Advanced search
1 file | 2.95 MB

Refractive index sensor based on fano resonances in metal-insulator-metal waveguides coupled with resonators

(2017) SENSORS. 17(4).
Author
Organization
Abstract
A surface plasmon polariton refractive index sensor based on Fano resonances in metal-insulator-metal (MIM) waveguides coupled with rectangular and ring resonators is proposed and numerically investigated using a finite element method. Fano resonances are observed in the transmission spectra, which result from the coupling between the narrow-band spectral response in the ring resonator and the broadband spectral response in the rectangular resonator. Results are analyzed using coupled-mode theory based on transmission line theory. The coupled mode theory is employed to explain the Fano resonance effect, and the analytical result is in good agreement with the simulation result. The results show that with an increase in the refractive index of the fill dielectric material in the slot of the system, the Fano resonance peak exhibits a remarkable red shift, and the highest value of sensitivity (S) is 1125 nm/RIU, RIU means refractive index unit. Furthermore, the coupled MIM waveguide structure can be integrated with other photonic devices at the chip scale. The results can provide a guide for future applications of this structure.
Keywords
plasmonic refractive index sensor, finite element method, Fano resonance, coupled-mode theory KeyWords Plus:SURFACE-PLASMON-RESONANCE, NANOPARTICLES, SENSITIVITY, ASYMMETRY, OPTICS

Downloads

  • Author-2017-Sensors.pdf
    • full text
    • |
    • open access
    • |
    • PDF
    • |
    • 2.95 MB

Citation

Please use this url to cite or link to this publication:

Chicago
Tang, Yue, Zhidong Zhang, Ruibing Wang, Zhenyin Hai, Chenyang Xue, Wendong Zhang, and Shubin Yan. 2017. “Refractive Index Sensor Based on Fano Resonances in Metal-insulator-metal Waveguides Coupled with Resonators.” Sensors 17 (4).
APA
Tang, Yue, Zhang, Z., Wang, R., Hai, Z., Xue, C., Zhang, W., & Yan, S. (2017). Refractive index sensor based on fano resonances in metal-insulator-metal waveguides coupled with resonators. SENSORS, 17(4).
Vancouver
1.
Tang Y, Zhang Z, Wang R, Hai Z, Xue C, Zhang W, et al. Refractive index sensor based on fano resonances in metal-insulator-metal waveguides coupled with resonators. SENSORS. 2017;17(4).
MLA
Tang, Yue et al. “Refractive Index Sensor Based on Fano Resonances in Metal-insulator-metal Waveguides Coupled with Resonators.” SENSORS 17.4 (2017): n. pag. Print.
@article{8600403,
  abstract     = {A surface plasmon polariton refractive index sensor based on Fano resonances in metal-insulator-metal (MIM) waveguides coupled with rectangular and ring resonators is proposed and numerically investigated using a finite element method. Fano resonances are observed in the transmission spectra, which result from the coupling between the narrow-band spectral response in the ring resonator and the broadband spectral response in the rectangular resonator. Results are analyzed using coupled-mode theory based on transmission line theory. The coupled mode theory is employed to explain the Fano resonance effect, and the analytical result is in good agreement with the simulation result. The results show that with an increase in the refractive index of the fill dielectric material in the slot of the system, the Fano resonance peak exhibits a remarkable red shift, and the highest value of sensitivity (S) is 1125 nm/RIU, RIU means refractive index unit. Furthermore, the coupled MIM waveguide structure can be integrated with other photonic devices at the chip scale. The results can provide a guide for future applications of this structure.},
  articleno    = {784},
  author       = {Tang, Yue and Zhang, Zhidong and Wang, Ruibing and Hai, Zhenyin and Xue, Chenyang and Zhang, Wendong and Yan, Shubin},
  issn         = {1424-8220},
  journal      = {SENSORS},
  language     = {eng},
  number       = {4},
  pages        = {8},
  title        = {Refractive index sensor based on fano resonances in metal-insulator-metal waveguides coupled with resonators},
  url          = {http://dx.doi.org/10.3390/s17040784},
  volume       = {17},
  year         = {2017},
}

Altmetric
View in Altmetric
Web of Science
Times cited: