA). Hi-Plex amplification reactions and 

library preparations were done by Floodlight Genomics LLC (Knoxville, TN, USA). The libraries 

were sequenced with 2x150 PE on a HiSeq3000 (OMRF, Oklahoma City, OK, USA). Paired-end 

reads were merged with PEAR (v0.9.8) (Zhang et al., 2014) and adapter sequences were removed. 

The read data is available in the NCBI Sequence Read Archive (BioProject PRJNA437219, 

Accessions SRR6813540 to SRR6813585). BWA-MEM was used for read mapping, and variant 

calling was done by running the four VC pipelines. Bi-allelic variants were extracted using 

VCFtools and combined by VariantMetaCaller and the EP was calculated as described above. 
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Identification of divergent alleles of LpSDUF247 

Per genotype, all reads were used for De Bruijn graph assembly without scaffolding (CLC 

Genomics Workbench 9.5.3, https://www.qiagenbioinformatics.com). Contigs of at least 200 bp 

were retained and mapped onto the reference genome with BWA-MEM using default 

parameters, to group all contigs of the 736 genotypes per candidate gene. Per candidate gene, 

sequences of overlapping allelic fragments were extracted from the BAM files using BEDtools and 

clustered with the OLC assembler CAP3 (version date 02/10/15) (Huang and Madan, 1999). 

Singlet sequences returned by CAP3 were removed from further analysis.  

One of the candidate genes of the 503 gene set, LpSDUF247, is known to be highly polymorphic 

and was selected to demonstrate in-depth reconstruction of divergent alleles. The 34 contigs of 

LpSDUF247 were aligned using MUSCLE and six highly similar sequences (>98% identity) were 

removed. The reference gene model of LpSDUF247 was projected onto the contigs using 

GenomeThreader (v 1.6.6) (Gremme et al., 2005) to identify CDS regions and corresponding 

protein sequences.  

All B. distachyon members of the DUF247 gene family (HOM03M000101) were used in a tBLASTn 

search against the perennial ryegrass genome sequence, and 25 LpDUF247 genes were identified 

and manually annotated. After multiple sequence alignment of all 25 LpDUF247 protein 

sequences with B. distachyon and H. vulgare gene family members using MUSCLE, a phylogenetic 

tree was built with PhyML using 100 rounds of bootstrapping (Supplemental Figure 6). Similarly, 

a phylogenetic tree was built using the reference protein sequences of LpDUF247-01, 

LpSDUF247, LpDUF247-03 and LpDUF247-04, the protein sequences of the LpSDUF247 alleles, 

and five LpSDUF247-02 alleles identified by Manzanares et al. (2016) (Supplemental Figure 7). 

The 28 novel alleles were added to the reference genome sequence and read mapping was 

repeated for all 736 genotypes onto this multi-allelic reference genome. A matrix was created 

with the average read depth per LpSDUF247 allele per genotype using BEDtools. This matrix was 

normalised per genotype, by dividing the read depth per LpSDUF247 allele by the sum of read 

depths across all LpSDUF247 alleles, to identify alleles with the highest relative RD for each 
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genotype while correcting for differences in library size and capture efficiency across the set of 

736 samples. 

4.3 Results and Discussion 

Identification, classification and curation of target genes 

To identify L. perenne genes putatively involved in the regulation of plant growth and 

development, plant architecture, induction of flowering, cell wall biogenesis, and phytohormone 

biosynthesis, signaling and response, we first searched the literature for Arabidopsis thaliana 

genes with a well-defined molecular and physiological function (Supplemental Table 2). Next, the 

corresponding 174 gene families were identified with the comparative genomics platform PLAZA 

3.0 Monocots (Proost et al., 2015). For each of the A. thaliana candidate genes, a comprehensive 

list of orthologous loci in the draft genome sequence of L. perenne (Byrne et al., 2015) was 

delineated. A phylogenetic tree was built for A. thaliana and Brachypodium distachyon gene 

family members of the 174 PLAZA gene families, to select the closest orthologous L. perenne 

sequences of the candidate genes. When no clear one-to-one orthologous pairs were found due 

to lineage-specific gene duplication or gene loss events, the best two or three L. perenne loci 

were selected from the respective clades. The final selection contained 503 L. perenne candidate 

genes (Supplemental Table 2). For 407 of these loci, an annotated gene model was available 

(Byrne et al., 2015). For the other 96 loci, a gene model needed to be annotated ab-initio, in line 

with previous observation that the annotated gene space of L. perenne is 76% complete 

(Veeckman et al., 2016). The available gene models were evaluated using multiple protein 

sequence alignments with all their monocot gene family members according to PLAZA 3.0 

Monocots. In addition, mapped RNA-seq data (Ruttink et al., 2013; Farrell et al., 2014; Paina et 

al., 2014) was used to refine gene models and delineate untranslated regions. Taken together, 

manual curation of 503 gene models, showed that previously available gene models (Byrne et al., 

2015) were correct for 272 loci (54%) and needed small adaptations for 135 loci (27%). A 

completely new gene model was annotated at 96 loci (19%) using RNA-seq data. The length of 

the protein sequences corresponds well to that of their closest B. distachyon orthologs 

(Supplemental Figure 2), showing that the 503 manually curated L. perenne gene models are of  
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Table 4.1 Assignment of 503 candidate genes to pathways and distribution of high impact mutations per pathway. 

Pathway Gene families # candidate 
genes 

Stop gain Splice site Frame 
shift 

Plant development and architecture 

Development BCH1, BRIZ, CBP80, DRM1, HB13, HYL1, ING2, RSM1, 
SAMDC4 

14 2 (14%) 4 (29%) - 

Cell wall 4CL, ALDH, C3H, C4H, CAD, CAD2, CCoAOMT, CCR, CES, 
COMT, F5H, HCT, HPRGP, IRX, LAC, OFP, PAL, POX, SND, 
XylS, XylT 

121 41 (34%) 16 (13%) 5 (4%) 

Cell wall TF ERF, WRKY 6 2 (33%) - 1 (17%) 

Cell wall TF MYB MYB 21 3 (14%) - 1 (5%) 

Cell wall TF NAC NAC 11 2 (18%) 4 (36%) 1 (9%) 

Chromatin 
remodelling 

MET1, SWI 4 3 (75%) 2 (50%) - 

Lateral organ initiation ANT, SLOMO, TOP1A 6 1 (17%) - - 

Lateral organ 
patterning 
morphogenesis 

AS, CLF, DOT5, GRF, KAN, NOV, SE, TRN1, YABBY, ZPR1, 
ZPR3 

30 7 (23%) 3 (10%) 2 (7%) 

Lateral organ identity AN3, BOP, HDZIPIII 10 4 (40%) 1 (10%) - 

Light signalling bHLHABAI, CO1, COP9, CRY, DET1, HY5, LHY, PCI, PFT1, 
PHYB, PIF, SPA 

29 4 (14%) 7 (24%) - 

Shoot apical meristem BARD1, BLH, CLPS3, FTA, KNAT, OBE1, ULT1, USP1, VEF2, 
WOX14, WUS 

25 8 (32%) 5 (20%) 3 (12%) 

Self-incompatibility DUF247, GK 4 2 (50%) 1 (25%) 1 (25%) 

Transition to flowering CCA, FCA, FIE, FKF1, FLD, FPA, FT, FVE, FWA, FY, GI, LHP1, 
MBD9, PHP, RAV, SDG8, SPL3, VIL3, VRN1, VRN1-like 

45 19 (42%) 12 (27%) 1 (2%) 

Flower development ESD4, HAC3, LFY3, LUG, MADS, RGA, SEU, SUF4, SUP 31 2 (6%) 4 (13%) - 

Transcription factor BIM2, TCP 8 2 (25%) - - 

Phytohormone biosynthesis, signalling and response 

ABA biosynthesis NCED1, PDS1, PDS3 4 1 (25%) 1 (25%) - 

ABA signalling ABI1, ABI3, ABI5, ABI8, AIP3, DRIP, GBF, GPA, GTG2, 
HD2C, PSY, SAD1, SIR3, WIG, ZEP 

29 10 (34%) 3 (10%) - 

Auxin biosynthesis TAA1, TAR2, YUC 6 3 (50%) - 1 (17%) 

Auxin signalling ADA2B, AMP1, ARF, AUXIAA, AXR, AXR1, AXR4, AXR6, 
CAND1, GH3, TIR1 

20 8 (40%) 3 (15%) - 

Auxin transport AUX1, ENP, PGP4, PID2, PIN1, PIN1like, SPS 12 1 (8%) - - 

Brassinosteroid 
biosynthesis 

DWF1, DWF3, DWF5, DWF7, SQS 8 2 (25%) 1 (13%) - 

Brassinosteroid 
signalling 

BES1 2 - - - 

Cytokinin signalling ARR, CRE, GCR1, RR 11 2 (18%) 1 (9%) - 

Ethylene biosynthesis ACS 2 1 (50%) - - 

Ethylene signalling EBF1, EBF2, EIL3, EIN2, ETO1, ETR1 13 7 (54%) 1 (8%) 1 (8%) 

Gibberellin 
biosynthesis 

GAOX 11 4 (36%) - 2 (18%) 

Gibberellin signalling GID1A, SHI, SPY 5 - 1 (20%) - 

Strigolacton 
biosynthesis 

D14, D27, MAX1, MAX3, MAX4 11 3 (27%) 2 (18%) - 

Strigolacton signalling MAX2, TB1 4 - - - 

Total 180 503 144 72 19 
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high quality. This was required to delineate regions for probe design and to correctly position 

variants relative to the reading frame in the CDS to functionally interpret the consequences of 

sequence polymorphism in the genic regions. Finally, the 503 candidate genes were assigned to 

biological processes based on the known function of their A. thaliana orthologs (Table 4.1 and 

Supplemental Table 2). This high quality gene set can also be used to train and validate gene 

prediction algorithms to improve genome-wide gene annotation. 

Design and efficacy of targeted resequencing by probe capture enrichment 

For each candidate gene, a target region was delineated spanning the curated gene model and 

an additional 1,000 bp upstream promoter region, as previously described (Ruttink et al., 2015). 

Probes were designed for a total length of 2.3 Mbp, corresponding to a coverage of 85% of each 

target region on average, as probes targeting repetitive regions were excluded. Targeted 

resequencing of 736 genotypes resulted in 3.2 million reads per genotype on average (range 20 

thousand – 31 million). After duplicate read removal, a mean of 1.9 million reads was retained 

per genotype, corresponding to a mean read depth (RD) of 80X per position within the target 

regions. For variant calling analysis in heterozygous diploid species, a coverage of at least 6-10x 

is desirable, to avoid false negative heterozygous calls (Song et al., 2016). Saturation curves show 

a non-linear relationship between number of reads per library and target region coverage at a 

given RD threshold, as expected for probe capture enriched shotgun sequencing libraries (Figure 

4.1). At least 550,000 uniquely mapped reads per genotype were required to reach the probe 

region coverage plateau at 95% for RD ≥ 1. Further increasing the number of reads per sample 

did not substantially increase probe region coverage (see Ruttink et al. (2015)). The probe region 

coverage was slightly lower at higher RD thresholds (89% for RD ≥ 6 and 85% for RD ≥ 10 (Boxplots 

in Figure 4.1).  

Optimization of variant calling pipelines to compile a reliable catalog of sequence 
variation 

To obtain a complete and reliable variant set, we selected two mapping algorithms and four 

frequently used multi-sample VC pipelines to reach maximal sensitivity. Read mapping algorithm 

BWA-MEM (Li and Durbin, 2009) was compared to GSNAP (Wu and Nacu, 2010), which is able to 
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handle short and long insertions and deletions. Two alignment based VC pipelines were selected 

for their strength in SNP calling (Tian et al., 2016): GATK Unified Genotyper (GATK UG) (McKenna 

et al., 2010; Van der Auwera et al., 2013) and SAMtools (Li et al., 2009). Additionally, two 

haplotype-based VC pipelines were chosen for their strength in indel detection: GATK 

HaplotypeCaller (GATK HC) and Freebayes (Garrison and Marth, 2012). We compared the 

resulting variant sets and assessed the performance of hard filtering to improve the precision of 

variant sets. Finally, the four individual variant sets and corresponding variant quality annotations 

were merged by the VariantMetaCaller (Gézsi et al., 2015), allowing for precision-based filtering 

as an alternative to hard filtering. 

Influence of read mapping algorithms and variant calling pipelines 

For each VC pipeline, the similarity of SNP and indel sets identified using BWA-MEM or GSNAP 

mappings was calculated using the Jaccard Index (Figure 4.2). The similarity of SNPBWA and 

SNPGSNAP sets was lowest for Freebayes (0.73) and highest for SAMtools (0.83). The similarity of 

indelBWA and indelGSNAP sets was lower than that of SNPBWA and SNPGSNAP, independent of the VC 

pipeline. Jaccard index between indelBWA and indelGSNAP sets ranged from 0.47 (Freebayes) to 0.70 

Figure 4.1 Target region coverage per genotype. For each of the 503 candidate genes, the target region was 
delineated as the gene model and an additional 1000 bp upstream promoter region. The mean fraction of the target 
region covered per genotype is shown in function of the number of uniquely mapped reads using BWA-MEM after 
duplicate removal, using different read depth thresholds (RD ≥ 1 (blue), RD ≥ 6 (green) and RD ≥ 10 (orange)). 
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(GATK HC). On average, 11% of the SNPs were uniquely identified in the SNPBWA set and 9% of 

the SNPs were uniquely identified in the SNPGSNAP set. Likewise, on average, 17% of the indels 

were uniquely identified in the indelBWA set and 19% of the indels were uniquely identified in the 

indelGSNAP set. In summary, the choice of read mapper did not affect the SNP and indel sets as 

much as the choice of VC pipeline. For results presented below, only variants identified on BWA-

MEM mappings are shown, as the same trend was observed for GSNAP mappings. 

Concordance of variant sets produced by four variant calling pipelines 

Next, the size and concordance of variant sets (bi-allelic SNPs and indels) identified by the four 

VC pipelines were compared (Figure 4.3). The number of SNPs was highest for GATK UG and 

SAMtools and considerably lower for Freebayes. The number of indels was at least four times 

lower than the number of SNPs identified by the same VC pipeline. GATK UG and GATK HC 

identified the highest number of indels, and SAMtools the least. The concordance of all four VC 

Figure 4.2 Overlap of variant sets generated using BWA-MEM and GSNAP mappings as input for four variant 
calling pipelines. SNPs and indels were determined for 503 candidate genes in 736 genotypes for BWA-MEM and 
GSNAP mappings using four variant calling pipelines. The intersect of variants sets was calculated to determine 
common variants (grey) and uniquely identified variants using BWA-MEM mappings (blue) or GSNAP mappings 
(green) as input. The Jaccard index value indicates the corresponding similarity. 
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pipelines was low: only 150k SNPs (33% of the total number of SNPs identified) and 6.8k indels 

(5% of the total number of indels identified) were commonly identified, in line with previous 

reports (O'Rawe et al., 2013).Precision-based filtering is more reliable than hard filteringHard 

filtering on, e.g., minimal read depth (RD) and genotype quality (GQ) is a commonly used strategy 

to improve the precision of variant sets. As expected, both number of variant positions and call 

rate (number of genotype calls per position across 736 genotypes) decreased by filtering on 

minimal RD of six and minimal GQ score of 30 (Figure 4.4 A and B). Notably, hard filtering did not 

increase the concordance between VC pipelines (Supplemental Figure 3), indicating that true 

variants were not necessarily identified by multiple VC pipelines. These results corroborate that 

it is difficult to build a reliable catalog of sequence variation using a single VC pipeline and 

applying hard filtering (Park et al., 2014).  

Figure 4.3 Size and concordance of bi-allelic SNP and indel sets of four variant calling pipelines, before and after 
precision-based filtering. SNPs and indels were identified for 503 candidate genes in 736 genotypes using four VC 
pipelines and concordance was calculated for bi-allelic SNPs (A) and indels (B). Per Upset plot, the lower left panel 
shows the total number of variants per VC pipeline; the lower right panel shows the overlap in call sets between the 
four VC pipelines. The bar graph shows the size per concordance group before (black) and after integration by the 
VariantMetaCaller and precision-based filtering (EP > 80%) (orange). 
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As an alternative for hard filtering on individual VC pipelines, the VariantMetaCaller (Gézsi et al., 

2015) uses support vector machines to automatically combine multiple information sources 

(including RD and GQ values) generated by the four VC pipelines, and estimates the probability 

that a variant is a true genetic variant and not a sequencing artefact. The unfiltered, VMC 

Figure 4.4 Effect of hard filtering and precision-based filtering on the saturation of genotype calls across the 736 
genotypes. SNPs and indels were determined for 503 candidate genes in 736 genotypes using four variant calling 
pipelines and integrated using the VariantMetaCaller (VMC). The genotype call rate was calculated as the number 
of genotype calls present for each variant, over the total number of genotypes, and plotted cumulatively to estimate 
the genotype call saturation. This was done for bi-allelic variant sets: (A) before and (B) after hard filtering (read 
depth > 6, genotype quality > 30) of the variant sets returned by the four variant calling pipelines and (C) before and 
(D) after precision-based filtering (EP > 80%) of the VariantMetaCaller output. 
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integrated probe capture variant set contained 444,222 SNPs and 132,766 indels, determined in 

736 genotypes and 503 candidate genes. By ordering the variants according to their probability, 

an Estimated Precision (EP) was calculated for each variant, which can be used for precision-

based filtering. In general, variants identified by multiple VC pipelines were assigned higher EP 

scores. As precision in this context refers to the number of true called variants, choosing an EP 

threshold is equivalent to finding a dataset- and aim-specific balance between sensitivity and 

precision of variant calling (Gézsi et al., 2015).  

Empirical determination of the EP threshold 

Instead of using an arbitrary EP threshold, we reasoned that the EP threshold should be 

determined empirically, based on the distributions of EP values of high quality and low quality 

variants. In the absence of a published reference set of variants for the genotypes and genes used 

in this study, we generated an independent variant set for a subset of 78 genotypes using a Hi-

Plex amplicon sequencing assay (Nguyen-Dumont et al., 2013) of 171 amplicons, of which 147 

overlap with 28 out of the 503 candidate genes. Hi-Plex amplicon sequencing resulted in 126,000 

reads per genotype on average (range 11,000 – 418,000), corresponding to an average read 

depth of 619 reads per amplicon (range 24 – 20,000).  

Using the four VC pipelines integrated by the VariantMetaCaller resulted in a Hi-Plex variant set 

containing 813 SNPs and 184 indels, compared to 775 SNPs and 246 indels in the probe capture 

variant set that overlap with these amplicons. In total, 593 SNPs and 60 indels were commonly 

identified by the two independent sequencing-based genotyping methods. Together, these 

variants were defined as the High Quality (HQ) subset of variants. Conversely, SNPs and indels 

that were unique to either set (i.e. non-reproducible and more likely to be random artefacts), 

were defined as the Low Quality (LQ) subset of variants per genotyping method.  

To further validate HQ variants, we compared genotype calls of two methods (probe capture vs 

Hi-Plex) at the individual genotype level. The mean genotype call consistency, calculated as 

percentage of identical genotype calls on the total of 593 HQ SNPs and 60 HQ indels, over all 78 

genotypes was 97% (range 93% – 100%). This high level of genotype call consistency confirmed 

the high quality of commonly identified variants. Inconsistent genotype calls are most likely the 
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result of failed probe-capture, low read depth, the complexity of the region potentially 

hampering read mapping, allele specific amplification bias in the amplicon sequencing data, or 

combinations thereof. 

Comparison of EP value distributions of HQ and LQ variant positions (Figure 4.5) revealed that EP 

values of the Hi-Plex variant set were generally lower than those of the probe capture variant 

set, possibly because of higher read depth and lower complexity of amplicon reads. Furthermore, 

EP values associated with HQ SNPs were higher than EP values of LQ SNPs for both Hi-Plex and 

probe capture SNP sets. Taken together, these data show that an EP threshold of 80% 

differentiates most HQ variants from LQ variants in the probe capture SNP set, whereas the EP 

threshold needs to be set at 70% to remove LQ variants from the Hi-Plex SNP set. This further 

indicates that different EP thresholds ought to be used depending on the genotyping method. In 

contrast to SNPs, there was no clear differentiation between EP values associated with HQ or LQ 

indels (Figure 4.5). This shows that indel detection remains challenging because of mapping 

Figure 4.5 Distribution of Estimated Precision values in High Quality and Low Quality variant sets. For variants 
present in 78 genotypes and 147 amplicons, box plots show the distributions of Estimated Precision values for 
commonly identified (high quality, HQ) and uniquely identified variants (low quality, LQ) in the probe capture and 
Hi-Plex variant sets. 
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and/or realignment errors, and errors near repetitive regions (Li, 2014), thus leading to an 

incomplete indel set and underestimation of frameshift variants. 

Using the empirically validated EP threshold of 80% for the probe capture variant set containing 

variants of 736 genotypes and 503 candidate genes resulted in 252,406 SNPs and 5,074 indels. 

The high genotype call consistency indicates that the VariantMetaCaller, at least for SNPs, was 

able to reliably integrate variant sets without losing genotype call quality. Moreover, using the 

VariantMetaCaller for precision-based filtering led to a higher genotype call rate compared to 

hard filtering of individual VC pipelines (Figure 4.4 C and D).  

Validation of the resulting variant set in an F1 progeny 

Mendelian inheritance in a segregating F1 progeny derived from a bi-parental cross was used as 

an accuracy measurement for the precision-based filtered variant set: Mendelian inheritance 

errors (MIEs) are most likely the result of erroneous genotype calls. The set of 736 individuals 

contained two parents and their respective F1 progeny of 29 individuals. The genotype calls of 

these individuals were used to calculate the number of MIEs. Out of the 257,480 variants, 10,669 

contained a missing genotype call in either one or both parents (4%) and could not be tested. For 

the 246,881 remaining variants and 29 individuals, 89,789 MIEs were identified, of which 57,326 

(63%) were due to a missing genotype call. The other 32,463 MIEs represent a genotype call error 

in only a fraction of all genotype calls among the 246,881 variants in this F1 progeny (< 0.5%). 

Moreover, these MIEs corresponded to 9,440 variant positions (4%) of which most had a MIE in 

a single individual (Supplemental Figure 4).  

Effects of sequence variation on gene function 

We investigated the consequences of sequence variants on predicted gene function, using the 

manually curated high quality gene models to annotate the variants with SnpEff (Cingolani et al., 

2012). The complete annotation of functional effects for each of 252,406 SNPs and 5,074 indels 

is now available for the community to use. Out of the 257,480 variants, 65,225 resided in exon 

regions (25%) and 116,274 in intron regions (45%) corresponding to a density of 8.6 and 10.1 

variants per 100 bp, respectively. Among the SNPs in coding regions, 38% were non-synonymous 
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substitutions, which is consistent with previous observations in L. perenne transcriptomes 

(Ruttink et al., 2013; Farrell et al., 2014; Paina et al., 2014). 

A general overview of the abundance of high impact effects on gene function, listed per 

functional category or pathway is presented in Table 4.1. These include gain of stop codons, 

frame shifts and alterations in splice sites, as they are most likely to disrupt protein function, 

possibly leading to loss-of-function (LOF), and causing phenotypic variation. For instance, the 

variant set contained 256 stop gain variants, affecting 144 out of the 503 candidate genes. The 

position of each stop gain relative to the total CDS length could indicate the degree to which the 

protein is affected (Supplemental Figure 5). Most of these stop gain variants occur at low allele 

frequency across the germplasm collection. Additionally, 72 candidate genes were affected by 

splice site variants: 40 variants affected donor splice site and 47 variants affected acceptor splice 

sites. In line with the relatively low number of indels (5,074), only 20 frameshift variants were 

identified in 19 genes. In summary, naturally occurring LOF alleles could be readily identified in 

as much as one-third of the genes tested across various pathways that are important for plant 

growth and development.  

This variant catalog can be exploited in a dual fashion: (1) to associate genomic variation with 

phenotypic variation using an association mapping approach, which we are currently performing 

for architectural traits and cell wall digestibility, or (2) to mine for rare defective alleles, i.e. 

variants that disrupt gene function or regulation, and to subsequently select carriers of these 

variants for detailed phenotypic analysis. For example, we observed naturally occurring alleles 

for the single copy genes GIGANTEA (LpGI-01) and ENHANCED RESPONSE TO ABSCISIC ACID 1 

(LpERA1-01), in which a premature stop codon truncates translation at 5% and 23% of the protein 

length, respectively. Crosses with the carriers of these putative null alleles could help to clarify 

the function of LpGI-01 in the regulation of flowering time, circadian clock, and/or hypocotyl 

elongation (Mishra and Panigrahi, 2015) and LpERA1-01 in meristem organization and the 

abscisic acid (ABA) mediated signal transduction pathway (Cutler et al., 1996). 

Sequence variants were determined in a germplasm collection representing commercial 

cultivars, breeding populations and natural accessions, to ensure the downstream application in 
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current breeding programs. For instance, the 170 amplicons used to estimate the EP threshold, 

and to validate the genotype calls of the probe capture set, were designed to cover the genetic 

diversity in 28 genes putatively involved in flowering time and other phenotypic traits of interest 

to breeders. Design and validation of these amplicons is a clear illustration of the application of 

the variant set. Since a comprehensive set of SNPs and indels are now known for our breeding 

materials, detailed and customised design of PCR primers targeting specific SNPs in candidate 

genes spread across the genome, while avoiding polymorphisms in the flanking primer binding 

site, becomes feasible. Similar methods and criteria apply to the design of hybridisation probes 

for high density SNP arrays. We are currently using Hi-Plex amplicon sequencing as a very cost- 

and time-efficient method to screen hundreds of variants simultaneously in a few thousand 

genotypes, a scale required to screen for putative associations with phenotypic traits in our 

current breeding populations. 

Reconstruction of divergent alleles enables better characterization of genetic 
variation 

The prime goal of targeted resequencing is to de novo discover alleles that are divergent from 

the reference genome sequence. However, the capture efficiency of a divergent sequence is 

reduced with increasing sequence dissimilarity to the reference sequence for which the probes 

were designed. Additionally, reads may fail to map to highly divergent regions if the parameters 

for short read alignment are too stringent (Bertels et al., 2014). To circumvent mapping short 

reads to a single reference sequence, on which classical VC pipelines rely, we devised a de novo 

assembly strategy to reconstruct full-length alleles. First, de novo assembly of the captured reads 

was performed per individual genotype to reconstruct alleles for each of the 503 candidate genes 

in parallel. Next, all de novo assembled contigs from all 736 genotypes were aligned to the 

reference genome to sort out and extract all corresponding allelic fragments per candidate gene. 

Per gene, all contigs were clustered using the Overlap Layout Consensus assembler CAP3 (Huang 

and Madan, 1999) to collapse allelic redundancy and resolve fragmented gene sequences. This 

three-step approach results in a collection of alternative alleles assigned to each of the 503 

candidate genes (on average 58 contigs per gene, range 4 to 203). The entire set of 29,320 CAP3 

contigs is now available for the community to use. The value of this approach is that we can now 
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characterise genetic variation in regions of high sequence diversity where traditional short read 

mapping-based VC pipelines fail. 

We demonstrate the value of this approach for LpSDUF247, but all analyses described below may 

be repeated for any of the other 502 candidate genes. LpSDUF247 is a highly polymorphic gene 

co-segregating with the S-locus that determines the grass self-incompatibility system 

(Manzanares et al., 2016). CAP3 clustered the allelic diversity present in the 736 genotypes into 

34 separate contigs. Alignment of CAP3 contigs identified a central region of the protein with 

high sequence divergence, while this region is virtually free from SNPs in the VC dataset, showing 

the limitations of read mapping based variant calling. Six contigs displayed high sequence 

similarity (98%) to the reference sequence or to other contigs and were removed. Within the 

remaining allelic contigs, a single exon encoded for the DUF247 protein. The translated proteins 

showed only 73 to 84% global sequence identity with each other (Figure 4.6 A). These data are 

consistent with the previously reported identification of at least five unique alleles of LpSDUF247 

with 80 to 90% protein sequence identity (Manzanares et al., 2016). Phylogenetic analysis 

confirmed that de novo assembled contigs were indeed novel alleles of LpSDUF247 at the S-locus, 

and not of any of the 24 other DUF247 paralogs in the L. perenne genome (Supplemental Figure 

6 and Supplemental Figure 7). 

Next, we analyzed the distribution of LpSDUF247 alleles across the L. perenne germplasm 

collection. The 28 novel alleles were added to the reference genome sequence, thus 

complementing the reference LpSDUF247 allele, and giving reads the opportunity for near-

perfect mapping at their respective allele. Differential read mapping across the alleles in a multi-

allelic context was then used to score which alleles are present in each genotype. Mapping reads 

in a multi-allelic context eliminates the need for variant calling, but only if alleles are sufficiently 

divergent so that differential read depth can be used to identify which alleles are present per 

genotype. Near-perfect mapping of the raw reads onto the newly constructed LpSDUF247 

alternative alleles confirmed their existence in the L. perenne germplasm collection, except for 

allele 31 which had no read support (Figure 4.6 C). This also shows that the capture efficiency of 
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120 bp probes was sufficient to detect alleles with as little as 80% sequence identity to the 

reference genome sequence. 

In the vast majority of genotypes (501 out of 736) the reads almost exclusively mapped onto a 

combination of two LpSDUF247 alleles, often at similar RD, and only a minor fraction (<5%) of 

reads mapped to additional alleles (Figure 4.6 C). There was no bias for combinations of alleles 

across natural accessions, breeding populations and current cultivars, and clear segregation of 

alleles was observed in the F1 progeny (n = 29) of a bi-parental cross that was included in the set 

of 736 individuals (Supplemental Figure 8). Furthermore, 57 genotypes displayed reads mapping 

only to a single allele, suggesting either homozygosity or the failure to capture and sequence yet 

undiscovered alternative alleles with even stronger sequence divergence to the reference 

genome sequence used to design the probes. Finally, 177 genotypes displayed read depth spread 

over three or more alternative alleles. In 65 of them, the higher allele count could be explained 

by a consistent segregation of LpSDUF247-04 with LpSDUF247-28 suggesting a gene duplication, 

in combination with an additional, variable third allele. In the remaining 112 genotypes, the 

observation that reads map to more than two alleles in a multi-allelic reference genome, could 

indicate ambiguity of read mapping between closely related alleles, or the presence of additional 

alleles derived from cross-over events.  

Although LpSDUF247 was the most extreme case of sequence divergent in alternative alleles, 

Supplemental Figure 9 presents four other candidate genes with different levels of divergence, 

global or local. The alternative alleles of LpMAX3-01 and LpETR1-01 showed only local sequence 

divergence, at the introns and 5’UTR regions respectively. The sequence variation of LpFT-04 was 

captured in only four contigs, explaining why the variant density across the gene region was low, 

especially when low frequent SNPs were filtered out. Taken together, the analysis of LpSDUF247 

demonstrates the rich sequence diversity that can be mined for in this catalog of genomic 

diversity across 503 candidate genes. 
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Figure 4.6 Sequence diversity and distribution of 28 newly identified alleles of LpSDUF247 across breeding 
populations and natural accessions. A similarity matrix (A) and phylogenetic tree (B) were built using the protein 
sequences of 28 alleles and reference sequence (R) of LpSDUF247, together with three additional DUF247 genes. 
Panel C gives an overview of the distribution of the LpSDUF247 alleles across the gene pool. The alleles present per 
genotype were identified by mapping the reads to a multi-allelic reference genome, and calculating the ratio of 
average read depth per allele over the total number of reads mapping to LpSDUF247 alleles. 
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5 Genomic Variation in the FLOWERING TIME Gene Family of 
Perennial Ryegrass3 

 

The transition from vegetative growth to flowering is one of the most important processes in 

plant development. The genetic control of flowering is of great interest to breeders, as the timing 

and intensity of flowering affects agronomic traits such as biomass yield and quality (digestibility) 

and seed yield. The regulatory pathway involves the perception and processing of a diverse range 

of environmental and internal signals, and converges on genes of the FLOWERING LOCUS T gene 

family. Rather than selecting for phenotypes, we want to uncover the genomic variation in the 

FT gene family that could possibly cause variation in flowering time. The FT gene family of Lolium 

perenne contains 18 members, including novel paralogs that may be functionally redundant with 

previously described genes of this family. Five FT family members were resequenced in 736 

genotypes including natural accessions, commercial cultivars and breeding material, revealing 

high degrees of genomic sequence diversity. Many deletions occur in the promoter and UTR, 

which may affect transcript expression or stability. We identified several genotypes with 

sequence variation at positions coding for amino acid residues essential for PEBP protein 

function. Using the sequence context, haplotypes were reconstructed to estimate their 

distribution in a broad genotype collection. This case study illustrates how variant effect 

prediction based on structural sequence features leads to the identification of interesting alleles. 

Carriers of these alleles in breeding populations and natural accessions can be used for future 

functional analysis, or can be incorporated into the breeding program. 

                                                        

 

3 This chapter is based Veeckman, E., Vandepoele, K., Asp, T., Roldán-Ruiz, I., and Ruttink, T. (2016b). Genomic 
Variation in the FT Gene Family of Perennial Ryegrass (Lolium perenne). In Breeding in a World of Scarcity, I. Roldán-
Ruiz, J. Baert, and D. Reheul, eds (Cham: Springer International Publishing), pp. 121-126. For author contributions, 
see page 86. 
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5.1 Introduction 

The transition from vegetative growth to flowering is one of the most important processes in 

plant development, and the timing is strictly controlled to coincide with conditions that enhance 

production of seeds and fruits. In perennial ryegrass, flowering is induced by a period of 

vernalization, followed by long days at higher temperatures. Because the timing and intensity of 

flowering affects agronomic traits such as biomass yield and quality (digestibility) and seed yield, 

the genetic control of flowering traits is of great interest to breeders. The regulatory network 

that controls flowering involves the perception and processing of a diverse range of 

environmental and internal signals and integrates them into a single decision: to flower or not to 

flower. This network slightly differs across species but always converges on genes of the PEBP 

(phosphatidylethanolamine-binding proteins) gene family, also known as the FLOWERING LOCUS 

T (FT) gene family. Phylogenetic analyses have revealed the complex evolutionary history of this 

gene family, with strong evidence of lineage specific expansion, creating the possibility for 

functional diversification between clades, as well as functional redundancy of paralogs within 

clades (Faure et al., 2007; Wickland and Hanzawa, 2015). 

Two members of this gene family have been studied intensively: FT, a positive regulator of 

flowering, and TERMINAL FLOWER 1 (TFL1), a negative regulator of flowering. MOTHER OF FT 

AND TFL1 (MFT) is another FT gene family member, which was found to act redundantly with 

other members of the FT gene family (Yoo et al., 2004). Only three members of this family, LpFT3, 

LpTFL1 and LpSFT, have previously been characterized in L. perenne and different alleles of 

LpFT03 have been shown to associate with variation in heading date (Jensen et al., 2001; King et 

al., 2006; Fiil et al., 2011; Skot et al., 2011). We used this gene family as a case study to see how 

we can identify genomic variation and investigated whether sequence variation affected residues 

that are critical for PEBP protein function, or may be associated with phenotypic variation in 

flowering time. 
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Small-scale genomic variation arises by natural processes, and results in single nucleotide 

polymorphisms (SNPs), insertions and deletions of a short stretch of nucleotides and 

recombination. The detection of these variants in candidate genes involved in complex biological 

processes are of interest to plant breeders, as genomic variation could cause interesting 

phenotypic variation: variants occurring at positions in the genetic code that are essential for 

gene function may change the gene activity or function, thereby affecting phenotypic 

characteristics of an individual. This way, the results of the analysis of genomic sequence 

variation can be directly applied in agriculture, such as the selection of plants with the best 

agronomic characteristics for growth, yield, quality or optimal flowering based on their genomic 

sequence. 

We are interested to identify genomic variation in perennial ryegrass that putatively underlies 

phenotypic variation in adaptive traits and traits that are relevant for breeders. This information 

can be used in association mapping approaches to identify loci and causal genes with relatively 

large phenotypic effects on agronomic traits (plant architecture and forage quality). 

Furthermore, we want to use bioinformatics approaches to exploit this catalog of genomic 

sequence diversity to predict the effect of SNPs and indels on gene functions. For this, we are 

guided by some key questions: in which gene is the variant present? What is the function of that 

gene? Is the position of the polymorphism conserved or essential for gene function? Here, we 

present a case study to illustrate the pipeline from the selection of candidate genes, to the 

identification and in-depth interpretation of genomic variation. 

5.2 Material and Methods 

Gene family annotation and phylogenetic analysis 

Protein sequences of 18 Brachypodium distachyon genes were extracted from the PLAZA 3.0 

Monocots database (Proost et al., 2015) and used for a tBLASTn search against a draft assembly 

of the L. perenne reference genome sequence (Byrne et al., 2015), revealing 18 candidate 

orthologous loci. Overlapping gene models, predicted using MAKER v2.3 (Cantarel et al., 2008), 

were checked and corrected based on a multiple sequence alignment of the whole gene family 

(HOM03M000266, PLAZA 3.0 monocots) and RNA-seq data. Annotated gene sequences are 
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deposited in GenBank under accession numbers KR706144 to KR706161. For phylogenetic 

analysis, the set of 18 LpFT genes was complemented with homologs of B. distachyon (18), 

Hordeum vulgare (12), Oryza sativa spp. japonica (19), Zea mays (25) and Arabidopsis thaliana 

(6). A multiple sequence alignment was created using MUSCLE (Edgar, 2004) and a phylogenetic 

tree was constructed using PhyML (Guindon et al., 2010) applying the JTT substitution model, 

and bootstrap values were calculated using 1000 replicates. Human phosphatidylethanolamine-

binding protein 1 preproprotein (gi|4505621, NP_002558.1) was used to root the tree. 

SNP and indel discovery 

The plant collection used for variant discovery comprised 736 genotypes, including natural 

accessions, breeding material and current cultivars. From that collection, targeted resequencing 

of 503 genes of interest was performed using SureSelect probe capture enrichment of indexed 

genome shotgun libraries followed by Illumina HiSeq sequencing (PE 2x100). The raw reads were 

trimmed, mapped to a the draft genome sequence using BWA-mem (Li and Durbin, 2009) and 

polymorphisms (SNPs and short indels) were identified using GATK v3.2-2 (McKenna et al., 2010), 

as described in Ruttink et al. (2015). Multi-allelic SNPs and indels were filtered out and genotype 

calls were filtered on read depth (DP ≥ 6) and likelihood score (GQ ≥ 30). A total of 1645 SNPs 

and 505 indels are located in the five LpFT genes reported here. 

Haplotype reconstruction 

To perform haplotype reconstruction, fastPHASE (Scheet and Stephens 2006) was used for 

imputation of missing genotype calls and phasing, as described in van Parijs (2016). The 

population structure needed for imputation was determined with fastStructure (Raj et al. 2014), 

revealing four subpopulations. The largest subpopulation (A) comprises genotypes from Central 

and Northern Europe and derivations, whereas genotypes from New-Zealand and warmer 

European regions were assigned to another subpopulation (B). The third subpopulation (C) 

contains genotypes derived from a commercial breeding program. Finally, two parents and 30 F1 

plants of a QTL mapping population were grouped together. This subpopulation was used as a 

positive control (e.g. for Mendelian segregation) and was not used for further analyses. To avoid 

inflation of distinct but rare haplotypes, we excluded variant positions with a minor allele 
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frequency (< 5% for both SNPs and InDels) and low variant call rate (< 200 genotype calls for SNPs 

and < 625 genotype calls for InDels). Of the total set of 736 genotypes, only 600 genotypes with 

sufficient target region coverage were selected to avoid imputation on too much missing data 

per genotype. Two haplotypes were reconstructed for each diploid genotype and assigned to the 

corresponding subpopulations. Average distance trees were built for collapsing the unique set of 

haplotypes per gene into major haplotype classes. For each haplotype class, the most frequent 

haplotype was selected to build an average distance tree as representation of the major 

haplotype classes. 

5.3 Results and Discussion 

Delineation of the FT gene family in perennial ryegrass 

The FT gene family is characterized by the PEBP domain, which is represented in the genomes of 

all three major phylogenetic divisions; eukaryotes, bacteria and archaea. BLAST searches with all 

18 PEBP proteins of B. distachyon against a draft L. perenne genome sequence revealed 18 FT 

gene family members (Figure 5.1), consistent with a similar number of FT genes in other monocot 

species (see Materials and Methods). LpFT3, LpSFT, and LpTFL1 (here named LpFT03, LpFT01 and 

LpFT07, respectively) have previously been described (Jensen et al., 2004; King et al., 2006; Fiil et 

al., 2011; Skot et al., 2011).  

The FT gene structure typically consists of four highly conserved exons and three introns of 

variable length. Some genes across the phylogenetic tree lack an intron suggesting lineage 

specific intron loss: ZCN2 and ZCN20 have three exons resulting from the fusion of exon1 and 

exon2, whereas exon3 and exon4 appear to be fused in the common ancestral gene of LpFT3, 

HvFT1 and BD1G48830. The specific loss of an intron could be the result of reverse transcription 

of spliced mRNAs followed by homologous recombination of the cDNA with the genomic copy of 

the gene (Roy and Gilbert 2006). 
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Figure 5.1 Phylogenetic tree of the FT gene family of L. perenne (Lp), B. distachyon (BD), H. vulgare (Hv), O. sativa 
spp. japonica (Os), Z. mays (ZCN) and A. thaliana (At). Human PEBP1 (gi|4505621) was used to root the tree. Support 
values for branches are represented by bootstrap values (1000 replicates). Three major clades (MFT-like, TFL1-like, 
and FT-like) including two subclades (FT-like I and II) are shown. An asterisk indicates LpFT genes selected for targeted 
resequencing. 



Genomic Variation in the FLOWERING TIME Gene Family of Perennial Ryegrass 

 

81 
 

Expansion of the FT gene family in grasses 

Previously published phylogenetic analyses of the PEBP domains of the FT genes in H. vulgare, O. 

sativa spp. japonica and A. thaliana revealed that the FT gene family contains three major clades 

(Chardon and Damerval, 2005; Faure et al., 2007). LpFT05 and LpFT18 belong to the MFT-like 

clade, LpFT04, LpFT06 and LpFT07 belong to the TFL1-like clade and the remaining 13 LpFT genes 

belong to the FT-like clade (Figure 5.1). This last clade can be subdivided into two subclades: the 

FT-like clade I, containing AtFT and AtTSF, and the FT-like clade II, containing only grass and 

cereal-specific genes. 

The number of PEBP genes in grasses and cereals is three to four times larger than that in A. 

thaliana, due to several whole-genome duplications and tandem duplications that are specific 

for the grass lineage. These ancient duplications are revealed by the consistent grouping of 

orthologs in clades containing members of various grass species. The most parsimonious 

hypothesis suggests that two MFT-like, two TFL1-like and at least eight FT-like genes were present 

in the ancestral grass genome (Chardon and Damerval, 2005). The orthologous relationships 

within subfamilies are often difficult to deduce because genes likely evolved at least partially 

independently in each taxon by duplication and possible gene loss. 

We selected five FT genes representing the four (sub)clades of the phylogenetic tree (indicated 

with an asterisk in Figure 5.1) for detailed analysis (see below). One of them, LpFT03, has 

previously been shown to associate with heading date (Skot et al., 2011). All LpFT genes showed 

the typical residues at positions that were conserved in the whole gene family (residues coloured 

purple in Figure 5.2). Moreover, positions that were only conserved within clades were also 

conserved in the LpFT gene family members (results not shown), suggesting that these paralogs 

share biochemical function. 

Identification of sequence variation in five family members 

An average of 350 variant positions (SNPs and indels) were identified for each of the five target 

genes, but strong differences were found among genes (Figure 5.1). As expected, coding 

sequences contain fewer variants than promoter, untranslated regions or intron sequences. 
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Despite having sufficient read data for LpFT04, this gene shows remarkably little sequence 

variation.  

Next, we investigated sequence variation in the external loop and key residues of the anion ligand 

binding site (Ahn et al., 2006; Danilevskaya et al., 2008) (Figure 5.2). Projection of non-

synonymous SNPs and indels onto the protein sequence alignment of the five selected genes 

(Figure 5.2) revealed that most of them code for non-essential residues. In LpFT03, however, 

some variation in critical residues was observed, including the P136 in the external loop and the 

Y151 of the LYN triad, which are normally completely conserved in FT-like genes (Ahn et al., 

2006). TFL1-like and MFT-like genes in other species also showed variation in the external loop, 

which may affect the surface charge around the ligand-binding pocket and thus may affect 

protein function or activity. On the other hand, no variation was found in the external loop of 

Figure 5.2 Protein sequence alignment of five LpFT genes and delineation of conserved residues across the gene 
family (purple). Exon borders are indicated by black triangles. Key residues of the anion ligand binding pocket are 
indicated with an asterisk (Ahn et al., 2006; Danilevskaya et al., 2008). The LYN triad sequence of the FT-like clade I 
is coloured orange (Ahn et al., 2006). Residues that are essential for molecular function of FT or for interaction with 
FD or TCP proteins are given on top of the alignment (Ho and Weigel 2014). Residues with non-synonymous 
substitutions found in the genepool collection are colored red. 



Genomic Variation in the FLOWERING TIME Gene Family of Perennial Ryegrass 

 

83 
 

LpFT04. For LpFT02, a SNP introduces a premature stop-codon at W89 at the end of the second 

exon. This mutation occurs only in heterozygous state in 11 of the resequenced genotypes, and 

can be considered a rare defective allele. 

Ho and Weigel (2014) identified residues that were critical for the molecular function of FT and 

residues that are essential for interaction with FD or TCP proteins (Figure 5.2, residue numbers 

refer to amino acid positions in AtFT). Only for two of these residues a non-synonymous SNP was 

detected: an alternative residue at D60 could lead to differential interactions with FD and 

sequence variation at L128 may affect the molecular function of LpFT3. 

Distribution of haplotypes across a broad genotype collection 

Sequence diversity within a broad genotype collection may lead to phenotypic differences in 

flowering traits. Most SNPs and indels however, lie in non-coding regions (such as promoter, UTR, 

intron regions) (Table 5.1), making it difficult to directly deduce their effect on gene function or 

activity. Skøt et al. (2011) have detected some deletions in the promoter region that could be 

associated with flowering time. We coupled the alleles at SNP and indel positions throughout the 

gene to reconstruct phased haplotypes, which may improve interpretation of sequence variation. 

To reconstruct representatives of major haplotypes, we removed low quality and low frequency 

polymorphisms from the set of variants. Next, we used FastPHASE (Scheet and Stephens 2006) 

to impute missing data and reconstruct full-length haplotypes. The resulting set of unique 

haplotypes per gene was clustered into a phylogenetic tree, and highly similar branches were 

manually collapsed to summarize major haplotype classes. LpFT04 has the fewest major 

haplotypes (4), consistent with the low degree of sequence variation in this gene (Table 5.1). For 

the other genes more major haplotype classes could be delineated (8 for LpFT01, 10 for LpFT02, 

11 for LpFT03 and 9 for LpFT05). 
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Table 5.1 Distribution of SNPs and indels for five LpFT genes in coding and non-coding regions at minor allele 
frequency (MAF) of 1% across all 736 genotypes with positive observations. Non-synonymous SNPs in the CDS are 
given between brackets. 

  LpFT01 LpFT02 LpFT03 LpFT04 LpFT05 

Coding Length (bp) 519 528 531 513 534 

SNPs / indels 17(3) / - 24(7) / - 27(11) / - - / - 23(5) / - 

Non-coding Length 2396 3032 1537 2365 1759 

SNPs / indels 223 / 62 253 / 65 114 / 71 27 / 3 158 / 41 

 

Next, we investigated whether the genetic structure of the genotype collection coincided with 

the distribution of the haplotypes. FastStructure (Raj et al. 2014) was used to group the 736 

genotypes, revealing three subpopulations: genotypes originating from Central and Northern 

Europe and derivations (A), from New-Zealand and warmer European regions (B) and genotypes 

derived from a commercial breeding program (C). Some genes show a similar distribution across 

subpopulations per haplotype, eg. LpFT04 and LpFT05 (horizontally aligned pie charts in Figure 

5.3). Notably, for LpFT03 haplotype 10 and 11 are much more abundant in subpopulation A. In 

contrast, haplotype 9, which is closely related to haplotype 10, is more abundant in 

subpopulation B, as are haplotypes 1 to 6. 

The abundance of the major haplotype classes per subpopulation was also determined, as shown 

in the vertically aligned distribution pie charts in Figure 5.3. For LpFT02, LpFT04 and LpFT05 these 

distributions look alike, indicating that sequence variation of these genes is equally spread over 

the three subpopulations. Haplotypes of LpFT01 and LpFT03 on the other hand, display 

differential representation between the subpopulations. For LpFT01 the profile of subpopulation 

C differs from the profiles of subpopulations A and B. For LpFT03, differentiation is more 

pronounced and all three subpopulations show a different composition of major haplotype 

classes. 
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Figure 5.3 Distribution of haplotypes of five LpFT genes across subpopulations. For each gene haplotypes were 
reconstructed using imputed and phased SNPs and indels. After clustering in a phylogenetic tree, branches were 
collapsed in order to only present the major haplotypes. For each haplotype the distribution across the three 
subpopulations (A: Northern and Central Europe, B: New Zealand and warmer European regions, C: commercial 
breeding program) is shown in a pie-chart (purple) below the phylogenetic tree. The area of the circles corresponds 
to the number of times a certain haplotype is observed. Additionally, for each subpopulation (A, B, C) the distribution 
of the major haplotypes is shown at the left of the phylogenetic trees. The area of the circles corresponds to the 
number of genotypes within each subpopulation. 

5.4 Conclusion 

We have completed the FT gene family of L. perenne by identifying 18 family members in the 

draft genome sequence. All newly characterized genes contain amino acid residues that are 

conserved throughout the whole gene family, suggesting that all encode functional PEBP 

proteins. Furthermore, L. perenne members contain the clade-specific residues that differentiate 

between MFT, TFL and FT functions. In this way we have identified several novel paralogs that 

may be functionally redundant with previously described genes in the TFL1-like clade and the 

LpFT-like clade I.  

Five FT family members were resequenced in 736 genotypes, revealing high degrees of genomic 

sequence diversity. The sequence variation across the L. perenne genepool may be used in two 
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complementary ways. First, we have identified several genotypes with sequence variation at 

critical residues. Non-synonymous substitutions that reside in the external loop may cause 

changes in the surface charge and have consequences for the biochemical function. Furthermore, 

the defective W89* allele of LpFT02 could be useful to study the role of LpFT02 and its putative 

functional redundancy with LpFT03. In addition, many deletions occur in the promoter and UTR, 

which may affect transcript expression or stability, but the effects are more difficult to predict by 

bioinformatics alone. Haplotype reconstruction could be exploited to combine sequence 

variation in coding and non-coding regions, and to perform association mapping with reduced 

multiple testing correction. The distribution of haplotypes across natural accessions, breeding 

populations, and current cultivars may further reveal whether breeding has selected for 

particular alleles. 

5.5 Author Contribution 
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6 Screening Breeding Populations for Variants Associating with 
Heading Date and Plant Height4 

 

 

Association genetics is a forward-genetics approach to link phenotypic variation to genotypic 

variation and is a powerful tool to dissect the genetic basis of complex traits. We aim to identify 

alleles associating with heading date and leaf elongation, two important traits for perennial 

ryegrass breeding. We describe a high-throughput genotyping assay for 28 candidate genes that 

was designed for efficient screening of five breeding populations and a natural accession. 

Heading date was determined for each population, and leaf length was monitored throughout 

one growing season to estimate leaf elongation rates. A single SNP in LpFT-03 was significantly 

associated with heading date. The associating substitution in the first exon confirmed the 

existence of haplotypes previously identified by Skot et al. (2011), and their relation to earlier or 

later heading. For leaf elongation, a single SNP in LpMADS-01 was significantly associated with 

leaf length after autumn growth. Although no associations were detected between this 

polymorphism in LpMADS-01 and other leaf elongation traits, such as spring growth rate, this is 

an interesting candidate marker, as it is located in the first intron that is involved in regulation of 

LpMADS-01 expression. 

  

                                                        

 

4 For author contributions, see page 106. 
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6.1 Introduction 

Plant breeding often relies on phenotypic selection: a breeder selects in his/her opinion the best 

individuals to progress. As genotypic variation lead to variation in phenotype, a breeder is 

inherently selecting for a (combination of) beneficial allele(s). The identification of alleles that 

are linked to a difference in phenotype is mostly done through association genetics. Association 

mapping (or linkage disequilibrium (LD) mapping) is a method to link phenotypes to genotypes, 

by exploiting historical recombination events at a population level that maintain LD between a 

polymorphic marker and a specific phenotypic trait (Nordborg and Weigel, 2008). This is a 

powerful tool to dissect the genetic basis of complex traits and offers a high genetic resolution, 

but the detection of associations is statistically difficult and depends on the LD extent determined 

by the population structure (Auzanneau et al., 2007). There are two main approaches: association 

studies based on candidate genes (CG) or based on testing the entire genome (Genome-wide 

association study, GWAS). The latter allows for the identification of novel genes underlying a 

phenotypic trait, but have low power owing to the number of independent tests performed 

(McCarthy et al., 2008). CG association studies tend to have a high statistical power, but are 

directed by the choice of candidate gene(s) and are therefore not capable of discovering new 

(combinations of) genes underlying a phenotypic trait (Amos et al., 2011).  

Because perennial ryegrass is allogamous, LD decays much faster compared to inbreeding species 

(Smith et al., 2009; Brazauskas et al., 2010; Fiil et al., 2011). With rapid LD decay, CG association 

mapping is better suited to relate sequence variations in selected genes to specific traits of 

interest (Zhu et al., 2008). This has been successful in perennial ryegrass for genetically well-

described traits such as flowering time (Skot et al., 2005; Skot et al., 2007), vernalization 

requirement (Asp et al., 2011), lignin content and cell wall digestibility (van Parijs et al., 2016), 

and even for complex traits such as drought tolerance and winter survival and spring regrowth 

(Yu et al., 2015).  

Flowering time and leaf elongation are regulated by multiple genes, and are important agronomic 

traits for perennial ryegrass breeding. Flowering time has a major influence on feed quality and 

farm management practices. It is induced by a period of short days and low temperatures 
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(vernalization), followed by longer days and higher temperatures. As plants start to flower, fiber 

content increases with corresponding reduced digestibility. Flowering time is also correlated with 

seasonal herbage yield, plant height, leaf length, rate of tiller turnover, seed yield, abiotic stresses 

resistance, and persistence (Kemp et al., 1989; Laidlaw, 2004, 2005; Skot et al., 2007). Leaf 

elongation is an important factor contributing to plant growth and yield production (Horst et al., 

1978). Therefore, fast growing perennial ryegrass cultivars are desirable in forage. Leaf 

elongation is controlled by cell elongation and cell division rates, but the cellular and molecular 

factors accounting for the genetic variation in leaf elongation are still not well understood (Xu et 

al., 2016) 

As genetic variation is the foundation of phenotypic variation, we want to test whether variations 

in flowering time and leaf elongation observed in perennial ryegrass populations can be 

explained by the genotypic variation in candidate genes controlling these traits. Here, we present 

a CG association mapping study in five breeding populations and a natural accession, to detect 

alleles associating with variation in flowering time and leaf elongation. Heading date was 

determined for each plant as measure for flowering time, and leaf length was monitored 

throughout one growing season as a measure for leaf elongation. As flowering time is a well-

studied trait in crops and the underlying genes are well described in model species, candidate 

genes were selected and orthologs were identified in the L. perenne genome. A high-throughput 

genotyping assay for 28 candidate genes was developed, to accurately determine the alleles 

present in each population. The molecular knowledge that can be derived from the associating 

variants and corresponding genes can be used to reveal the genetic basis of flowering time and 

leaf elongation and to guide future breeding programs. 

6.2 Material & Methods 

Description of plant materials 

Six populations were screened in total (Table 6.1): one natural accession from Spain, ba12990, 

and five breeding populations. Population 1853-7 is the F2 of a single component of a poly-cross 

with seven parents that are intermediate heading. The other four breeding populations are the 

F2 of one or two crossing cells. In this scenario, a crossing cell contains two parents that can only 
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pollinate each other. Seeds were harvested from each parental plant, and grown in a tray. In 

total, 80 individuals of the F1 were further grown in a random setup on a field plot surrounded 

by barley. The seeds that resulted from cross-pollination across the F1 individuals were harvested 

and gave rise to the F2. The breeding population asturionxWAR10 is the result of a single crossing 

cell containing two late heading parents. The breeding populations 5297xWAR10 and 

ba12990xplenty were derived from two crossing cells, containing late and intermediate heading 

parents, respectively. The last population, ba12990x5554 was also derived from two crossing 

cells, containing one common parent. All parents were intermediate heading. 

Table 6.1 Overview and background of the populations 

Population Background Heading # parents # individuals 

1853-7 F1 of one component of polycross Intermediate 1+6 210 

5297xWAR10 F2 of two crossing cells Late 4 338 

asturionxWAR10 F2 of 1 crossing cell Late 2 357 

ba12990 Natural accession, Spanish origin - - 142 

ba12990x5554 F2 of 2 crossing cells with one 

common parent 

Intermediate 3 324 

ba12990xplenty F2 of 2 crossing cells Intermediate 4 358 

 

A total of 1729 individuals were sown in August 2016. The plants were transferred to individual 

containers of 20 cm diameter with drip irrigation, and moved outside on February 20, 2017. 

Plants were cut a first time after all plants of the same population started flowering. Three 

additional cuts were performed simultaneously for all six populations, on July 4 (C1), August 17 

(C2) and September 25 (C3), 2017, to simulate the ryegrass cutting regime and assess regrowth. 

Fertilizer (NPKMgO 16:8:22:3) was applied on April 21, 2017 and immediately after each cut. 

Phenotypic traits 

An overview of phenotypic traits is presented in Table 6.2. For each individual, leaf length was 

determined as the length of the longest leaf, measured from the base of the plant. In spring, leaf 

length was measured weekly from February 28 until May 29, 2017 or until the plant started 

flowering. For the linear range of growth, spring growth rate (SGR) was calculated as the slope of 
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the linear fit to the growth curve for each plant using growing degree days (GDD) with base 

temperature 0 °C, counting from January 1, 2017. Heading date was determined for each plant 

as the GDD on which a plant showed three ears. The plants were cut three times and leaf length 

was measured two and six weeks after each cut as a measure of regrowth. From September 25 

until November 13, 2017, leaf length was measured weekly, and the mean of the last three 

measurements was used as maximal leaf length after autumn growth. For each trait and per 

population, outliers were detected based on interquartile ranges (IQR), and treated as missing 

values. Outliers were defined as observations that fall below the first quartile minus 1.5 times 

the IQR or above the third quartile added 1.5 times the IQR. Pearson correlation coefficients 

between HD and leaf elongation traits were calculated with Scipy (v0.19.0). SGR was corrected 

for HD effect per population (SGRHDcorr). Median SGR was determined at each HD, and subtracted 

for each individual with the corresponding HD. The mean SGR at the median HD was added to 

obtain results that can be interpreted as the SGR as if the individual was flowering at median HD 

of the corresponding population. 

Table 6.2 Overview of phenotypic traits used to calculate associations. GDD: growing degree days. 

Trait Measure 

HD Heading date 
GDD on which a plant showed three ears (with base temperature 0 °C, counting from January 1, 2017) 

SGRHDcorr Spring growth rate corrected for HD. 
Slope of the linear fit to the spring growth curve using GDD (base temperature 0 °C, counting from 
January 1, 2017). Correction for HD was performed per population. 

C1-W2 Leaf length measured two weeks after the first cut (July 4, 2017) 

C1-W6 Leaf length measured six weeks after the first cut (July 4, 2017) 

C2-W2 Leaf length measured two weeks after the second cut (August 17, 2017) 

C2-W6 Leaf length measured six weeks after the second cut (August 17, 2017) 

C3-W2 Leaf length measured two weeks after the third cut (September 25, 2017) 

C3-max Maximal leaf length after autumn growth, estimated as the mean of the leaf length measured on 
October 30, November 6 and November 13, 2017. 

 

Hi-Plex amplicon sequencing 

Primers were designed for 171 amplicon regions of 80-140 bp with Primer3 (Untergasser et al., 

2012) and divided into two highly multiplex (Hi-Plex) PCR-reactions according to their 

amplification efficiency. This Hi-Plex assay has been designed and validated in Chapter 3. DNA 
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was extracted using the CTAB method (Murray and Thompson, 1980) and DNA concentration was 

measured using the Quantus double-stranded DNA assay (Promega, Madison, WI, USA). Per 

sample, the final DNA concentration was adjusted to 40 ng/µL and the amplicons were PCR-

amplified while adding sample specific indices. Libraries were prepared using the KAPA Hyper 

Prep PCR-free Kit according to manufacturer directions (Kapa Biosystems, USA). Hi-Plex 

amplification reactions and library preparations were done by Floodlight Genomics LLC 

(Knoxville, TN, USA). The libraries were sequenced with 2x150 PE on a HiSeq3000 (OMRF, 

Oklahoma City, OK, USA). Paired-end reads were merged with PEAR (v0.9.8) (Zhang et al., 2014) 

and adapter sequences were removed. 

Read mapping and variant calling 

The reads were mapped onto the draft genome sequence (Byrne et al., 2015) with default 

settings of BWA-MEM (version 0.7.8-r455) (Li and Durbin, 2009). Local realignment around indels 

was performed according to the best practices workflow of the Genome Analysis Toolkit (GATK) 

(v.3.7) (McKenna et al., 2010; Van der Auwera et al., 2013). Read depth and coverage were 

calculated on the resulting BAM files using BEDTools (v2.25.0) (Quinlan and Hall, 2010). 

Four different variant calling pipelines were used: SAMtools (version 1.2-115-gb8ff342) (Li et al., 

2009), Freebayes (v1.0.2-2-g7ceb532) (Garrison and Marth, 2012), GATK Unified Genotyper 

(GATK UG) and GATK HaplotypeCaller (GATK HC) (McKenna et al., 2010; Van der Auwera et al., 

2013). The resulting variants and genotype calls were automatically integrated by the 

VariantMetaCaller (v1.0) (Gézsi et al., 2015). The Estimated Precision (EP) was calculated using a 

custom python script based on the formulas given in Gézsi et al. (2015) and an EP threshold of 

70% was used to retain high-quality variants (Veeckman et al., 2018). 

Candidate gene association mapping 

The minor allele frequency (MAF) and observed heterozygosity were calculated for each 

population using VCFtools (v0.1.14) (Danecek et al., 2011). Variants with a MAF smaller than 1% 

were removed. Population structure within each population was determined using an Principal 

Component Analysis (PCA) with the R-package Adegenet (2.1.1) (Jombart, 2008; Jombart and 

Ahmed, 2011). 



Screening Breeding Populations for Variants Associating with Heading Date and Plant Height 

 

93 
 

The 28 target genes were projected onto their corresponding chromosome (genome assembly 

v2.6.1, see Chapter 6) using GenomeThreader (1.6.6) (Gremme et al., 2005). For each marker, 

association analysis was performed with model P = G + K, with the kinship (K) matrix calculated 

using GAPIT (v2) (Tang et al., 2016) using only variants residing on other chromosomes. The effect 

of population structure (Q) was not taken into account, as it was considered to be redundant 

with K. This strategy was designed to reduce influence of markers located on the same 

chromosome in the determination of K, as they are more likely to be inherited together. 

6.3 Results 

Description of phenotypic diversity 

During the growing season of 2017, heading date (HD) and leaf length were monitored for 1729 

plants, originating from five breeding populations and one natural accession (Table 6.1). 

Heading date 

Figure 6.1 shows the distribution of HD for the six populations. Two populations showed early 

heading: 1853-7 (mean HD at 989.70 GDD) and ba12990 (999.41 GDD), two populations showed 

intermediate heading: ba12990x5554 (1093.14 GDD) and ba12990xplenty (1077.98 GDD), and 

Figure 6.1 Distribution of heading date determined in six populations. Heading date was determined for each plant 
as the growing degree days (GDD) (base temperature 0°C, counting from January 1, 2017) on which a plant showed 
three ears. For each population, mean and standard deviation (stdev) are given. 
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two populations showed late heading: 5297xWAR10 (1262.39 GDD) and asturionxWAR10 

(1211.73 GDD). Populations derived from parents with a common background showed a similar 

HD: 5297xWAR10 and asturionxWAR10 are both progeny of crossings cells of ILVO and Eurograss 

breeding material, ba12990x5554 and ba12990xplenty are both progeny of crossing cells of ILVO 

breeding material and a member of the Spanish accession ba12990 and showed intermediate 

heading. Some populations showed a higher variation in HD than others, with populations 1853-

7 and the natural accession ba12990 having the smallest standard deviation corresponding to a 

difference in HD of two days, and 5297xWAR10 having the largest standard deviation, 

corresponding to a difference of four days. The observed standard variation within each 

population is comparable to other association studies in perennial ryegrass (Barre et al., 2009; 

Arojju et al., 2016). 

Leaf elongation 

Leaf growth was monitored making use of weekly leaf length measurements during spring, and 

a growth curve was generated per plant and a linear fit was used to estimate SGR (Barre et al., 

2016). All populations, except 1853-7, showed a similar distribution of SGR and average SGR of 

Figure 6.2 Distribution of spring growth rate, calculated as the slope of the linear fit to the growth curve. In spring, 
leaf length was measured weekly from February 28 until May 29, 2017 or until the plant started flowering. For the 
linear range of growth, spring growth rate was calculated as the slope of the linear fit to the growth curve for each 
plant (cm per GDD). For each population, mean and standard deviation (stdev) are given. 
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0.05 cm per GDD (Figure 6.2). The average SGR in 1853-7 was higher compared to the other 

populations (0.06 cm per GDD). During the growing season, plants were cut every six weeks 

starting from July 4, 2017. Leaf length was measured two and six weeks later, to estimate 

regrowth in a cutting regime. After the third cut, leaf length was measured until plants stopped 

growing to calculate the maximum leaf length after autumn growth. Corresponding distributions 

and figures are presented in Figure 6.3 and Table 6.3. Regrowth after the first cut, and the 

maximum length after autumn growth showed the widest distributions. Average leaf length 

measured two weeks after the third cut (C3-W2) was smaller compared to the first two cuts. 

Overall, individuals of population 5297xWAR10 had shorter leaves for each of these traits, and 

the narrowest distribution.  

 

Figure 6.3 Distributions of leaf length measured two and six weeks after each cut and of the maximal leaf length 
after autumn growth. The top and bottom part of violin plots for each cut (C1, C2 and C3) represent leaf length 
measured two and six weeks after the cut, respectively. For the third cut, the maximal leaf length after autumn 
growth is shown, instead of leaf length six weeks after C3. 

Table 6.3 Average leaf length after regrowth. For each cut (C1, C2 and C3), mean and standard deviation of leaf 
length was calculated (cm) for measurements two and six weeks (W2 and W6, respectively) after cut. For the third 
cut, the mean maximal leaf length and standard deviation after autumn growth is shown. 

Population C1-W2 C1-W6 C2-W2 C2-W6 C3-W2 C3-max 

1853-7 31±5 29±4 29±3 30±4 24±3 32±5 

5297xWAR10 25±3 27±3 27±4 27±3 22±3 27±4 

asturionxWAR10 30±4 31±4 33±4 33±4 27±3 34±5 

Ba12990 27±5 30±4 28±3 32±5 25±3 35±6 

Ba12990x5554 30±4 30±4 29±4 31±4 25±3 34±5 

Ba12990xplenty 33±6 30±4 30±4 33±5 25±3 33±5 
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Correlation between phenotypic traits 

For each of the six populations, correlation between the HD and leaf length measurements were 

calculated (Table 6.4). A significant negative correlation was observed between HD and SGR in all 

populations. Early flowering individuals are taller than late-flowering individuals at the same time 

in spring, because their stem elongation is more advanced during the vegetative phase (Hazard 

et al., 2006). SGR corrected for HD was therefore used for further association analysis (see 

Material and Methods) to separate the effects of HD and inherent differences in elongation 

growth. 

Table 6.4 P-values of Pearson Correlations calculated between HD and leaf elongation traits per population. 

 1853-7 5297xWAR10 Asturionx 
WAR10 

Ba12990 Ba12990x 
5554 

Ba12990x 
plenty 

SGR -0.35*** -0.67*** -0.60*** -0.49*** -0.43*** -0.42*** 

C1W2 -0.09 NS -0.01 NS 0.01 NS -0.15 NS -0.18** -0.07 NS 

C1W6 -0.05 NS -0.13* 0.10 NS -0.05 NS -0.01 NS 0.16** 

C2W2 -0.03 NS 0.05 NS 0.02 NS -0.10 NS -0.01 NS 0.05 NS 

C2W6 0.02 NS 0.01 NS 0.01 NS 0.06 NS -0.06 NS 0.09 NS 

C3W2 -0.10 NS -0.02 NS 0.09 NS 0.03 NS -0.10 NS 0.06* 

C3max -0.05 NS -0.05 NS 0.07 NS -0.02 NS -0.09 NS 0.12* 

NS, P > 0.05; *, P < 0.05; **, P < 0.01; ***, P < 0.001. 

Description of genotypic diversity 

A Hi-Plex amplicon sequencing array of 171 amplicons (Veeckman et al., 2018) was used to 

genotype the 1729 individual plants. The amplicons covered 28 candidate genes, involved in light 

signaling, transition to flowering and hormone biosynthesis and signaling (Supplemental Table 

3). This resulted in 253,000 reads per genotype on average, corresponding to an average read 

depth of 1,343 reads per amplicon. 

Four VC pipelines integrated by the VariantMetaCaller followed by precision-based filtering 

resulted in a high-quality variant set containing 952 SNPs and 261 indels. Variants with MAF<1% 

per population were removed to reduce the number of false positive variants. The number of 

polymorphic sites differs between populations (Table 6.1): asturionxWAR10 contained the 

fewest variants. The natural accession, ba12990, contained the most variants of which 245 were 
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uniquely present in this population. The call rate was high, with an average call rate of 98% per 

variant. 

Table 6.5 Overview of the number of variants and mean observed heterozygosity per population.  

Population Number of variants Number of variants MAF > 1% Mean observed heterozygosity 

1853-7 1165 370 0.42 

5297xWAR10 1171 416 0.28 

asturionxWAR10 1174 289 0.38 

ba12990 1176 694 0.20 

ba12990x5554 1173 548 0.37 

ba12990xplenty 1186 508 0.29 

 

The mean level of observed heterozygosity is a valuable parameter to estimate the degree of 

genetic variation in each population (Table 6.5). This resembled the number of parental alleles 

present in each population (Table 6.1). Population 1853-7 is a half-sib family from a poly-cross 

with seven components, i.e. all individuals are half-sibs derived from seed harvested on one 

component, the mother plant 1853-7, pollinated by 6 possible fathers. This explains the highest 

level of heterozygosity. AsturionxWAR10 was derived from a single cross of two parents, and 

Figure 6.4 Distribution of the minor allele frequencies per population. Variants with minor allele frequency < 1% 
per population were removed. 
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individuals showed the second highest level of heterozygosity on average. Populations 

5297xWAR10 and ba12990xplenty (four parents) show lower levels of heterozygosity than 

ba12990x5554 (three parents). Individuals of the wild accession ba12990 showed the lowest 

level of heterozygosity, indicating that many alleles occur at low frequency (Figure 6.4). 

Figure 6.5 shows population structure (Q) within each population as assessed with a PCA. The 

populations ba12990, ba12990x5554 and ba12990xplenty showed more structure compared to 

the other three populations. This could not be explained by the number of parental genotypes, 

or the setup of the poly-cross for the generation of the F2 for populations ba12990x5554 and 

ba12990xplenty. Association analysis was performed taking only the effect of kinship (K) into 

account, as the effect of population structure (Q) was considered redundant.  
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Figure 6.5 Principal Component Analysis to reveal population structure within each population. PCA was 
performed with the R-package Adegenet (MAF > 1%). For each population, the individuals are positioned based on 
the first two principal components (PC1, PC2). 
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LpFT-03 associates with heading date 

Association mapping was performed for each population and trait separately. For HD, a single 

significant association with LpFT-03 was found in population ba12990xplenty (p < 1e-05) (Table 

6.6). This polymorphism explained 7% of the phenotypic variation in HD present in this 

population. LpFT-03 resides on chromosome 7, in a QTL that has previously been described to 

regulate flowering in perennial ryegrass (Armstead et al., 2004). This gene is part of the PEBP 

(phosphatidylethanolamine-binding proteins) gene family, also known as the FLOWERING LOCUS 

T (FT) gene family. Only three members of this family, LpFT3, LpTFL1 and LpSFT, have previously 

been characterized in L. perenne and different alleles of LpFT-03 have been shown to associate 

with variation in HD (Jensen et al., 2001; King et al., 2006; Fiil et al., 2011; Skot et al., 2011). 

Table 6.6 Significant association with heading date. (FDR: false discovery rate, PVE: phenotypic variation explained) 

Scaffold Position Gene Chromosome Population p-value 

(FDR adjusted) 

PVE 

5073 38,536 FT-03 7 ba12990xplenty 6.02E-05 7.39% 

 

The association corresponds to an adenosine-thymine substitution in the first exon of the LpFT-

03 gene and is synonymous: codons GGT and GGA both code for a glycine residue. The 

substitution itself is unlikely to be causal, and may therefore be in LD with a polymorphism that 

is directly causal for variation in HD. 

For all 358 individuals of population ba12990xplenty a genotype call was present: 114 individuals 

were homozygous for the reference allele (adenosine), 41 individuals were homozygous for the 

alternative (thymine) and 203 individuals were heterozygous at the associating position. In the 

other five populations, the association was not significantly associated. Three possible reasons 

may explain this: not all three genotypic classes were adequately represented (Supplemental 

Table 4), the associating SNP is not in LD with the causative polymorphism in the existing alleles 

in these populations, or the range of phenotypic variation was too small.  
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Allelic effect 

The allelic effect was estimated to be -79.99 GDD indicating that the alternative allele, i.e. a 

thymine, corresponds to later heading. Skot et al. (2011) have validated the existence of seven 

haplotypes for LpFT-03 and their association with flowering time. The alternative allele (thymine) 

of the associating SNP was characteristic for haplotypes A and G described in Skot et al. (2011), 

which are identical except for one nucleotide. These haplotypes contain a deletion in the 

promoter region of LpFT-03 in the proximity of a GGACAT motif, which could affect transcription 

factor binding efficiency, and, in turn, the expression of the LpFT-03 transcript, thereby leading 

to later flowering. Additional weaker associations with polymorphisms in LpFT-03 in population 

ba12990xplenty confirmed the existence of haplotype A/G in this population and the association 

with later heading.  

In population 5297xWAR10, the SNP at position 38,536 was not significantly associating (p-value 

3.24E-02), but this population showed an opposite allelic effect of +54.84 GDD, indicating that 

the alternative allele corresponded to earlier heading compared to the reference allele. 

Figure 6.6 Distribution of heading date per genotypic class for the association with LpFT-03 (scaffold 5073, 
position 38,536). For the populations ba12990xplenty and 5297xWAR10, the mean heading date (in GDD) was 
calculated per genotypic class. Error bars indicate 95% confidence intervals. 
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Distribution of HD per genotypic class confirmed this contrasting trend for this SNP between 

populations ba12990xplenty and 5297xWAR10 (Figure 6.6). Individuals that are homozygous for 

the alternative allele in both ba12559xplenty and 5297xWAR10 showed a similar HD, while the 

reference allele corresponded to earlier and later heading, respectively. This suggests that 

multiple alleles exist across the different test populations, in which the causative polymorphisms 

are in alternative phase with neighboring SNPs covered in our Hi-Plex assay. 

A comparison of the haplotypes identified by Skot et al. (2011) and phased variants across 

amplicons of LpFT-03 in populations ba12990xplenty and 5297xWAR10 confirmed that the 

alternative allele at position 38,536 corresponded to the presence of haplotype A/G in both 

populations, thus explaining a similar HD in individuals homozygous for the alternative allele. On 

the other hand, a reference allele at position 38,536 corresponded to at least two new haplotypes 

in these populations that were different from the seven haplotypes previously identified by Skot 

et al. (2011).  

LpMADS-01 associates with maximal leaf length after autumn growth 

Leaf elongation was monitored throughout one growing season, and different traits were used 

in the association analysis: SGR, leaf length two weeks and six weeks after cutting (C1, C2, C3), 

and the maximal leaf length at the end of autumn growth. Only for this latter trait, a single 

significant association with LpMADS-01 was found in population 5297xWAR10 (p < 1e-05) (Table 

6.7). This polymorphism explained 8% of the phenotypic variation in maximal leaf length at the 

end of autumn growth present in this population. LpMADS-01 co-localizes with the 

VERNALIZATION1 (VRN1) locus, which encodes for a MADS-box transcription factor and controls 

vernalization-induced flowering in cereals. It is related to genes that promote flowering in other 

plant species: phylogenetic analysis of grass MADS-box genes together with A. thaliana homologs 

has shown that LpMADS-01 clusters in the APETALA1 (AP1) subgroup (Danyluk et al., 2003; 

Trevaskis et al., 2003; Yan et al., 2003; Petersen et al., 2004). 

For 329 out of 338 individuals of population 5297xWAR10 a genotype call was present: 128 

individuals were homozygous for the reference allele (cytosine), none of the individuals were 

homozygous for the alternative allele (guanine) and 201 individuals were heterozygous at the 
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associating position. Although the distribution among genotypic classes was similar for other 

populations (Supplemental Table 4), no significant association was found. 

The allelic effect of the association was found to be -2.97 cm in population 5297xWAR10. In other 

words, the alternative allele (guanine) at this position corresponds to shorter leaves after autumn 

growth. The association corresponds to a cytosine-guanine substitution in the first intron of the 

LpMADS-01 gene.  

Table 6.7 Significant association with leaf length. (FDR: false discovery rate, PVE: phenotypic variation explained) 

Scaffold Position Gene Chromosome Population p-value 

(FDR adjusted) 

PVE 

312 70351 MADS-01 4 5297xWAR10 3,60E-05 8.13% 

6.4 Discussion and Conclusion 

For 28 selected candidate genes, 170 amplicons were designed for a Hi-Plex genotyping assay to 

identify the genetic variation across 1729 individuals. Hi-Plex amplicon sequencing proved to be 

an efficient genotyping method at the scale of breeding populations of several thousands of 

plants. The resulting variant set was of high quality, containing only 2% missing data. This is a 

good example of how the catalog of sequence variation present in 503 candidate genes that was 

generated for 743 individuals derived from natural accessions and current cultivars and breeding 

materials, is a good representation for the variation present in the L. perenne genepool. This 

variant collection is a reliable resource for primer design for the 503 candidate genes, a critical 

step in the development of a high-throughput and targeted genotyping assay. 

A single SNP in LpFT-03 was significantly associated with HD and a single SNP in LpMADS-01 was 

significantly associated with leaf length after autumn growth, explaining 7% and 8% of the 

phenotypic variation respectively. Both associations were found in a single breeding population. 

The range of variation in HD and especially the small range of variation in leaf length was a first 

limiting factor to find associations. This was reflected in the small allelic effect size of the 

significant associations. The number of target genes and/or small genotypic diversity in each 

population is a second limiting factor to find associations. This illustrates the importance of 

selecting parents based on contrasting phenotypes and/or the presence of divergent alleles for 
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candidate genes. Thirdly, the association study was performed for each population separately, 

possible leading to false negative associations, i.e. true associations that were not significantly 

associating within a population because of reduced statistical power due to a small range in 

phenotypic variation or suboptimal representation of genotypic classes.  

Taken this last argument, analyzing all populations jointly would reduce the number of false 

negative associations. We chose to analyze populations separately because of two reasons. First, 

performing the performing the association analysis using all populations together requires 

accurate estimation of the population structure, as population stratification is one of the major 

sources for false positive associations. Given the fact that the genotypic assay covered 28 genes 

representing only five of the seven chromosomes of the L. perenne genome, inference of the 

population structure is not straightforward for this study. Second, analysis of the LpFT-01 alleles 

suggested that multiple haplotypes exist across the different test populations, meaning that 

neighboring SNPs are in alternative phase. Using single binary markers (reference versus 

alternative allele) may confound the association analysis, as they represent different haplotypes 

across populations. 

 LpFT-03 is a central regulator of the genetic network that controls flowering, more specifically, 

the transition from vegetative to generative growth. Different alleles of LpFT-03 have been found 

to associate with variation in HD (Jensen et al., 2001; King et al., 2006; Fiil et al., 2011; Skot et al., 

2011). Phasing variants across amplicons of LpFT-03 confirmed that the associating substitution 

in the first exon was specific for haplotype A/G previously identified by Skot et al. (2011). 

However, the reference allele at this position was linked to at least two new haplotypes in 

populations ba12990xplenty and 5297xWAR10, with a contrasting phenotype. This illustrates 

how transfer of markers across different populations is not straightforward, as single 

polymorphisms are member of different haplotypes and therefore not always in LD with a 

sequence variant causal for phenotypic variation, thus confounding the analyses. Further 

analyses are required to untangle the existing haplotypes for LpFT-03 and their relationship to 

flowering time: reconstruction of full haplotypes will provide a way to identify sequence variation 

causal for phenotypic variation, as well as higher power and increased precision for association 

analyses compared to single genetic markers such as SNPs. 
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LpMADS-01 is associating with maximal leaf length after autumn growth, one of the five 

representative traits for leaf elongation. This gene is also involved in the genetic network 

controlling flowering time. It is related to the A. thaliana APETALA1 gene and an orthologue of 

the wheat VRN1 gene. This substitution does not lead to a difference in protein sequence, but is 

located in the first intron that plays an important role in VRN1 regulation (Yan et al., 2003; Fu et 

al., 2005). The first intron contains a core region required for repression of VRN1 before winter, 

together with regions at the 5’end of the intron. Alleles containing larger deletions are more 

active and are associated with earlier flowering without vernalization (Hemming et al., 2009). 

Histone modifications at the first intron and promoter are also important for VRN1 activity: 

histone-3-lysine-27-trimethylation (H3K27Me3) induces an inactive chromatin state and might 

contribute to repression of VRN1 before winter (Oliver et al., 2009). After vernalization, the level 

of H3K27Me3 decreases and makes space for histone modifications associated with active 

chromatin state. The associating substitution in the first intron could be involved in the regulation 

of the expression level of LpMADS-01, either epigenetically or by influencing binding of 

repressors. It is, however, also likely that (i) this association is linked to a causal association in a 

neighboring gene on chromosome 4 or (ii) this is a false positive association, as only leaf length 

after autumn growth was found to be associated but none of the other leaf length traits, such as 

spring growth rate. Although LpMADS-01 is involved in the flowering regulatory network and the 

association was not found with other elongation traits such as spring growth rate, this is an 

interesting candidate marker, as it is located in the first intron that is involved in regulation of 

LpMADS-01 expression.  

With this candidate gene association study, we aimed to detect alleles in breeding populations 

responsible for phenotypic variation in flowering time and leaf elongation. Although there were 

no significant associations identified in the natural accession, including wild material is valuable 

to identify novel alleles that are not yet represented in the breeding material. Using a 

conservative association mapping approach, a single association was identified for each trait of 

interest. The corresponding polymorphisms can be developed into molecular markers that can 

be used to direct future breeding programs. However, it should be noted that the associating 

variant is not necessarily the causal mutation for the corresponding phenotype, and is only 
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significantly associating because it is genetically linked to the causal mutation. Additionally, as 

shown for the associating SNP in LpFT-03, a single marker is not capable of distinguishing 

between different haplotypes that exist for this gene. As such, a haplotype-based association 

mapping approach will be more valuable to capture the full genetic diversity present within and 

across populations, and may provide more power to identify the causal mutation. 

6.5 Author Contribution 

Elisabeth Veeckman, Tom Ruttink, An Ghesquière and Hilde Muylle were involved in selection of 

the populations. Tom Ruttink, Sabine van Glabeke, Elisabeth Veeckman and Kurt Lamour 

designed the Hi-Plex genotyping assay. Elisabeth Veeckman, Hilde Muylle, Isabel Roldán-Ruiz and 

Tom Ruttink designed the research methodology. Elisabeth Veeckman performed the data 

analysis. Elisabeth Veeckman, Hilde Muylle, Isabel Roldán-Ruiz and Tom Ruttink contributed to 

writing the chapter. 
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7 Valorization, Outreach and Conclusion5 

 

 

The focus of this PhD was the development of genomic resources for perennial ryegrass. In the 

previous chapters, some of the major challenges that we encountered in doing so were 

described. Here, I give an overview of the resources that are now available, focusing on what was 

needed to create or improve these resources while remaining perceptive for possible pitfalls and 

imperfections. Most resources described in this chapter are currently unpublished data and 

approaches, developed in collaboration with partners of the international ryegrass research 

community. First, I describe how the gene space completeness measures developed in Chapter 

3 were used to develop an annotation pipeline resulting in a more complete and accurate gene 

annotation set for the draft genome sequence published by Byrne et al, 2015 (further referred 

to as the v1.4 genome sequence). Using the PLAZA workflow, functional annotations were 

generated for the resulting gene set. Furthermore, we illustrate how the completeness of this 

gene set and the corresponding functional annotations are relevant for the ryegrass research 

community using studies that are still ongoing and are already using the newly generated 

resources. Next, I describe our joint collaborative efforts to generate a novel, chromosome-scale 

reference sequence assembly (further referred to as the v2.6.1 genome sequence), to overcome 

the limitations of the current available reference genome sequence. Finally, we discuss the 

challenges on identifying genomic diversity in perennial ryegrass and the possible applications of 

the catalog of sequence diversity in the dissection of complex traits and marker-assisted 

breeding. 

  

                                                        

 

5  This chapter contains currently unpublished data obtained in close collaboration with partners from Aarhus 
University, Teagasc, University Tübingen, and INRA-Lusignan. For author contributions, see page 129. 
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7.1 Structural and functional gene annotation of the draft genome sequence 

The completeness of a gene annotation set and accuracy of the gene models are two important 

prerequisites for comparative genomics and evolutionary studies. Manual curation of 503 

candidate genes that were selected for resequencing (Chapter 4) showed that 20% did not have 

a gene model predicted, clearly indicating that the gene annotation set of the v1.4 genome 

sequence was incomplete. This can be explained by the use of a conservative gene annotation 

approach, resulting in 28,182 reliable gene models (Byrne et al., 2015). Only evidence-based gene 

models, i.e. supported by extensive transcriptome assemblies and B. distachyon protein 

alignments, were retained and genes are missing from the final gene annotation set because no 

ab initio gene prediction was included.  

Need for gene space completeness measures 

This raised the question on how to measure the completeness of the gene space in both the 

genome assembly and gene annotation set. In order to answer this question, it was important to 

first define the ‘expected’ gene space, in order to express completeness as a fraction of the 

expected. 

In Chapter 3, we introduced the concept of defining the expected gene space along the 

evolutionary scale, as this accommodates using different gene space completeness measures. All 

measures have their own strength, weaknesses, underlying assumptions and potential biases, 

and the results should be interpreted accordingly (Veeckman et al., 2016). To define the expected 

gene space, one can either rely on evolutionary conservation and use the gene space of related 

species as a reference. Examples are CEGMA, BUSCO and the PLAZA core gene families (coreGFs). 

Alternatively, one can define a species-specific measure of the gene space using transcripts or 

EST sequences. 

CEGMA, BUSCO and transcript mapping can be used to estimate completeness of the gene space 

in the genome assembly, while BUSCO and the coreGFs can be used to estimate completeness of 

the gene annotation set. For the v1.4 genome sequence, a CEGMA score of 96% was reported, 

and the transcript mapping score of 96% confirmed that the gene space was fully represented in 
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the v1.4 genome sequence. However, the coreGF score of 76%, corresponding to 1,709 missing 

coreGFs, confirmed our suspicion that the v1.4 annotation set is not complete.  

All studies relying on the v1.4 annotation without further gene prediction will therefore suffer 

from the missing unpredicted genes, for instance, one may falsely conclude that 1,709 core gene 

families are lost in perennial ryegrass during genome evolution. As measures for gene space 

completeness are not yet a common standard in genome publications, it is often overlooked that 

an assembly or the gene annotation set could be incomplete. Therefore, we strongly encourage 

using clear and objective measures indicating completeness of both assembly and annotation 

set, so that end-users are well aware of possible limitations and are less prone to false 

interpretations. 

Improving the gene annotation using EVidenceModeler 

As the v1.4 genome sequence is currently the best assembled genome sequence available, and 

many studies are using this version as a reference, it is important to improve the current gene 

annotation to obtain a more complete set of gene models while maintaining gene model 

accuracy. 

The EVidenceModeler (EVM) is a tool for automated gene structure annotation, and combines 

evidence from secondary sources, such as ab initio gene predictions and various forms of 

sequence homologies (Haas et al., 2008). We used the EVM to improve completeness of the gene 

annotation set of the v1.4 genome sequence, without losing gene model accuracy. For this, the 

current gene annotation set was complemented with a less conservative set of gene predictions, 

orthology-guided transcript assemblies (Ruttink et al., 2015) and aligned proteomes of closely 

related species (B. distachyon, rice, maize and sorghum). The EVM then computes a gene model 

consensus based on the types of evidence available and their corresponding weight values.  

Finding a combination of weights that provides the best consensus prediction accuracy is an 

important goal, but very different weight settings can lead to similar levels of performance. 

Therefore, tuning the EVM weights intuitively is a straightforward way to obtain a high-quality 

gene annotation set and combinations of assigned weights in the following form provides 

adequate consensus prediction accuracy (Haas et al., 2008): 
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(ab initio predictions) ≤ (protein & transcript alignments) < (evidence based gene prediction) 

Given the set of 503 candidate genes that were manually curated in the framework of 

identification of sequence variation (Chapter 4), it was possible to estimate the accuracy of the 

individual input tracks as well as to evaluate the consensus gene models returned by the EVM 

using these manually curated gene models as a gold standard. Predicted exons were compared 

to the gold standard exons at single nucleotide level. The F1 score is the harmonic mean of 

precision and recall, and was used as a quality measure for the predicted exons (Table 7.1). 

The EVM gene annotation set for the v1.4 genome sequence contained 39,967 genes. The 

completeness was estimated at 92.6% ([S:89.0%, D:3.6%], F:2.5%, M:4.9%, n:1440) using BUSCO 

(Simao et al., 2015) and 89% using the PLAZA 2.5 monocots core gene families (Van Bel et al., 

2012). Only 3% of the candidate genes were missing, compared to 20% in the original gene 

annotation set (Table 7.1). As the EVM gene set is more complete, it can be used for gene content 

analysis, as evidence for gene prediction on future genome assemblies, and it forms a better basis 

for estimating gene expression levels in transcriptome profiling experiments (see below). 

However, some genes may still be absent in the EVM annotation set. BLAST searches of the 

missing core gene families could indicate their absence/presence in the v1.4 genome sequence, 

thereby revealing the strengths/weaknesses of our approach to improve the annotation of the 

v1.4 genome sequence using the EVM.  

Accurate gene models are important for the prediction of the effects of sequence variants on 

gene function (Chapter 5 and 6). The novel gene models proved to be 10% more accurate (Table 

7.1). Setting weights for the EVM was mainly guided by testing the accuracy of the gene models 

using a set of 503 manually curated genes, representing 180 gene families. This could have 

generated a bias to correctly predicting gene models for genes resembling genes of the 180 

selected gene families. However, setting equal weights for the input tracks resulted in the best 

accuracy, thanks to the large amount of evidence tracks and the high quality of each input track 

individually.  
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Table 7.1 Comparison of gene annotation sets for the v1.4 genome sequence. 

 V1.4 gene set (Byrne et al., 2015) EVM gene set 

Number of genes 28,182 39,967 

Accuracy 

(F1 measure) 

87.40% 97.01% 

BUSCO 

(n = 1,440) 

Complete: 81.6%  

[Single: 61.6%,Duplicated: 20.0%] 

Fragmented: 2.5% 

Missing: 15.9% 

Complete: 92.6%  

[Single: 89.0%, Duplicated: 3.6%] 

Fragmented: 2.5% 

Missing: 4.9% 

PLAZA CoreGF 

(n = 7,076) 

76.87% 

1,709 missing 

89.42% 

538 missing 

From trait-associated SNP to the closest gene 

The EU-project GrassLandscape aims to screen the natural diversity of perennial ryegrass to 

discover genetic variability involved in environmental adaptation, more specifically in climatic 

adaptation. Within the project, 550 natural populations were sampled across the whole area of 

primary expansion of perennial ryegrass (Europe, Northern Africa and Near East) and genotyped 

using GBS (Blanco-Pastor et al., 2018). These populations were also phenotyped in the field at 

three different locations to record agronomic and eco-physiological traits. Association models 

between genomic variants and environmental variation are being used to map the spatial 

distribution of genomic markers linked to adaptive diversity in present climatic conditions, an 

approach called ‘landscape genomics’. The aim of the study is to identify genomic markers in the 

populations linked to the environmental and climatic characteristics of their location of origin, 

i.e. markers carrying signatures of selection. 

In order to add more biological meaning to these signatures of selection, the gene context of 

associating variants can be assessed. In an early stage analysis for the GrassLandscape project, 

51,695 SNPs were identified as possible candidates for signatures of selection. Using the 

published gene annotation set (28,182 genes) 15% of the SNPs resided on a scaffold where no 

gene was annotated (Table 7.2). Compared to the EVM gene set, this number decreased by half, 

with only 4,220 SNPs residing on a scaffold without an annotated gene. Moreover, the number 
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of SNPs located within a gene increased, from 45% to 52% of the SNPs, and the average distance 

to the closest gene decreased. 

The EVM gene set is more complete compared to the published gene set and should therefore 

be used in future studies as the standard annotation set for the genome v1.4 genome sequence. 

This example has already illustrated that using the EVM gene set increased the resolution for 

interpreting associating variants, so that the biological signal becomes clearer, and this helps to 

explain why a certain region in the genome associates with a trait of interest.  

Table 7.2 Comparison of two gene annotations sets of the v1.4 genome sequence for the identification of the 
closest gene for trait-associated SNPs. 

 V1.4 gene set (n = 28,182) EVM gene set (n = 39,967) 

# SNPs on scaffold without genes 8,014 4,220 

# SNPs within gene 23,065 

6,194 unique genes 

26,868 

7,499 unique genes 

Mean distance to closest gene 9,869 bp 7,476 bp 

 

Generation of gene function annotations using the PLAZA comparative genomics 
platform 

The improved gene annotation set of the v1.4 genome sequence generated by the EVM consists 

of 39,967 genes. Only for a few genes of L. perenne a functional description is available in public 

resources such as Genbank. We generated functional annotation for the v1.4 EVM consensus 

gene models by adding L. perenne to a private version of PLAZA, based on version 4.0 Monocots 

(https://bioinformatics.psb.ugent.be/plaza/versions/plaza_v4_monocots/) that contains 29 

comparator species (Figure 1.1).  

PLAZA is an access point for plant comparative genomics centralizing genomic data produced by 

different genome sequencing initiatives. It integrates plant genome sequence data and 

comparative genomics methods and provides an online platform to perform evolutionary 

analyses and data mining within the green plant lineage (Viridiplantae) (Proost et al., 2009; Van 

Bel et al., 2012; Proost et al., 2015; Van Bel et al., 2018). Using this platform, it is possible to 

transfer knowledge about molecular functions from model plant species, such as A. thaliana and 

https://bioinformatics.psb.ugent.be/plaza/versions/plaza_v4_monocots/
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rice, to crop species. Functional annotation is expressed using the Gene Ontology (GO) syntax, 

and added using InterProScan and projection of functions to orthologous genes (Burge et al., 

2012). 

First, gene families were created based on an all-against-all BLAST of all protein coding genes, 

and a multiple sequence alignment and phylogenetic tree was generated for each gene family. 

As a result, 160,545 homology groups and 236,721 orthogroups were created. 

For each protein sequence, the InterPro database was searched for matching protein signatures. 

If the InterPro entry was associated with a GO term describing the conserved molecular function, 

biological process, or cellular location, the corresponding gene was also assigned this GO term. 

This resulted in the assignment of 40,825 GO terms to 18,412 L. perenne genes. The PLAZA 

workflow offers the possibility of GO projection: functional annotation is exchanged between 

orthologs, using a set of rules based on the phylogenetic trees and sets of orthologs. In total, 

45,304 GO terms were assigned to 20,224 genes (51%), derived from either InterProScan (90% 

of the GO terms) or GO projection (remaining 10%) (Figure 7.1). Figure 7.2 shows the number of 

GO terms per gene per GO category: 11,201 genes are associated with a Biological Process, of 

which 1,095 through projection; 18,104 genes are associated with a Molecular Function, of which 

2,340 through projection; and 3,977 genes are associated with a Biological Process, of which 308 

through projection.  

Figure 7.1 Number of EVM gene models with associated functional annotation derived from InterProScan and 
PLAZA GO projection. 
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GO terms and InterPro domains are very useful as they are part of a controlled vocabulary, allow 

for functional interpretation through enrichment analysis and are easily transferable across 

species. However, a free-text gene description is often easier to interpret and biologically more 

relevant. Using AnnoMine, a homology-based text-mining approach, the genes were functionally 

annotated complementary to the well-structured InterPro and GO annotations (Van Landeghem, 

2014). In total, 19,301 L. perenne genes were assigned a short gene description, of which 3,655 

genes did not have a GO or InterPro annotation.  

Taking both GO, InterPro and AnnoMine annotations into account, a functional description is now 

available for 23,879 L. perenne genes (59.8%). Many genes did not get any functional description, 

but also for well-studied model species O. sativa or B. distachyon, the fraction of genes without 

GO term is also relatively large, 29% and 38%, respectively (Figure 7.3). This mainly reflects the 

global state of the art of plant molecular biology: the function of many genes is not yet elucidated 

in any of the well-studied model species (Rhee and Mutwil, 2014), and therefore this information 

cannot be projected to homologous L. perenne genes.  

Figure 7.2 Number of GO terms associated per EVM gene per GO category. The number of GO terms per gene was 
counted per GO category, after removing parental GO terms. 
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Usage of the functional annotation in the context of cold tolerance 

The improved gene set generated using the EVidenceModeler is now functionally annotated. This 

is a valuable asset for the interpretation of trait-associated SNPs, as described above, but also for 

other functional studies in perennial ryegrass. 

Dr. Stephen Byrne and colleagues at Teagasc, Ireland, are investigating the transcriptome 

response to cold stress in six perennial ryegrass cultivars. The selected cultivars are highly 

heterogeneous, and RNA sampling was done in bulk for each cultivar to obtain the average 

transcriptome response of the cultivar, as opposed to the response of individual genotypes 

within the cultivar. The study aims to compare the transcriptomes of each cultivar under cold 

stress to their matched control samples and identify differentially expressed genes or altered 

biochemical pathways. On a second level, the differentially expressed genes or pathways were 

compared across the six cultivars. 

Figure 7.3 PLAZA data overview for functional annotations for six selected species. 
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The incompleteness of the v1.4 gene set as a reference for differential expression analysis, and 

the limited functional annotation of these gene models hampered interpretation of the results. 

Using the EVM gene set instead, ca. 70% of the RNA-Seq reads could be aligned to known gene 

models. Genes that are commonly regulated in response to both short periods of cold and longer 

periods of cold acclimation could be identified. In the future, this knowledge will be exploited in 

predictive modelling for forage yield in early spring, using approaches such as genomic feature 

best linear unbiased predictor (GFBLUP) to improve the accuracy of genomic prediction. 

7.2 Towards a chromosome-scale reference genome for Lolium perenne 

In a collaborative effort with Aarhus University and the University of Tübingen, this PhD 

contributed to a novel assembly of the ryegrass genome sequence, including gene annotation 

(see below). Here, we shortly describe the efforts to de novo assemble an entirely new version 

of the L. perenne reference genome sequence. Repetitive regions remained the main disruptive 

factor to obtain a chromosome-scale assembly representative for the total haploid genome size, 

as well as the fact that previously, there was no technology available in the 10-20kb linkage range 

to anchor and orient scaffolds in the final assembly stage. Anchoring scaffolds using synteny 

impedes further evolutionary and comparative genomics studies, and genetic linkage maps 

provide low resolution, as crossover events are rare in centromeric regions. An alternative 

strategy, implementing state of the art techniques implemented in the most optimal order, was 

needed to obtain a chromosome-scale genome assembly for L. perenne. 

Integration of third-generation sequencing, optical mapping and Hi-C results in a 
chromosome-scale assembly 

Figure 7.4 shows an overview of the strategy that was used to obtain a chromosome-scale 

genome assembly for L. perenne. This was done using a combination of Illumina short read 

sequencing with PacBio long read sequencing, optical mapping, and Hi-C. New PacBio SMRT 

sequencing was used compared to the v1.4 genome sequence. Long read assembly and polishing 

resulted in an assembly that is representative for the total genome size and therefore also 

contains the repetitive fraction of the genome (in contrast to the v1.4 genome sequence ), but is 

still highly fragmented (> 40k contigs). Because optical maps can bridge repetitive regions, hybrid 
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scaffolding with Bionano optical maps improved the assembly contiguity and reduced the 

number of contigs by half. Ultimately, the incorporation of the spatial context of chromosomal 

conformation capture delivered by Hi-C sequencing resulted in incorporation of 92% of the 

scaffolds into seven pseudo-chromosomes. After manual curation of pseudo-chromosomes and 

unanchored scaffolds, the final chromosome-scale genome assembly for perennial ryegrass 

comprised 2.5 Gbp, of which 90.46% was incorporated in seven pseudo-chromosomes. 

It was only by combining NGS with third-generation sequencing, optical mapping and Hi-C that a 

chromosome-scale assembly for the large and highly repetitive L. perenne genome could be 

obtained. The v1.4 genome sequence contains half of the genome size, represented in 48k 

scaffolds and as many gaps. In other words, the average gap size is equal to the average scaffold 

size, namely 20kb, which, in turn, corresponds to the limit of effective sequence range distance 

that is connected by Hi-C crosslinks. Beyond that range, Hi-C assembly loses signal strength. Using 

Hi-C to anchor the scaffolds of the v1.4 genome sequence, therefore, did not result in an 

assembly of pseudo-chromosomes, as bridging gaps that are larger than 20kb is not possible.  

The combination of large sequence contigs, optical maps, and Hi-C scaffolding data provides a 

very powerful set of resources for genome assembly. Only recently, a similar approach has been 

used to obtain a high-quality reference sequence for barley (5 Gbp) and wheat (17 Gbp) (Mascher 

et al., 2017; Appels et al., 2018). This clearly illustrates our innovative strategy for the new 

Figure 7.4 Overview of the assembly workflow to obtain a chromosome-scale assembly for Lolium perenne. 
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assembly of the perennial ryegrass genome, having a similar quality compared to these major 

crop genomes. However, obtaining a contiguous genome assembly remains challenging, requires 

a great effort in both time and resources, and is still subject to technical artefacts. The quality 

and the length of the backbone contigs used for optical mapping and Hi-C scaffolding greatly 

affects the resulting assembly. Hi-C was originally developed to detect intra- and inter-

chromosomal interactions, meaning that Hi-C scaffolding data includes linkages between loci co-

localized on the same chromosome as well as structural DNA linkages, because telomeric and 

centromeric regions of different chromosomes are co-localized in the nucleus (Belton et al., 

2012). This creates a risk of incorporating inter-chromatin interactions into the linear assembly. 

Validation of the assembly should be done during hybrid scaffolding and Hi-C scaffolding, to 

identify discrepancies that require adjustments or corrections (Udall and Dawe, 2018). Some 

genomic regions are easily corrected, e.g. the mitochondrial genome was manually removed 

from pseudo-chromosome 7 of L. perenne, while others require multiple iterations to resolve or 

are likely to remain unresolved and require local reassembly of the underlying DNA sequence.  

The most important advantage of the v2.6.1 genome sequence is that the chromosome-scale 

sequence was obtained without relying on synteny with closely related grass species. There were 

no prior assumptions on gene content and order used, so it is now possible to answer questions 

in the context of comparative and evolutionary studies. For instance, it is now possible to define 

the precise breakpoints of the large-scale translocation between the long arms of chromosomes 

4 and 5 of perennial ryegrass and Triticeae species, such as barley, and the full set of genes that 

were translocated. 

Annotation of the chromosome-scale genome sequence of Lolium perenne 

From improving the gene annotation set for the v1.4 genome sequence, we have compiled a 

useful strategy for gene annotation in L. perenne resulting in the best gene annotation set 

possible with high accuracy and completeness. Using this knowledge, a similar strategy was used 

to generate a gene annotation set for the v2.6.1 genome sequence. 

A first gene annotation set was generated with Mikado (Venturini et al., 2017). Mikado provides 

a framework for integrating transcripts from multiple sources into a consolidated set of gene 
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annotations. It defines gene loci, scores transcripts and defines a representative model for each 

locus. Finally, transcripts that are chimeric, fragmented or that have short or disrupted coding 

sequences are removed, returning a filtered set of gene models according to the requirements. 

The input data consisted of aligned proteomes from four related species (B. distachyon, O. sativa, 

Z. mays and S. bicolor), four sets of aligned transcripts (GMAP, Wu and Watanabe (2005)) and 

corresponding TransDecoder bed files, and RNA-Seq alignments of seven different tissues 

(leaves, roots, meristems, leaf sheets and inflorescence) and corresponding high quality splice 

junctions (Portcullis, Mapleson et al. (2017)). Mikado turned out to perform well for L. perenne, 

leading to annotation of 101,876 genes (Table 7.3). A second annotation set was generated using 

Maker (Campbell et al., 2014), with six rounds of training to include ab initio gene predictions. 

The resulting gene annotation set contained 321,636 genes, three times more compared to the 

Mikado annotation set, and consists of a large portion of false positive gene annotations. This 

result is similar to the performance of Maker followed by eight rounds of training on the v1.4 

genome sequence. 

The Maker annotation set is more complete than the Mikado annotation set, with only 247 

missing coreGFs (Table 7.3). The gene model accuracy was calculated using a projection of the 

503 manually curated gene models onto the v2.6.1 genome sequence and retaining 437 genes 

with an exact match. The F1 measure denoting nucleotide-level gene model accuracy was slightly 

higher for the Mikado annotation set compared to Maker. However, only 52% of the Mikado 

transcripts lead to a correct protein sequence (including start and stop codon, and not containing 

internal stop codons), while for Maker this was almost 90%. Although Maker leads to a strong 

over-prediction of the total number of genes, the gene models seem to be more accurate 

compared to Mikado. 

We decided to use the EVM to integrate Mikado and Maker annotations in order to benefit from 

the strengths of both methods: Mikado is strongly evidence-based, while Maker also includes ab 

initio gene predictions with high quality gene model structures. The resulting EVM annotation set 

contained 169,635 genes, and Maker gene models that were not supported by any other type of 

evidence were removed, leaving 139,003 genes in the final EVM annotation set (Table 7.3). Both 

BUSCO and CoreGF completeness measures were comparable to Maker, and 85% of the 
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transcripts lead to correct protein sequences. This means that the accuracy of the gene models 

did improve compared to the Mikado gene models, a large portion of false positive gene 

annotations are already removed compared to Maker, and all of this not at the expense of the 

completeness of the annotated gene space estimated with BUSCO and coreGFs. 

Table 7.3 Comparison of gene annotation sets for the v2.6.1 genome sequence. 

 Mikado Maker EVM EVMHC 

Number of genes 101,876 321,636 139,003 48,812 

Accuracy 

(F1 measure) 

96.01% 94.35% 93.30% 93.24% 

BUSCO 

(n = 1,440) 

Complete: 87.4%  

[Single: 63.0%, 

Duplicated: 24.4%] 

Fragmented: 4.6% 

Missing: 8.0% 

Complete: 93.5%  

[Single: 88.8%, 

Duplicated: 4.7%] 

Fragmented: 3.9% 

Missing: 2.6% 

Complete: 93.1%  

[Single: 89.7%,  

Duplicated: 3.4%] 

Fragmented: 3.1% 

Missing: 3.8% 

Complete: 93.1%  

[Single: 89.7%,  

Duplicated: 3.4%] 

Fragmented: 3.1% 

Missing: 3.8% 

PLAZA CoreGF 

(n = 7,076) 

82.18% 

951 missing 

95.21% 

247 missing 

93.74% 

315 missing 

92.63% 

370 missing 

 

The number of genes in the EVM gene set (139,003) is much higher compared to closely related, 

diploid species (34k in B. distachyon (JGI v3.1) and 26k high confidence genes in barley (Ensembl 

Genomes ASM32608v1). The higher number of predicted genes is because no repeat masking of 

the v2.6.1 genome sequence was performed prior to the gene annotation. Instead, the EVM gene 

set was filtered into a high and low confidence gene set, based on different selecting criteria. 

First, functional descriptions were generated using PLAZA, as described for the v1.4 EVM gene 

annotation set. Genes were considered high confidence, if they showed homology to reference 

proteins of related species (A. thaliana, O. sativa, S. bicolor and B. distachyon), did not overlap 

with a repeat region, and had no functional description resembling a transposable element (TE). 

The final high-confidence gene set (EVMHC) contained 48.812 genes, and had similar accuracy and 

completeness compared to the EVM gene set (Table 7.3). This inverse approach of identifying TEs 

after gene prediction is more liberal, and allows for the identification of novel TE-mediated genes 

that play a role in e.g. tolerance to abiotic stresses (Sahebi et al., 2018). 
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An accurate and complete gene annotation set for the chromosome-scale v2.6.1 genome 

sequence will contribute to the interpretation of trait-associated SNP markers as described 

above. The full chromosomal context has become available, leading to a more accurate 

identification of the closest gene both up and downstream, compared to the v1.4 genome 

assembly in which only 2.1 genes are joint per scaffold on average. 

7.3 Insights in the genomic sequence diversity of perennial ryegrass 

Because of its outbreeding nature, individual plants are highly heterozygous and the diploid 

perennial ryegrass genome is highly diverse both within and across breeding populations and 

natural accessions. Previous studies have reported that there are on average five SNPs every 100 

bp in the L. perenne transcriptome (Studer et al., 2012; Ruttink et al., 2013). The high density of 

sequence variants creates a challenge for establishing a comprehensive catalog of genomic 

sequence variation, as there is no universal standard variant calling pipeline to use, nor a 

reference variant set available to compare with, or to use for variant calling calibration. 

Challenges in identification of genomic variation in L. perenne using standard 
variant calling pipelines 

At first, a single variant calling pipeline was used to identify sequence variation for 503 candidate 

genes in 743 genotypes. The GATK HaplotypeCaller is the most commonly used variant calling 

pipeline, and can identify SNPs and indels simultaneously via local de novo assembly of 

haplotypes in an active region. By completely re-assembling reads in a region showing sequence 

variation, the GATK HaplotypeCaller is more accurate in regions where different types of variants 

are present in close proximity, and is also more accurate in the identification of indels compared 

to position-based callers like the GATK UnifiedGenotyper. 

However, when using different VC pipelines, the concordance of the resulting variant sets was 

surprisingly low. This has lead us to the conclusion that the identification of de novo genomic 

sequence variants is not straightforward in a highly heterogeneous species, such as perennial 

ryegrass. Therefore, we developed two complementary strategies. First, variants sets generated 

by four VC pipelines were automatically integrated to reach maximal sensitivity. To reach 

maximal precision, highly multiplex amplicon sequencing was used as an independent 
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genotyping technology to empirically estimate an appropriate precision threshold. Second, an 

alternative strategy based on de novo assembly followed by overlap-layout-consensus clustering 

was used to reconstruct sets of divergent alleles for each candidate gene. This is required for the 

detection of highly divergent alleles that are missed during variant calling relying on alignment 

of short reads to a single reference genome sequence. This approach is applicable to other highly 

diverse outbreeding species and provides important insights in the pitfalls and solutions of 

bioinformatics analyses of populations-scale genome resequencing studies.  

Implications of high variant density for allele frequency profiling with GBS 

The observation that in the perennial ryegrass germplasm there is more than one SNP every 100 

bp has some serious complications for standard analyses being used for genotypic screening of 

ryegrass populations. Allele frequencies of molecular markers in populations are the basis for 

many population genetics analyses. The GrassLandscape project makes use of GBS pool-Seq to 

efficiently profile allele frequencies in 550 ryegrass natural populations (Blanco-Pastor et al., 

2018).  

Using haplotypes in association genetics studies can improve the inference of population 

structure and provide higher power and precision, as they exploit LD information from multiple 

markers (Lorenz et al., 2010). Inferring haplotypes from GBS data currently relies on an in silico 

restriction digest of the reference genome in order to determine were stacks of reads will align. 

Not surprisingly, one of the main reasons that GBS suffers from data incompleteness is that SNPs 

and indels occur at restriction sites, the molecular basis of all classical AFLP analyses. These 

polymorphisms may cause gain, loss or shift of restriction enzyme recognition sites, leading to 

gain or loss of amplifiable fragments and absence/presence polymorphisms of divergent alleles 

per GBS locus. Additionally, detailed analysis of read mapping profiles revealed that local 

variation in read mapping position occurred consistently, and fairly frequently, within GBS loci of 

heterozygous L. perenne individuals, leading to partially overlapping reads, instead of perfectly 

aligned read stacks flanked by restriction sites in the reference genome. 
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In order to increase the accuracy for allele frequency profiling based on pooled GBS data, we 

have developed a novel method to delineate the locations of stacks mapping to the genome, and 

to identify variation in stack start and end positions across individuals and pools. Figure 7.5 

illustrates the workflow on how to delineate Stack Mapping Anchor Points (SMAPs). The input 

files consist of BAM files, generated by mapping reads per sample to the reference genome. Per 

sample, stacks are delineated as reads mapping to the reference with exactly the same start and 

end mapping position. Overlapping stacks are then merged into stack clusters, meanwhile 

keeping track of all start and end positions within a stack cluster (i.e. SMAPs). Next, stack clusters 

are integrated across all samples based on positional overlap, thereby combining all possible 

SMAPs per locus across all samples. Finally, the SMAPs are combined with variant positions, and 

haplotypes can be created using combinations of the SMAPS as well as the intermittent SNPs. 

 

Figure 7.5 Overview of the delineation of stack mapping anchor points (SMAPs). 
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This procedure can be applied for GBS using both single and double enzyme digests, and can 

analyze read mapping data of both individual and pooled samples as well as single-end and 

paired-end read data. As the delineation of the read mapping positions is independent from an 

in silico restriction digest, this method is also more robust and reduces the fraction of missing 

data in a highly heterozygous species, such as L. perenne. Moreover, by capturing read mapping 

polymorphisms, a new type of molecular marker is generated that reflect underlying sequence 

variation, including indels that are otherwise difficult to detect. These markers can be used in a 

similar way as traditional SNP and indel data for allele frequency profiling and association studies.  

Possible applications for the catalog of sequence diversity of 503 candidate genes 

Using targeted resequencing for 503 candidate genes involved in pathways that control biological 

processes underlying agronomic traits, we constructed a comprehensive catalog of genomic 

variation for a L. perenne germplasm collection of 736 genotypes derived from current cultivars, 

breeding material and natural accessions. The final variant set consisted out of 252,406 SNPs and 

5,074 indels (EP > 80%) in 2.3 Mbp, corresponding to up to 10 variants per 100 bp. 

The catalog of sequence variation is useful for many purposes: 

- In an association genetics study to uncover genes involved in important agronomic 

traits. The candidate genes were chosen based on orthology with genes that are 

known to be involved in plant growth and development from experimental studies in 

model species such as A. thaliana. These genes were resequenced in 736 genotypes 

that are representative for the L. perenne germplasm, and each of these genotypes 

was extensively phenotyped for different traits related to plant architecture (heading 

date, number of tillers, leaf length etc.) and cell wall digestibility. Moreover, some 

variants may be causal for a certain phenotype, or may be strongly linked to a causal 

variant. 

- To identify genomic sequence variants that affect gene function and regulation, using 

the manually curated gene model for each of the 503 candidate genes. Our analysis 

showed that naturally occurring LOF alleles could be readily identified in as much as 
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one-third of the genes (Chapter 4). As illustration, we identified premature stop 

codons in ERA and GI, and in Chapter 5 for the FLOWERING LOCUS T gene family. 

Variants that disrupt gene function are often rare, which makes it very difficult to 

identify them using a classic association mapping study because they lack statistical 

power. This approach operates in the opposite direction and is thereby 

complementary. 

- To select carriers of interesting variants. These variants may be derived from 

association mapping studies or from the prediction of their effect on gene function. 

Using the corresponding genotypes, it becomes possible to validate associations, or 

to study their effect on a phenotypic trait in more detail. 

- For the design of genotyping platforms to screen breeding populations for alleles 

associating with important agronomic traits. As described in Chapter 6, highly 

multiplex amplicon sequencing can be used as a time- and cost-efficient method to 

screen thousands of individuals. Prior knowledge is necessary for the primer design 

for the amplicons needed to screen a locus of interest, as primers should be designed 

in a sequence region free of SNPs to avoid interference with primer binding. 

7.4 Conclusion & Perspectives 

This PhD has contributed to the development of genomic resources for perennial ryegrass. An 

overview of the three resources central in this these is presented in Figure 7.6. 

We have improved the gene annotation set for the current draft reference genome sequence 

(Byrne et al., 2015), and generated functional annotations using the PLAZA comparative 

genomics platform. A new chromosome-scale reference genome sequence was obtained by 

integration of third-generation sequencing, optical mapping, and Hi-C, together with a high 

quality gene annotation set. This provides a high-quality framework for synteny-based transfer 

of QTL markers and the identification of candidate genes involved in physiological or 

morphological processes related to important agronomic traits. The quality of this reference 

sequence is now on par with golden standard reference genomes of important food crops, such 

as barley and wheat. Further comparative genomics studies with other species have become 
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possible and allow the study of evolution and architecture of the perennial ryegrass genome, in 

order to unravel species-specific biology explaining the typical characteristics of this major 

cultivated grass species. 

At the beginning of this PhD, using a single variant calling pipeline was the most common 

approach for de novo identification of genomic sequence variants in perennial ryegrass. 

However, using different variant calling pipelines generated low concordant variant sets. 

Additionally, using hard filtering criteria to identify true sequence variants is not straightforward. 

In this thesis, we have presented complementary strategies to generate a complete and reliable 

variant set, overcoming challenges related to the highly polymorphic nature of this species. The 

newly developed strategy based on the integration of four different variant calling pipelines and 

precision-based filtering resulted in a highly accurate variant set with high genotype call rate. 

Reconstruction of divergent alleles for highly polymorphic genes, such as LpSDUF247, clearly 

illustrated the blind spot of variant calling pipelines that rely on mapping short reads to a single 

Figure 7.6 Overview of genomic resources that were developed for L. perenne. Resources available at the start of 
this PhD are indicated in orange, and resources generated during this PhD are indicated in green. (VMC: 
VariantMetaCaller, EP: estimated precision, EVM: EVidence Modeler, CG: candidate gene, HD: heading date, LL: leaf 
length) 
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reference sequence. A combination of both strategies should be used for future de novo 

identification of genomic sequence variation in L. perenne and other highly heterozygous 

outbreeding species, to get insights in the full extent of the genomic sequence variation.  

The catalog of sequence variants for 503 candidate genes that control plant growth and 

architecture has provided insight in the genotypic diversity present in the L. perenne germplasm, 

and will be used for further genetic association studies with related traits. Furthermore, as 

regions with low SNP density can be distinguished from regions with high SNP density for primer 

design, this collection of sequence variants can be used to design high-throughput molecular 

marker assays for the 503 candidate genes. 

The causal relationship between genomic sequence variants and the phenotypic differences 

observed across individuals is of fundamental biological interest. This relationship can be tested 

in a forward genetics approach, using candidate gene association studies, genome-wide 

association studies (GWAS) and genome-wide allele frequency fingerprinting (GWAFF). 

Ultimately, perennial ryegrass breeding programs will benefit from the development of 

molecular markers followed by marker-assisted selection. More recently, genomic selection is 

gaining interest, as it is better suited to improve complex traits with low heritability (Fè et al., 

2015; Faville et al., 2016; Guo et al., 2018; Pembleton et al., 2018). These studies require both 

high-quality phenotypic and genotypic data. The latter can be provided using the newly 

developed strategies to identify genomic sequence variants. The delineation of SMAPs provides 

a novel type of molecular markers that can be used to increase the accuracy for allele frequency 

profiling based on pooled GBS data. Finally, the candidate gene association study performed in 

Chapter 6, indicated that single markers fail to distinguish between different alleles present in a 

population. This information can be captured by the reconstruction of haplotypes, which can also 

be used in an association genetics study (Yang et al., 2013; Yano et al., 2016). Haplotype-based 

association mapping has some benefits over single-marker association mapping, as they may be 

in closer LD with a causal variant, or haplotypes themselves are the causal variant of interest 

(Stram and Seshan, 2012). Haplotype analysis can therefore complement the well-established 

quantitative genetics frameworks in crops, such as quantitative trait analysis and genomic 

selection (Qian et al., 2017). Ideally, improved genotyping strategies lead to better identification 
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of genomic sequence variation underlying phenotypic variation. Prioritizing markers in genomic 

selection can also attribute to the prediction power and to the identification of causal variants 

(Chang et al., 2018). A combination of genome-wide markers derived from GBS data, and highly 

predictive markers screened using a targeted amplicon sequencing assay can contribute to the 

development of future genomic selection strategies in perennial ryegrass. 

In outbreeding species, defective alleles occur in natural populations at low frequency and 

usually occur in a recessive heterozygous state (Marroni et al., 2011). An association genetics 

study is typically insensitive to detect the effect of alleles with low frequency in the genotype 

collection, as the number of replicate observations is too low, leading to a decreased statistical 

power. However, rare alleles may account for a substantial fraction of the unexplained 

phenotypic variation present. Using bioinformatics tools, a collection of sequence variation can 

be queried for polymorphisms that severely disrupt gene function, such as premature stop 

codons and frameshift mutations. This reverse genetics approach should be used complementary 

to an association genetics study (forward genetics approach). As such, a possible LOF mutation 

was detected in one third of the 503 candidate genes. Using additional information on conserved 

and essential amino acid residues was illustrated for five members of the FLOWERING LOCUS T 

gene family: non-synonymous sequence variants were identified affecting amino acid residues in 

the external loop and ligand binding pocket. The number of genes with a LOF mutation is higher 

compared to previous observations in perennial ryegrass (Ruttink et al., 2013) and other plant 

species (Clark et al., 2007; McNally et al., 2009). It is likely that observed number of LOF mutations 

is an overestimation: when taking the full sequence context into account, it can be expected that 

other variants can be identified that compensate the LOF mutations (Gan et al., 2011). This can 

be assessed by performing de novo assembly of the full gene per genotype, similar to our strategy 

to reconstruct divergent alleles, and performing gene model prediction on the resulting contigs. 

The rare defective alleles should be validated in a future experiment, for instance by crossing two 

heterozygous plants to yield a homozygous line, in which the effect of the LOF mutation in a gene 

of interest can be studied. Carriers of the LOF mutations in LpGI-01 and LpERA-01 are good 

candidates, as these genes are member of single-copy gene families. 
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The high level of genomic sequence diversity that is inherent to outbreeding crops, such as 

perennial ryegrass, is a rich resource of genetic variation that underlies phenotypic variation and 

forms the core unit of breeding. However, the identification of genomic sequence variation 

presented in this thesis was based on the use of a single reference genome sequence, 

representing a single individual. This does not reflect the diversity in genome content and 

organization that exists across individuals. Moreover, copy number variations and 

presence/absence variations greatly contribute to intra-species genetic variation (Zmienko et al., 

2014; Bai et al., 2016). The concept of a pan-genome was introduced to describe the variation 

among closely related bacterial strains belonging to the same species, and has been extended to 

the plant kingdom thanks to technological advances and reduced sequencing technology costs. 

A pan-genome refers to the non-redundant set of sequences present across individuals of the 

same species. It consists of two sets of sequences: those present in every individual (the core 

genome), and those present in only a subset of individuals (the dispensable genome). Pan-

genome analyses have been applied to a number of model and crop species such as A. thaliana 

(Cao et al., 2011), rice (Yao et al., 2015), maize (Hirsch et al., 2014), and wheat (Montenegro et 

al., 2017). The availability of additional reference genomes for perennial ryegrass will greatly 

facilitate structural variation characterization and lead to a better understanding of the perennial 

ryegrass genome. However, some challenges still need to be overcome before these new 

genomic resources can be effectively used: (i) the definition of a reference genome needs to be 

reconsidered: is it the genome of a selected individual, the consensus sequence of a population, 

or is it equal to the pan-genome?, (ii) new bioinformatics workflows are required to translate 

coordinates and compare genome features between assemblies, and (iii) should we abandon the 

concept of single, linear reference genome and move towards a graph-based approach? 

(Computational Pan-Genomics Consortium, 2016) 
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B Supplemental Tables and Figures 

Supplemental Table 1 Datasets used to evaluate genome assembly and gene space completeness measures. 

Species Taxonomic 

clade 

Size 

(Mbp) 

Number 

sequences 

N50 

(Kbp) 

Number 

ESTs 

Reference 

Arabidopsis 

thaliana 

Rosids 125 7 23,460 1,529,700 Parra et al. (2007) 

Capsella rubella Rosids 219  15,100 NA Haudry et al. (2013); 

Slotte et al. (2013) 

Cicer arietinum L. Rosids 738 181,462 39,990 44,618 Parween et al. (2015) 

Nelumbo nucifera 

Gaertn. 

Rosids 929 3334 3400 2207 Ming et al. (2013) 

Primula veris Rosids 302  164 NA Nowak et al. (2015) 

Pyrus communis L. 

'Bartlett' 

Rosids 265 142,083 27,400 450 Chagne et al. (2014) 

Raphanus 

raphanistrum 

Rosids 254 68,331 10 81,524 Moghe et al. (2014) 

Vigna angularis Rosids 443 3387 703 11,199 Kang et al. (2015) 

Lolium perenne Monocots 1128 48,415 70 19,774 Byrne et al. (2015) 

Oryza sativa Monocots 389 16 29,895 987,327 Parra et al. (2007) 

Setaria italica Monocots 510 37,854 47,600 66,027 Zhang et al. (2012) 

Phalaenopsis 

equestris 

Monocots 1086 236,185 359 5604 Cai et al. (2015) 

* CEGMA score reported in Figure 2.4 was obtained from this reference. 
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Supplemental Table 2 

Gene 
name 

A. thaliana 
candidates  

Reference Gene family Nr B. 
distachyon 
genes 

Nr L. 
perenne 
candidates 

Development 

BCH1 AT5G52570 
AT4G25700 

Fiore et al. (2006)  HOM03M002075 2 1 

BRIZ AT2G26000 
AT2G42160 

Hsia and Callis (2010)  HOM03M002863 2 1 

CBP80 AT2G13540 Kuhn et al. (2007)  HOM03M004935 1 1 

DRM1 AT1G28330 
AT2G33830 

Gonzali et al. (2006)  HOM03M005389 2 1 

HB13 AT1G69780 
AT5G03790 

Silva et al. (2016)  HOM03M000110 24 1 

HYL1 AT1G09700 Liu et al. (2011)  HOM03M000640 4 2 

ING2 AT1G54390 
AT3G24010 

Lee et al. (2009) HOM03M002363 3 2 

RSM1 AT2G21650 Hamaguchi et al. (2008) HOM03M000100 25 2 

SAMDC4 AT5G18930 Cui et al. (2010) HOM03M001070 3 3 

Cell wall  

4CL AT1G51680 
AT3G21240 

Hamberger and Hahlbrock 
(2004); Heath et al. (2002); 
Li et al. (2015); van Parijs et 
al. (2015)  

HOM03M000192 17 4 

ALDH AT1G23800 
AT1G54100 
AT1G74920 
AT1G79440 
AT2G14170 
AT2G24270 
AT3G24503 
AT3G48000 
AT3G48170 
AT3G66658 

Skibbe et al. (2002) HOM03M000214 11 11 

IRX AT1G27440 
AT2G28110 
AT3G57630 
AT5G22940 
AT5G61840 

Brown et al. (2009) HOM03M000476 8 6 

C3H, C4H, 
F5H 

AT2G30490 
AT2G40890 
AT4G36220 

Raes et al. (2003); 
Vanholme et al. (2012)  

HOM03M000011 118 8 

CAD AT4G34230 Eudes et al. (2006); Kim et 
al. (2004); Raes et al. 
(2003); van Parijs et al. 
(2015)  

HOM03M000073 36 2 
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CAD2 AT3G19450 Eudes et al. (2006); Kim et 
al. (2004); Raes et al. 
(2003); van Parijs et al. 
(2015) 

HOM03M000256 8 10 

CCoAOMT AT4G34050 Raes et al. (2003); 
Vanholme et al. (2012)  

HOM03M000557 8 7 

CCR AT1G15950 
AT1G80820 

McInnes et al. (2002); Tu et 
al. (2010); van Parijs et al. 
(2015)  

HOM03M000073 36 7 

CES AT5G44030 
AT5G17420 
AT4G18780 

Endler and Persson (2011); 
Persson et al. (2007)  

HOM03M000097 26 8 

COMT AT5G54160 Heath et al. (1998); Raes et 
al. (2003); Tu et al. (2010); 
van Parijs et al. (2015)  

HOM03M000105 22 5 

HCT AT5G48930 Vanholme et al. (2012) HOM03M000043 63 22 

HPRGP AT2G18910 Johnson et al. (2017a); 
Johnson et al. (2017b) 

HOM03M004130 1 1 

LAC AT2G38080 
AT5G60020 

Berthet et al. (2011); Zhao 
et al. (2013)  

HOM03M000056 47 2 

OFP AT1G06920 
AT2G18500 
AT2G30400 
AT2G36026 
AT3G52525 
AT4G18830 
AT5G01840 
AT5G19650 
AT5G22240 
AT5G58360 

Li et al. (2011a); Wang et al. 
(2011)  

HOM03M000249 17 1 

PAL AT2G37040 
AT3G53260 
AT5G04230 
AT3G10340 

Raes et al. (2003); 
Vanholme et al. (2012)  

HOM03M000409 8 13 

POX AT5G66390 
AT5G42180 
AT5G51890 

Novo-Uzal et al. (2013) HOM03M000017 142 3 

SND AT1G28470 Zhong et al. (2008) HOM03M000590 7 1 

XylS AT1G27600 
AT2G37090 

Wu et al. (2010) HOM03M000746 8 6 
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XylT AT2G03360 
AT2G03370 
AT2G41640 
AT3G10320 
AT3G18170 
AT3G18180 
AT3G57380 

Voiniciuc et al. (2015) HOM03M000169 21 4 

Cell wall TF  

ERF AT1G12980 
AT1G24590 
AT5G18560 

Chandler and Werr (2011); 
Mehrnia et al. (2013); 
Nakano et al. (2006) 

HOM03M000014 107 1 

WRKY AT2G44745 
AT1G29860 
AT2G38470 

Eulgem et al. (2000); Guo 
and Qin (2016) 

HOM03M000024 84 5 

Cell wall TF, lateral organ identity or polarity, lateral organ initiation, lateral organ patterning and 
morphogenesis  

MYB AT3G49690 
AT5G23000 
AT1G69560 
AT2G37630 
AT5G14750 

Chen et al. (2006); 
Ehrenreich et al. (2007); 
Guo and Gan (2011); 
Ikezaki et al. (2010); Keller 
et al. (2006); Lee et al. 
(2009); Muller et al. (2006); 
Schmitz et al. (2002)  

HOM03M000013 
  

100 21 

Cell wall TF, lateral organ patterning and morphogenesis, shoot apical meristem  
  

NAC AT1G56010 
AT5G53950 
AT1G56010 
AT3G15170 
AT1G76420 

Hasson et al. (2011); Hibara 
et al. (2006); Ooka et al. 
(2003); Raman et al. (2008); 
Vroemen et al. (2003) 

HOM03M000023 73 11 

Chromatin remodelling  

MET1 AT4G08990 
AT4G13610 
AT4G14140 
AT5G49160 

Finnegan et al. (1998); Li et 
al. (2011b) 

HOM03M002194 2 3 

SWI AT3G06400 
AT5G18620 

Huanca-Mamani et al. 
(2005); Li et al. (2012) 

HOM03M000104 28 1 

Lateral organ initiation  

ANT AT4G37750 
AT4G36920 

Ehrenreich et al. (2007) HOM03M000117 24 4 

SLOMO AT4G33210 Lohmann et al. (2010) HOM03M004562 1 1 

TOP1A AT5G55300 Laufs et al. (1998) HOM03M003833 2 1 

Lateral organ patterning and morphogenesis 
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AS AT1G65620 
AT4G00220 
AT5G63090 

Ikezaki et al. (2010); Jun et 
al. (2010) 

HOM03M000103 20 4 

CLF AT2G23380 Lopez-Vernaza et al. (2012) HOM03M001993 2 2 

DOT5 AT1G13290 Petricka et al. (2008) HOM03M000656 7 2 

GRF AT2G22840 
AT2G36400 
AT3G13960 

Kim et al. (2003) HOM03M000362 12 4 

KAN AT5G42630 
AT4G17695 
AT1G32240 
AT5G16560 

Kerstetter et al. (2001); 
Pires et al. (2014) 

HOM03M000071 40 6 

NOV AT4G13750 Tsugeki et al. (2009) HOM03M002764 2 2 

SE AT2G27100 Prigge and Wagner (2001) HOM03M001979 3 3 

TRN1 AT5G55540 Cnops et al. (2006) HOM03M004520 1 1 

YABBY AT2G45190 Sarojam et al. (2010) HOM03M000503 8 4 

ZPR1 AT2G45450 Kim et al. (2008); Wenkel et 
al. (2007) 

HOM03M008264 1 1 

ZPR3 AT3G52770 Kim et al. (2008); Wenkel et 
al. (2007) 

HOM03M001755 3 1 

Lateral organ identity 

AN3 AT4G00850 
AT1G01160 
AT5G28640 

Vercruyssen et al. (2014) HOM03M001522 3 3 

BOP AT2G41370 
AT3G57130 

Ha et al. (2007); Jun et al. 
(2010)Ha 2007; Hyung Jun 
2010 

HOM03M001913 2 2 

HDZIPIII AT1G30490 
AT1G52150 
AT2G34710 
AT5G60690 

Ehrenreich et al. (2007); 
Green et al. (2005); 
McConnell et al. (2001); 
Prigge et al. (2005); Talbert 
et al. (1995); Zhong and Ye 
(2001) 

HOM03M000777 4 5 

Light signalling 

bHLHABAI AT1G32640 
AT2G46510 

Gangappa et al. (2013) HOM03M000211 13 2 

CO1 AT5G15840 Suarez-Lopez et al. (2001); 
Wang et al. (2013) 

HOM03M000253 14 6 

COP9 AT4G26430 Peng et al. (2001) HOM03M003255 1 1 

CRY AT4G08920 Gao et al. (2015) HOM03M001198 4 2 
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DET1 AT4G10180 Fernando and Schroeder 
(2015); Song and Carre 
(2005) 

HOM03M004583 1 1 

HY5 AT3G17609 
AT5G11260 

Ciolfi et al. (2013); Jang et 
al. (2013) 

HOM03M001986 3 3 

LHY AT1G01060 Schaffer et al. (1998); Song 
and Carre (2005) 

HOM03M007132 1 1 

PCI AT1G02090 Dessau et al. (2008) HOM03M003249 1 1 

PFT1 AT1G25540 Rival et al. (2014) HOM03M004643 1 1 

PHYB AT2G18790 Finlayson et al. (2010); 
Reed et al. (1993) 

HOM03M001131 4 2 

PIF AT1G09530 
AT1G18400 
AT1G26260 
AT2G46970 
AT3G62090 
AT4G34530 
AT5G61270 

Bours et al. (2015); Nozue 
et al. (2011); Sun et al. 
(2013); Wei et al. (2017); 
Zhang et al. (2013) 

HOM03M000047 54 6 

SPA AT1G53090 
AT2G32950 
AT2G46340 
AT3G15354 
AT4G11110 
AT5G23730 
AT5G52250 

Komatsu et al. (2003) HOM03M000659 4 3 

Shoot apical meristem  

BARD1 AT1G04020 Han et al. (2008) HOM03M001623 3 3 

BLH AT1G75410 
AT2G23760 
AT2G27990 
AT2G35940 

Kumar et al. (2007) HOM03M000222 15 5 

CLPS3 AT3G04680 Xing et al. (2008) HOM03M004452 1 1 

FTA AT3G59380 Running et al. (2004) HOM03M005386 2 1 

KNAT AT1G23380 
AT4G08150 
AT1G62360 

Belles-Boix et al. (2006); 
Ehrenreich et al. (2007); 
Khan et al. (2012); Li et al. 
(2011a); Townsley et al. 
(2013) 

HOM03M000310 12 6 

OBE1 AT3G07780 Saiga et al. (2008) HOM03M001177 4 2 

ULT1 AT4G28190 Pires et al. (2014) HOM03M003027 1 1 

USP1 AT5G10790 Liu et al. (2008) HOM03M000305 9 1 

VEF2 AT5G51230 Yoshida et al. (2001) HOM03M002064 1 2 

WOX14 AT1G20700 Denis et al. (2017); Etchells 
et al. (2013) 

HOM03M001281 4 1 
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WUS AT2G17950 
AT2G28610 
AT2G33880 

Long et al. (1996); Wang et 
al. (2017); Wu et al. (2005) 

HOM03M000493 5 2 

Self-incompatibility  

DUF247 AT3G50170 
AT3G50120  

Manzanares et al. (2016) HOM03M000101 31 3 

GK AT1G80460 Manzanares et al. (2016) HOM03M003925 3 1 

Transition to flowering  

CCA AT5G52660 Lu et al. (2011) HOM03M000510 7 4 

FCA AT1G03457 
AT4G03110 
AT4G16280 

Macknight et al. (1997) HOM03M001246 3 4 

FIE AT3G20740 Chanvivattana et al. (2004) HOM03M003503 4 1 

FKF1 AT1G68050 
AT2G18915 
AT5G57360 

Nelson et al. (2000); Sawa 
et al. (2007)  

HOM03M001149 5 2 

FLD AT3G10390 Yu et al. (2011) HOM03M000331 8 1 

FPA AT2G43410 Schomburg et al. (2001) HOM03M006372 1 1 

FT AT1G18100 
AT1G65480 
AT2G27550 
AT5G03840 
AT5G62040 

Ehrenreich et al. (2007); 
Niwa et al. (2013); Skot et 
al. (2007); Skot et al. (2011)  
 

HOM03M000266 18 5 

FVE AT2G19520 Baek et al. (2008)  HOM03M000152 20 1 

FWA AT4G25530 Ikeda et al. (2007) HOM03M000193 15 5 

FY AT4G15900 
AT5G13480 

Simpson (2003) HOM03M000141 20 2 

GI AT1G22770 Oliverio et al. (2007) HOM03M004581 1 1 

LHP1 AT5G17690 Rizzardi et al. (2011); 
Valdes et al. (2012) 

HOM03M005863 1 1 

MBD9 AT3G01460 Peng et al. (2006); Yaish et 
al. (2009) 

HOM03M002872 1 1 

PHP AT3G22590 Park et al. (2010) HOM03M005329 1 1 

RAV AT1G13260 
AT1G25560 

Hu et al. (2004) HOM03M000293 12 5 

SDG8 AT1G77300 Cazzonelli et al. (2009) HOM03M001151 3 2 

SPL3 AT1G53160 
AT2G33810 
AT3G15270 

Jiao and Meyerowitz 
(2010); Schwarz et al. 
(2008); Wang et al. (2009) 

HOM03M000136 18 3 

VIL3 AT2G18880 Sung et al. (2006) HOM03M001250 5 3 
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VRN1 AT3G18990 
AT4G01580 

Levy et al. (2002) HOM03M000432 14 1 

VRN1-like AT3G18990 
AT4G01580 

Levy et al. (2002) HOM03M007993 2 1 

Flower development and flower organ identity 

ESD4 AT3G06910 
AT4G00690 
AT4G15880 

Hermkes et al. (2011) HOM03M002166 3 2 

HAC3 AT3G54610 Kim et al. (2015) HOM03M005475 1 1 

LFY3 AT5G61850 Ehrenreich et al. (2007) HOM03M006114 1 1 

LUG AT2G32700 
AT4G32551 

Stahle et al. (2009) HOM03M000732 5 4 

MADS AT1G69120 
AT2G45660 
AT3G54340 
AT4G18960 
AT4G24540 
AT5G10140 

Ehrenreich et al. (2007); 
Yanofsky et al. (1990)  

HOM03M000042 52 9 

RGA AT1G14920 
AT1G55580 

Ehrenreich et al. (2007); 
Greb et al. (2003); 
Haywood et al. (2005); 
Raman et al. (2008)  

HOM03M000051 43 6 

SEU AT1G43850 Bao et al. (2010); 
Ehrenreich et al. (2007) 

HOM03M001061 3 3 

SUF4 AT1G30970 Kim et al. (2006) HOM03M003695 1 1 

SUP AT3G23130 Bowman et al. (1992) HOM03M000478 5 4 

ABA biosynthesis  

NCED1 AT3G63520 Finkelstein et al. (2002) HOM03M000349 13 1 

PDS1 AT1G06570 Norris et al. (1998) HOM03M003395 2 2 

PDS3 AT4G14210 Qin et al. (2007) HOM03M002179 2 1 

ABA signalling 

ABI1 AT4G26080 Finkelstein et al. (2002) HOM03M000064 41 4 

ABI3 AT3G24650 Ehrenreich et al. (2007); 
Finkelstein et al. (2002) 

HOM03M000742 5 3 

ABI5 AT2G36270 
AT4G35900 
AT2G17770 

Finkelstein et al. (2002) HOM03M000245 15 2 

ABI8 AT3G08550 Finkelstein et al. (2002) HOM03M002458 2 2 

AIP3 AT1G08780 Kurup et al. (2000) HOM03M005806 1 1 

DRIP AT1G08780 Kurup et al. (2000) HOM03M000770 6 3 

GBF AT2G46270 
AT4G01120 

Lu et al. (1996) HOM03M000451 12 4 
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GPA AT2G26300 Pandey and Assmann 
(2004) 

HOM03M000896 6 1 

GTG2 AT4G27630 Jaffe et al. (2012) HOM03M004596 1 1 

HD2C AT2G27840 
AT5G22650 
AT3G44750 

Wu et al. (2000) HOM03M001261 3 3 

PSY AT5G17230 Rodriguez-Villalon et al. 
(2009) 

HOM03M001609 3 1 

SAD1 AT5G48870 Xiong et al. (2001) HOM03M006261 1 1 

SIR3 AT1G16540 LeonKloosterziel et al. 
(1996) 

HOM03M004196 1 1 

WIG AT5G40280 Ehrenreich et al. (2007) HOM03M005784 1 1 

ZEP AT5G67030 Barrero et al. (2006) HOM03M002490 1 1 

Auxin biosynthesis 

TAA1 AT1G70560 He et al. (2011); Stepanova 
et al. (2011); Won et al. 
(2011)  

HOM03M004340 1 1 

TAR2 AT4G24670 He et al. (2011); Stepanova 
et al. (2011); Won et al. 
(2011) 

HOM03M000928 3 1 

YUC AT4G32540 
AT4G13260 
AT5G25620 
AT1G48910 
AT1G21430 
AT5G43890 

Cheng et al. (2007) HOM03M000262 16 4 

Auxin signalling  

ADA2B AT4G16420 Vlachonasios et al. (2003) HOM03M002292 1 1 

AMP1 AT3G54720 Chin-Atkins et al. (1996); 
Ehrenreich et al. (2007); 
Helliwell et al. (2001)  

HOM03M001436 6 1 
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ARF AT2G33860 
AT1G19220 
AT1G30330 
AT5G62000 
AT2G28350 
AT1G19850 
AT5G37020 
AT1G59750 
AT2G46530 
AT1G34310 
AT1G34170 
AT1G35540 
AT1G35520 
AT3G61830 
AT1G35240 
AT1G34410 
AT1G34390 
AT1G43950 
AT5G60450 
AT4G23980 

Dharmasiri and Estelle 
(2002); Ehrenreich et al. 
(2007)  

HOM03M000112 25 6 

AUXIAA AT3G23050 
AT5G25890 
AT1G51950 
AT1G04240 
AT1G52830 

Chen et al. (2013); 
Ehrenreich et al. (2007); 
Ploense et al. (2009)  

HOM03M000126 26 3 

AXR AT1G55000 Hobbie (2006) HOM03M006810 1 1 

AXR1 AT1G05180 Aguilar-Martinez et al. 
(2007); Ehrenreich et al. 
(2007); Leyser et al. (1993); 
Stirnberg et al. (1999)  

HOM03M003416 1 1 

AXR4 AT1G54990 Hobbie (2006) HOM03M004068 1 1 

AXR6 AT4G02570 Ehrenreich et al. (2007) HOM03M000391 9 2 

CAND1 AT2G02560 Cheng et al. (2004) HOM03M003522 1 1 

GH3 AT4G27260 Park et al. (2007) HOM03M000269 9 2 

TIR1 AT3G62980 Ehrenreich et al. (2007) HOM03M000440 9 1 

Auxin transport  

AUX1 AT2G21050 
AT2G38120 

Petrasek and Friml (2009); 
Swarup et al. (2008); 
Ugartechea-Chirino et al. 
(2010)  

HOM03M000858 3 2 

ENP AT4G31820 
AT5G10250 

Furutani et al. (2007); Treml 
et al. (2005)  

HOM03M000108 25 3 

PGP4 AT2G36910 
AT2G47000 
AT3G28860 

Terasaka et al. (2005)  HOM03M000080 36 1 
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PID2 AT2G34650 
AT1G53700 
AT3G14370 
AT2G26700 

Cheng et al. (2007); 
Christensen et al. (2000); 
Ehrenreich et al. (2007); 
Friml et al. (2004); Pressoir 
et al. (2009) 

HOM03M000079 30 2 

PIN1 AT1G73590 Ehrenreich et al. (2007); 
Guenot et al. (2012); 
Petrasek and Friml (2009)  

HOM03M000341 11 2 

PIN1like AT1G73590 Ehrenreich et al. (2007); 
Guenot et al. (2012); 
Petrasek and Friml (2009) 

HOM03M004220 2 1 

SPS AT1G18350 Dai et al. (2006); Ehrenreich 
et al. (2007); Tantikanjana 
et al. (2004); Tantikanjana 
et al. (2001); Zhang et al. 
(2008)  

HOM03M000059 45 1 

Brassinosteroid biosynthesis  

DWF1 AT3G19820 Takahashi et al. (1995) HOM03M003235 2 1 

DWF3 AT3G50660 
AT5G05690 

Guo et al. (2010) HOM03M000086 29 2 

DWF5 AT1G50430 Silvestro et al. (2013) HOM03M005311 1 1 

DWF7 AT3G02580 Choe et al. (1999) HOM03M003295 1 3 

SQS AT4G34640 
AT4G34650 

Kribii et al. (1997) HOM03M002846 2 1 

Brassinosteroid signalling 

BES1 AT1G19350 
AT1G75080 

Yin et al. (2002) HOM03M000759 5 2 

Cytokinin signalling  

ARR AT1G19050 
AT1G74890 
AT3G48100 
AT5G62920 

D'Agostino et al. (2000); 
Efroni et al. (2013); Meng 
et al. (2017); Taniguchi et 
al. (1998); Wang et al. 
(2005); Wang et al. (2014) 

HOM03M000363 11 4 

CRE AT2G01830 Ehrenreich et al. (2007) HOM03M000267 6 4 

GCR1 AT1G48270 Chen et al. (2004); Colucci 
et al. (2002) 

HOM03M006708 1 1 

RR AT4G31920 
AT3G16857 

Argyros et al. (2008) HOM03M000170 18 2 

Ethylene biosynthesis  
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ACS AT3G61510 
AT1G01480 
AT5G28360 
AT2G22810 
AT5G65800 
AT4G26200 
AT4G37770 
AT3G49700 
AT1G62960 
AT4G08040 
AT4G11280 
AT5G51690 

Bours et al. (2015); 
Vandenbussche et al. 
(2003) 

HOM03M000616 4 2 

Ethylene signalling 

EBF1 AT2G25490 Binder et al. (2007) HOM03M000829 4 3 

EBF2 AT5G25350 Binder et al. (2007) HOM03M007381 1 1 

EIL3 AT1G73730 Wawrzynska and Sirko 
(2016) 

HOM03M000703 6 2 

EIN2 AT5G03280 Fischer et al. (2006) HOM03M002491 3 1 

ETO1 AT3G51770 Wang et al. (2004) HOM03M001610 3 3 

ETR1 AT1G66340 Bakshi et al. (2015) HOM03M000531 7 3 

Gibberellin biosynthesis  

GAOX AT1G15550 
AT1G78440 
AT4G25420 
AT5G51810 

Luo et al. (2015) HOM03M000022 84 11 

Gibberellin signalling  

GID1A AT3G05120 
AT3G63010 
AT5G27320 

Marin-de la Rosa et al. 
(2011) 

HOM03M000067 52 1 

SHI AT5G12330 
AT5G66350 

Fridborg et al. (2001) HOM03M000773 4 2 

SLY1 AT4G24210 Dill et al. (2004) HOM03M007351 1 1 

SPY AT3G11540 
AT3G04240 

Greenboim-Wainberg et al. 
(2005) 

HOM03M001501 4 1 

Strigolactone biosynthesis  

D14 AT4G37470 
AT3G03990 

Arite et al. (2009) HOM03M000849 5 2 

D27 AT1G03055 
AT4G01995 
AT1G64680 

Lin et al. (2009) HOM03M001399 3 3 

MAX1 AT2G26170 Bennett et al. (2006); 
Booker et al. (2005); 
Ehrenreich et al. (2007) 

HOM03M001789 5 3 

MAX3 AT2G44990 Bennett et al. (2006); 
Booker et al. (2005); 
Ehrenreich et al. (2007) 

HOM03M003927 1 1 
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MAX4 AT4G32810 Arite et al. (2009); Bennett 
et al. (2006); Ehrenreich et 
al. (2007); Hayward et al. 
(2009)  

HOM03M002869 1 2 

Strigolactone signalling  
  

MAX2 AT2G42620 Bennett et al. (2006); 
Ehrenreich et al. (2007); 
Shen et al. (2007); Stirnberg 
et al. (2007); Stirnberg et al. 
(2002); Woo et al. (2001) 

HOM03M005154 1 1 

TB1 AT3G18550 
AT1G68800 
AT1G67260 

Aguilar-Martinez et al. 
(2007); Cubas et al. (1999); 
Danisman et al. (2012); 
Efroni et al. (2013); 
Gonzalez-Grandio et al. 
(2013); Guo et al. (2010); 
Kosugi and Ohashi (2002); 
Koyama et al. (2010); 
Martin-Trillo and Cubas 
(2010)  

HOM03M000311 10 3 
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Supplemental Table 3 

Gene Pathway Number of amplicons 

MADS-01 Flower development and flower organ identity 34 

MADS-05 Flower development and flower organ identity 3 

AS-05 Lateral organ morphogenesis 3 

CCA-02 Transition to flowering 2 

CIB5-01 Light signaling 18 

CO1-01 Light signaling 8 

COL-01 Light signaling 3 

COP9-01 Light signaling 2 

CRY-01 Light signaling 4 

CRY-02 Light signaling 3 

FKF1-01 Transition to flowering 3 

FLC-01 Transition to flowering 2 

FLC-02 Transition to flowering 2 

FLD-01 Transition to flowering 4 

FPF1-01 Transition to flowering 1 

FPF1-02 Transition to flowering 2 

FT-03 Transition to flowering 24 

GA2Ox-02 Gibberellin biosynthesis 11 

GBF-03 ABA signaling 2 

GCR1-01 Cytokinin signaling 9 

PHYB-01 Light signaling 2 

PHYB-02 Light signaling 2 

PIF3 Light signaling 3 

PIF3like2-01 Light signaling 3 

SPL3-02 Transition to flowering 7 

SPY-04 Gibberellin signaling 5 

TOP1A-01 Lateral organ initiation 3 

VRN2-01 Transition to flowering 6 
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Supplemental Table 4 

Population p-value 

(FDR adjusted) 

MAF Genotypic classes 

(0/0 – 0/1 – 1/1) 

Allelic effect 

(GDD and cm) 

Significant association of HD with LpFT-03 (scaffold 5073, position 58,536) 

1853-7 6.58E-01 30% 86 – 124 – 0 -20.55 

5297xWAR10 2.92E-02 18% 224 – 105 – 8  54.84 

Ba12990 8.25E-01 2% 136 – 5 – 0  -14.53 

Ba12990x5554 1.00E+00 14% 311 – 7 – 0  23.35 

Ba12990xplenty 6.02E-05 40% 114 – 203 – 41  -79.99 

Significant association of leaf length with LpMADS-01 (scaffold 312, position 70,351) 

1853-7 1.00E+00 33% 73 – 123 – 0 -0.63 

5297xWAR10 3.10E-05 31% 128 – 201 – 0  -2.97 

Ba12990 8.21E-01 37% 37 – 104 – 0  -2.83 

Ba12990x5554 1.00E+00 43% 75 – 213 – 34  0.50 

Ba12990xplenty 1.00E+00 25% 178 – 170 – 0  0.27 
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Supplemental Figure 1 N50 values for plant genomes published over the last 15 years. The N50 values of the first 
50 published plant genomes were collected from Michael and Jackson (2013), complemented with the ten species 
used in the comparison of measures for genome and gene space completeness. The species are ordered according 
to their lineage (Rosids, purple; Monocots, orange) and publication date. 

 



Supplemental Tables and Figures 

 
 

149 
 

 

Supplemental Figure 2 Distribution of the protein length ratio of 503 target genes and their best Brachypodium 
distachyon BLASTp hit. 
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Supplemental Figure 3 Size and concordance of bi-allelic SNP and indel sets of four variant calling pipelines, before 
and after hard filtering. SNPs and indels were identified for 503 candidate genes in 736 genotypes using four VC 
pipelines: SAMtools, Freebayes, GATK UG and GATK HC (mapping with BWA-MEM). Concordance between the four 
variant sets was calculated for (a) bi-allelic SNPs and (b) bi-allelic indels. Per Upset plot, the lower left panel shows 
the total number of variants per VC pipeline; the lower right hand panel shows the overlap in call sets between the 
four VC pipelines. Concordance groups are ordered by increasing overlap, from left to right: variants unique to a VC 
pipeline; overlap of two and three VC pipelines; common to all four VC pipelines. The upper right hand panel shows 
the size per concordance group after integration of variant sets of the four VC pipelines using the VariantMetaCaller. 
Black bars: before hard filtering, orange bars: after hard filtering on minimal read depth 6 and genotype quality 30. 
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Supplemental Figure 4 Per-variant Mendelian inheritance error rate determined in an F1 progeny. Variants were 
identified using the VariantMetaCaller. After precision-based filtering (EP > 80%), Mendelian inheritance errors were 
identified for two parental individuals and a respective F1 progeny of 29 individuals. 
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Supplemental Figure 5 Relative position and frequency of stop gain mutations identified in 503 candidate genes 
and 736 genotypes. Variants were identified using the VariantMetaCaller. After precision-based filtering (EP > 80%), 
effects were predicted with SnpEff (Cingolani et al., 2012). For each of the 256 stop gain mutations, the relative 
position of the stop gain mutation to the total gene length (x-axis) and the allele frequency (y-axis) were calculated. 
A boxplot of the allele frequencies is shown at the right side. 
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Supplemental Figure 6 Phylogenetic tree of DUF247 gene family members of Brachypodium distachyon, Hordeum 
vulgare and Lolium perenne. After multiple sequence alignment of all 25 LpDUF247 protein sequences and PLAZA 
HOM03M000101 gene family members of B. distachyon and H. vulgare with MUSCLE, a phylogenetic tree was built 
with PhyML using 100 rounds of bootstrapping. Bootstrapping values smaller and greater than 70 are indicated with 
empty and black nodes, respectively. An A. thaliana gene containing a DUF247 domain was used as outgroup. 
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Supplemental Figure 7 Phylogenetic tree of DUF247-01, -03 and -04 together with 5 LpSDUF247 alleles identified 
by (Manzanares et al., 2016) and 28 newly identified LpSDUF247 alleles. After multiple sequence alignment of the 
reference protein sequences of LpDUF247-01, LpSDUF247, LpDUF247-03 and LpDUF247-04 and the protein 
sequences of the newly identified alleles of LpSDUF247, complemented by the five LpSDUF247-02 alleles identified 
by Manzanares et al. (2016) a phylogenetic tree was built with PhyML using 100 rounds of bootstrapping. 
Bootstrapping values smaller and greater than 70 are indicated with empty and black nodes, respectively. Reference 
sequences of LpDUF247-01, LpSDUF247, LpDUF247-03 and LpDUF247-04 are indicated with R. 
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Supplemental Figure 8 Segregation of LpSDUF247 alleles in an F1 progeny of 29 individuals. The alleles present per 
genotype were identified by mapping the reads to a multi-allelic reference genome, and calculating the ratio of 
average read depth per allele over the total number of reads mapping to LpSDUF247 alleles. Parental genotypes are 
indicated by red rectangles.  
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Supplemental Figure 9 Four genes containing different levels of allelic diversity across the gene regions. The 
curated gene model is displayed for four genes, consisting of a promoter region (green), CDS (yellow), and 5’ UTR 
(red) and 3’UTR (blue) if available. Below the gene model, CAP3 assembled contigs are aligned with CLCbio Genomics 
Workbench. Yellow, blue and red colors indicate sequence differences from the reference sequence. 
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