Advanced search
1 file | 2.25 MB

Localized optical-quality doping of graphene on silicon waveguides through a TFSA-containing polymer matrix

(2018) JOURNAL OF MATERIALS CHEMISTRY C. 6(40). p.10739-10750
Author
Organization
Abstract
The use of graphene in optical and photonic applications has gained much attention in recent years. To maximize the exploitation of graphene's extraordinary optical properties, precise control over its Fermi level (e.g. by means of chemical doping) will be of vital importance. In this work, we show the usage of a versatile p-doping strategy based on the incorporation of bis(trifluoromethanesulfonyl)amide (TFSA), functioning as an active p-dopant molecule, into a poly(2,2,3,3,4,4,5,5-octafluoropentyl methacrylate) (POFPMA) polymer matrix. The TFSA/POFPMA dopant can be utilized both onto large size graphene regions via spin coating and on small predefined spatial zones of micrometer dimension by localized inkjet printing. Whereas pure TFSA suffers from a clustered layer deposition combined with environmental instability, the application of the POFPMA polymer matrix yields doping layers revealing superior properties counteracting the existing shortcomings of pure TFSA. A first key finding relates to the optical quality of the dopant layer. We obtain a layer with an extremely low surface roughness (0.4-0.8 nm/25 m(2)) while exhibiting very high transparency (absorbance <0.05%) over the 500-1900 nm wavelength range, with strongly enhanced doping stability as a function of time up to several weeks (for inkjet-printed deposition) and months (for spin coated deposition). Finally, the doping efficiency is very high, reaching a carrier density around +4 x 10(13) cm(-2) whereas the optical transmission of a graphene-covered Si waveguide revealed a strong improvement (4.22 dB transmission increase per 100 m graphene length at the wavelength of 1550 nm) after deposition of the dopant via inkjet printing.
Keywords
GLASS-TRANSITION TEMPERATURE, TRANSPARENT ELECTRODES, FILMS, STABILITY, FIELD, NANOPARTICLES, TRANSISTORS, PHOTONICS, PLASMA, ENERGY

Downloads

  • (...).pdf
    • full text
    • |
    • UGent only
    • |
    • PDF
    • |
    • 2.25 MB

Citation

Please use this url to cite or link to this publication:

Chicago
Misseeuw, Lara, Tymoteusz Ciuk, Aleksandra Krajewska, Iwona Pasternak, Wlodek Strupinski, Benjamin Feigel, Mulham Khoder, et al. 2018. “Localized Optical-quality Doping of Graphene on Silicon Waveguides Through a TFSA-containing Polymer Matrix.” Journal of Materials Chemistry C 6 (40): 10739–10750.
APA
Misseeuw, L., Ciuk, T., Krajewska, A., Pasternak, I., Strupinski, W., Feigel, B., Khoder, M., et al. (2018). Localized optical-quality doping of graphene on silicon waveguides through a TFSA-containing polymer matrix. JOURNAL OF MATERIALS CHEMISTRY C, 6(40), 10739–10750.
Vancouver
1.
Misseeuw L, Ciuk T, Krajewska A, Pasternak I, Strupinski W, Feigel B, et al. Localized optical-quality doping of graphene on silicon waveguides through a TFSA-containing polymer matrix. JOURNAL OF MATERIALS CHEMISTRY C. 2018;6(40):10739–50.
MLA
Misseeuw, Lara et al. “Localized Optical-quality Doping of Graphene on Silicon Waveguides Through a TFSA-containing Polymer Matrix.” JOURNAL OF MATERIALS CHEMISTRY C 6.40 (2018): 10739–10750. Print.
@article{8599872,
  abstract     = {The use of graphene in optical and photonic applications has gained much attention in recent years. To maximize the exploitation of graphene's extraordinary optical properties, precise control over its Fermi level (e.g. by means of chemical doping) will be of vital importance. In this work, we show the usage of a versatile p-doping strategy based on the incorporation of bis(trifluoromethanesulfonyl)amide (TFSA), functioning as an active p-dopant molecule, into a poly(2,2,3,3,4,4,5,5-octafluoropentyl methacrylate) (POFPMA) polymer matrix. The TFSA/POFPMA dopant can be utilized both onto large size graphene regions via spin coating and on small predefined spatial zones of micrometer dimension by localized inkjet printing. Whereas pure TFSA suffers from a clustered layer deposition combined with environmental instability, the application of the POFPMA polymer matrix yields doping layers revealing superior properties counteracting the existing shortcomings of pure TFSA. A first key finding relates to the optical quality of the dopant layer. We obtain a layer with an extremely low surface roughness (0.4-0.8 nm/25 m(2)) while exhibiting very high transparency (absorbance <0.05%) over the 500-1900 nm wavelength range, with strongly enhanced doping stability as a function of time up to several weeks (for inkjet-printed deposition) and months (for spin coated deposition). Finally, the doping efficiency is very high, reaching a carrier density around +4 x 10(13) cm(-2) whereas the optical transmission of a graphene-covered Si waveguide revealed a strong improvement (4.22 dB transmission increase per 100 m graphene length at the wavelength of 1550 nm) after deposition of the dopant via inkjet printing.},
  author       = {Misseeuw, Lara and Ciuk, Tymoteusz and Krajewska, Aleksandra and Pasternak, Iwona and Strupinski, Wlodek and Feigel, Benjamin and Khoder, Mulham and Van Driessche, Isabel and Van Erps, Juergen and Van Vlierberghe, Sandra and Thienpont, Hugo and Dubruel, Peter and Vermeulen, Nathalie},
  issn         = {2050-7526},
  journal      = {JOURNAL OF MATERIALS CHEMISTRY C},
  keywords     = {GLASS-TRANSITION TEMPERATURE,TRANSPARENT ELECTRODES,FILMS,STABILITY,FIELD,NANOPARTICLES,TRANSISTORS,PHOTONICS,PLASMA,ENERGY},
  language     = {eng},
  number       = {40},
  pages        = {10739--10750},
  title        = {Localized optical-quality doping of graphene on silicon waveguides through a TFSA-containing polymer matrix},
  url          = {http://dx.doi.org/10.1039/c8tc03198c},
  volume       = {6},
  year         = {2018},
}

Altmetric
View in Altmetric
Web of Science
Times cited: