Optical Gain Spectroscopy of Solution Processable 2D Materials for Integrated Micro-Lasers

Renu Tomar1,2, Ivo Tanghe1,2,3, Aditya Kulkarni4, Kai Chen5, Justin Hodgkiss5, Laurens Siebbeles4, Dries van Thourhout2,3, Zeger Hens1,2 and Pieter Geiregat1,2*

1Physics and Chemistry of Nanostructures, Ghent University, Belgium
2Center for Nano – and Biophotonics, Ghent University, Belgium
3Photonics Research Group, Ghent University, Belgium
4Opto-Electronic Materials Section, TU Delft, The Netherlands
5School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand.

Email address of presenting author: pieter.geiregat@ugent.be

Integrated photonic circuits, increasingly based on silicon (-nitride), are at the core of the next generation of low-cost, energy efficient optical devices ranging from on-chip interconnects to biosensors. One of the main bottlenecks in developing such components is that of implementing diverse functionalities on the passive platform, such as light emission and amplification. A promising route is that of hybridization, where a new photonic material is combined with the existing framework to provide a desired functionality. Colloidal nanomaterials are perfectly suited for this purpose as they combine low cost synthesis and deposition with the ability to emit an amplify light over a broad spectral range. In this contribution, we highlight the role two-dimensional nanomaterials in this unique hybrid approach.1,2 Through use of quantitative and combinatory ultrafast spectroscopy, we reveal the peculiar photo-physics of this new class of solution processable nanoscale materials and show their potential for realizing low cost, small footprint integrated lasers.

References: