The Lorentz singular value decomposition and its applications to pure states of 3 qubits.

Frank Verstraete ⋆, Jeroen Dehaene # and Bart De Moor $
Katholieke Universiteit Leuven, Department of Electrical Engineering, Research Group SISTA
Kardinaal Mercierlaan 94, B-3001 Leuven, Belgium

All mixed states of two qubits can be brought into normal form by the action of SLOCC operations of the kind
\[\rho' = (A \otimes B)\rho(A \otimes B)^\dagger. \]
These normal forms can be obtained by considering a Lorentz singular value decomposition on a real parameterization of the density matrix. We show that the Lorentz singular values are variationally defined and give rise to entanglement monotones, with as a special case the concurrence. Next a necessary and sufficient criterion is conjectured for a mixed state to be convertible into another specific one with a non-zero probability. Finally the formalism of the Lorentz singular value decomposition is applied to tripartite pure states of qubits. New proofs are given for the existence of the GHZ- and W-class of states, and a rigorous proof for the optimal distillation of a GHZ-state is derived.

03.65.Bz

Local probabilistically reversible operations cannot affect the intrinsic nature of the entanglement present in a system. It is therefore interesting to look for the most general local operations that wash out all the local information such that only the non-local character remains. For a pure entangled state of two qubits for example, it is well-known that it can be locally transformed into a Bell state, which is indeed the only pure state for which the local density operators do not contain any information. Recently, a similar result was derived in the case of mixed states [1]. The key ingredient of the analysis was the existence of a Lorentz singular value decomposition. In this report some new interesting properties of this Lorentz singular value decomposition are derived and it is shown how it is related to the existence of entanglement monotones. Furthermore it leads to a criterion for a mixed state to be convertible into another specific one with a non-zero probability. It also leads to a transparent derivation of all different normal forms for pure states of three qubits: a pure state of three qubits is indeed uniquely defined, up to local operations, by the two qubit density operator obtained by tracing out one particle. It will be shown how the so-called GHZ- and W-type states [9] arise. We will also give a rigorous proof of the optimal way of distilling a GHZ-state, confirming the results of Acin et al. [10].

I. THE LORENTZ SINGULAR VALUE DECOMPOSITION

Let us consider a mixed state of two qubits and investigate the orbit generated by probabilistically reversible SLOCC operations of the kind
\[\rho' = (A \otimes B)\rho(A \otimes B)^\dagger \]
where \(A, B \) are complex 2x2 matrices of determinant 1 and \(\rho' \) is unnormalized. It will turn out very convenient to work in the real \(R \)-picture defined as
\[\rho = \frac{1}{4} \sum_{ij=0}^{3} R_{ij} \sigma_i \otimes \sigma_j \]
with \(\{\sigma_i\} \) the Pauli spin matrices. As shown in [1], the determinant 1 SLOCC operations in the \(\rho \)-picture become proper orthochronous Lorentz transformations in the \(R \)-picture:
\[R' = L_A R L_B^T \]
Indeed, it is a well known accident that \(SL(2, C) \simeq SO(3, 1) \). Note that local operations are very transparent in the \(R \)-picture: operations by Alice amount to operations on the row space of \(R \), i.e. left matrix multiplication, while operations by Bob result in column operations.

Let us now state a more refined version of the central theorem of [1]:

Theorem 1 The 4x4 matrix \(R \) with elements \(R_{ij} = \text{Tr}(\rho \sigma_i \otimes \sigma_j) \) can be decomposed as
\[R = L_1 \Sigma L_2^T \]
with \(L_1, L_2 \) finite proper orthochronous Lorentz transformations, and \(\Sigma \) either of unique real diagonal form

1 In comparison with the original theorem we introduced a more refined classification in the case of non-diagonalizable \(R \).
The corresponding normal form of the non-diagonalizable case in the following states:

\[s_0 \geq s_1 \geq s_2 \geq |s_3| \text{ and } s_3 \text{ positive or negative, or of the form} \]

\[\Sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \]

with unique \(a, b, c, d \) obeying one of the four following relations: \((b = c = a/2); (d = 0 = c) \land (b = a)); ((d = 0 = b) \land (c = a)); ((d = 0) \land (a = b = c)). \]

It is interesting to note that the Lorentz singular values are the only invariants of a state under the SLOCC operations \(R \).

The diagonalizable case is generic, and a diagonal \(R \) corresponds to a Bell-diagonal state. The existence of the non-diagonal normal forms is a consequence of the fact that the Lorentz group is not compact: these non-diagonal normal forms can only be brought into diagonal form by infinite Lorentz transformations. Nevertheless, even in those cases the Lorentz singular values are well defined and given by:

\[[s_0, s_1, s_2, s_3] = [\sqrt{(a-b)(a-c)}, \sqrt{(a-b)(a-c)}, d, -d] \]

The corresponding normal form of the non-diagonalizable case in the \(\rho \)-picture is given by:

\[\rho = \frac{1}{2} \begin{pmatrix} b+c & . & . \\ . & a-b & d \\ . & . & d-a-c \end{pmatrix} \]

The four distinct non-diagonal normal forms correspond to the following states:

- \((b = c = a/2)\): these are rank 3 states (rank 2 iff \((d = b = c)\)) with the strange property that their entanglement cannot be increased by any global unitary operation \(R \).
- \((d = 0 = c) \land (b = a))\): \(\rho \) is separable and a tensor product of the projector diag\([1; 0]\) and the identity.
- \((d = 0) \land (a = b = c))\): \(\rho \) is the separable pure state diag\([1; 0; 0]\).

Let us now consider the case of a generic pure state for which we always have the relation \(s_0 = s_1 = s_2 = -s_3 \). This implies that \(R \) itself is a Lorentz transformation, up to a constant factor that will turn out to be the concurrence; the singlet state for example is represented in the \(R \)-picture by \(R = \text{diag}[1; 1; 1; -1] \). This clarifies why filtering operations by one party is enough to distill a singlet out of an non-maximally entangled pure state: Alice or Bob can apply the filter corresponding to the Lorentz transformation given by the inverse of \(R \).

The success of the ordinary singular value decomposition is to a large extent the consequence of the nice variational properties of the singular values: the sum of the \(n \) largest singular values is equal to the maximal inner product of the matrix with whatever \(n \) orthonormal vectors. Interestingly, a similar property holds for the Lorentz singular values:

Theorem 2 The Lorentz singular values \(s_0 \geq s_1 \geq s_2 \geq |s_3| \) of a density operator \(R \) are variationally defined as:

\[
\begin{align*}
\begin{pmatrix} s_0 = \min_{L_1, L_2} \text{Tr} \left(L_1 RL_2^T \begin{pmatrix} 1 & . & . \\ . & . & . \\ . & . & . \end{pmatrix} \right) \\
\begin{pmatrix} s_0 - s_1 = \min_{L_1, L_2} \text{Tr} \left(L_1 RL_2^T \begin{pmatrix} 1 & . & . \\ . & 1 & . \\ . & . & . \end{pmatrix} \right) \\
\begin{pmatrix} s_0 - s_1 - s_2 = \min_{L_1, L_2} \text{Tr} \left(L_1 RL_2^T \begin{pmatrix} 1 & . & . \\ . & 1 & . \\ . & . & 1 \end{pmatrix} \right) \\
\begin{pmatrix} s_0 - s_1 - s_2 + s_3 = \min_{L_1, L_2} \text{Tr} \left(L_1 RL_2^T \right) \\
\end{pmatrix}
\end{pmatrix}
\end{align*}
\]

where \(L_1, L_2 \) are proper orthochronous Lorentz transformations.

Proof: We will give a proof for the fourth identity and the other proofs follow in a completely analogous way. An arbitrary Lorentz transformation can be written as

\[
L = \begin{pmatrix} 1 & V \\ . & W \end{pmatrix} \begin{pmatrix} \cosh(\alpha) & \sinh(\alpha) & . & . \\ \sinh(\alpha) & \cosh(\alpha) & . & . \\ . & . & 1 & . \\ . & . & . & 1 \end{pmatrix} \begin{pmatrix} 1 & . \\ . & 1 \end{pmatrix},
\]

where \(V \) and \(W \) are orthogonal 3x3 matrices of determinant 1. There is no restriction in letting \(R \) be in normal diagonal form, and therefore we have to find the minimum of

\[
\text{Tr} \left(\begin{pmatrix} \cosh(\alpha) & \sinh(\alpha) & . & . \\ \sinh(\alpha) & \cosh(\alpha) & . & . \\ . & . & 1 & . \\ . & . & . & 1 \end{pmatrix} \Sigma \begin{pmatrix} 1 & . \\ . & 1 \end{pmatrix} \right)
\]

over all \(V, W, \alpha \). Using the variational properties of the ordinary singular value decomposition and the fact that the Lorentz singular values are ordered, it is immediately clear that an optimal solution will consist in choosing \(W = I_3, V = \text{diag}[-1; -1; 1] \) and \(\alpha = 0 \) as \(\cosh(\alpha) > \sinh(\alpha) \) and \(s_0 \geq s_1 \). This ends the proof. \(\square \)
II. LOCAL INVARIANTS VERSUS ENTANGLEMENT

Let us now investigate how the local invariant Lorentz singular values are related to the concept of entanglement. Inspired by theorem 2, we define the quantities $M_1(\rho) = \max(0, -(s_0 - s_1 - s_2))$ and $M_2(\rho) = \max(0, -(s_0 - s_1 - s_2 + s_3))$. As they are solely a function of the non-local invariants of the density operator, we suspect them to be related to the amount of entanglement present in the considered state:

Theorem 3 $M_1(\rho) = \max(0, -(s_0 - s_1 - s_2))$ and $M_2(\rho) = \max(0, -(s_0 - s_1 - s_2 + s_3))$ are entanglement monotonies.

Proof: A quantity $M(\rho)$ is an entanglement monotone iff its expected value decreases under the action of every local operation. Due to the variational characterization of the quantities $(s_0-s_1-s_2)$ and $(s_0-s_1-s_2+s_3)$, it is immediately clear that both M_1 and M_2 are decreasing under the action of mixing. It is therefore sufficient to show that for every $A \leq I_2$, $\mathbf{A} = \sqrt{I_2 - A^\dagger A}$, it holds that

\[
M_i(\rho) \geq \text{Tr}((A \otimes I)\rho(A \otimes I)^\dagger) \frac{(A \otimes I)\rho(A \otimes I)^\dagger}{\text{Tr}((A \otimes I)\rho(A \otimes I)^\dagger)}
\]

It should be clear from the previous discussion that the following identity holds:

\[
M_i \left(\frac{(A \otimes I)\rho(A \otimes I)^\dagger}{\text{Tr}((A \otimes I)\rho(A \otimes I)^\dagger)} \right) = \frac{\det(A)M_i(\rho)}{\text{Tr}((A \otimes I)\rho(A \otimes I)^\dagger)}
\]

Indeed, $A/\sqrt{\det(A)}$ corresponds to a Lorentz transformations which cannot change the Lorentz singular values. We therefore only have to prove that $1 \geq \det(A)+\det(A)\mathbf{A}$. Given the singular values σ_1, σ_2 of A, this inequality is $1 \geq \sigma_1\sigma_2 + (1-\sigma_1)(1-\sigma_2)$ which is trivially fulfilled.

Both M_1 and M_2, linear functions of the Lorentz singular values, are therefore entanglement monotonies that are analytically calculable for mixed states: we did not use the concept of convex roof formalism. It turns out that M_2 is equivalent to the concurrence of a state as introduced by Wootters [3,1]:

\[
C(\rho) = \max\left(0, -\frac{1}{2}(s_0 - s_1 - |s_2| + s_3)\right) = \frac{1}{2}M_2(\rho)
\]

There is indeed a strong relation between the Lorentz singular values and the eigenvalues $\{\lambda_i\}$ of the operator $\sqrt{\sigma_y \otimes \sigma_y}\rho^T(\sigma_y \otimes \sigma_y)\rho$ introduced by Wootters [3,1]:

\[
s_0 = \frac{1}{\lambda_1} + \frac{1}{\lambda_2} + \frac{1}{\lambda_3} + \frac{1}{\lambda_4},
\]

\[
s_1 = \frac{1}{\lambda_2} + \frac{1}{\lambda_3} + \frac{1}{\lambda_4},
\]

\[
s_2 = \frac{1}{\lambda_1} + \frac{1}{\lambda_3} + \frac{1}{\lambda_4},
\]

\[
s_3 = \frac{1}{\lambda_1} + \frac{1}{\lambda_2} + \frac{1}{\lambda_4},
\]

Together with the negativity [3,1], the above entanglement monotonies are the only ones for which an analytical expression exists for whatever mixed two-qubit state.

The existence of entanglement monotonies is interesting as it gives necessary conditions for one state to be convertible into another one by LOCC operations with probability 1. It is still an open problem to find the sufficient conditions for the convertibility of one mixed state into another one, although this was solved for pure states [3,1]. If we relax the constraints that the conversion has to succeed with unit probability, the above formalism can give us some answers in the case of mixed states. We have indeed shown that a generic state can always be brought into Bell-diagonal form by the SLOCC operations [4]. The problem of one state to be convertible into another one with a non-zero probability is therefore reduced to the question whether one Bell diagonal state can be transformed into another one. A Bell-diagonal state is uniquely defined under the SLOCC operations [4], and therefore the only local tool remaining is mixing. Numerical and theoretical investigations indicate that a given Bell diagonal state can only be converted into another one iff this last one is a mixture of the original Bell-diagonal state with a separable state, although a general proof has not been found. We conjecture however that this is always true:

Conjecture 1 A two-qubit state ρ_1 can probabilistically be converted into the state ρ_2 iff the Bell-diagonal normal form of ρ_2 is a convex sum of a separable state and the Bell-diagonal normal form of ρ_1.

It is clear that a trivial procedure exists to implement this conversion with unit efficiency: mix the state with one that can be locally made. Let us for example investigate whether the Bell-diagonal ρ_1 with ordered eigenvalues $\{\lambda_i\}$ can be transformed into the Bell-diagonal ρ_2 with ordered eigenvalues $\{\mu_i\}$. We can restrict ourselves to mixing with separable Bell diagonal states lying on the boundary of the entangled and separable states, and these have their largest eigenvalue equal to 1/2. Under the assumption of our conjecture, conversion is possible iff the following constrained system of equations in x, y, z, t, P has a solution:

\[
\begin{pmatrix}
1 & 0 \\
0 & P_3
\end{pmatrix}
\begin{pmatrix}
\mu_1 \\
\mu_2 \\
\mu_3 \\
\mu_4
\end{pmatrix}
= (1-x)
\begin{pmatrix}
\lambda_1 \\
\lambda_2 \\
\lambda_3 \\
\lambda_4
\end{pmatrix}
+ x
\begin{pmatrix}
y \\
z \\
t
\end{pmatrix}
\]

\[\begin{cases}
0 \leq x \leq 1 \\
y, z, t \geq 0 \\
y + z + t = 1/2
\end{cases}\]

where P_3 is a 3×3 permutation matrix. This system can readily be solved. Not surprisingly, there is a close relation between majorization and the above set of equations.
Note also that a pure entangled state can be converted probabilistically into whatever mixed state.

III. PURE STATES OF THREE QUBITS

Let us now apply the Lorentz singular value decomposition on the problem of determining the different classes under SLOCC operations of pure three qubit states. We will not consider the states that have a tensor product structure, as these are not truly tripartite. Therefore we know that taking the partial trace over whatever party will result in a rank 2 density operator of two qubits. Due to theorem 4, we know that this density operator can be brought into one of two normal forms by SLOCC operations of two parties: a Bell diagonal \(\rho_{1} = p|\psi^{+}\rangle\langle\psi^{+}| + (1-p)|\psi^{-}\rangle\langle\psi^{-}| \) with \(|\psi^{+}\rangle = (|00\rangle + |11\rangle)/\sqrt{2} \); \(|\psi^{-}\rangle = (|00\rangle - |11\rangle)/\sqrt{2} \); or a quasi distillable \(\rho_{2} = |\phi^{+}\rangle\langle\phi^{+}| + |00\rangle\langle00| \) with \(|\phi^{+}\rangle = (|01\rangle + |10\rangle)/\sqrt{2} \), but this last case is clearly not generic.

Purification of this second normal form directly leads to the normal form \(|00\rangle + |10\rangle \) (this is the so-called QR-decomposition), which are sufficient to make whatever one out of \(A', B' \) or \(C' \) equal to a unitary matrix. Numerical investigations reveal that one of these three possibilities is also the optimal choice in the sense that it will yield a distillation protocol that produces the W-state with the highest possible probability. Therefore the optimal distillation protocol of a W-state consists of two parties applying a local filtering operation, while one party performs a local unitary operation.

Finally, a natural question arises as how the previous results generalize to the case of mixed states. Due to the fact that the rank of a density matrix corresponding to a mixed state is higher than 1, it is immediately clear that no SLOCC operations can exist that yield a rank 1 GHZ-state. In [3] it is shown that the optimal SLOCC operations in the case of mixed states are those that produce a unique state from a given state such that all its local density matrices are equal to the identity. Note that the GHZ state is the only pure state with this property in the 3-qubit case.

A second question concerns the generalization of the class of pure W-states to mixed states: is the W-class of mixed states of measure zero? This question was solved in [3] (see also [4] for a simple derivation and generalizations), where it was shown that the W-class of mixed state is not of measure zero.

APPENDIX A: OPTIMAL DISTILLATION OF THE GHZ STATE

The most general local procedure of distilling a GHZ-state out of a single copy of a pure state consists of a multi-branch protocol in which different branches consist of different SLOCC operations connected through equation (2). There is no restriction in taking all \(\{A_i\}, \{B_i\}, \{C_i\} \) to have determinant 1, and the SLOCC operations corresponding to each branch are of the form.
Each branch yields the GHZ-state with probability q_i, and therefore the total probability is given by $\sqrt{\tau} \sum_i q_i^2$, which has to be maximized. Due to the condition (A1), an upper bound on this probability can readily be derived. It will turn out that this upper bound is achievable by a 1-branch protocol. Defining $p_i = q_i^2 / \left(\sum_i q_i^2 \right)$, it holds that the total probability is bounded by

$$\sum_i q_i^2 A_i^\dagger A_i \otimes B_i^\dagger B_i \otimes C_i^\dagger C_i \leq I_8$$

Thus for each branch together are implementable as a part of a POVM. This leads to a necessary (but generally not sufficient) condition:

$$\max_{\{A_i\}, \{B_i\}, \{C_i\}} \frac{\sqrt{\tau}}{\lambda_{\text{max}}(\sum_i p_i A_i^\dagger A_i \otimes B_i^\dagger B_i \otimes C_i^\dagger C_i)}$$

where $\lambda_{\text{max}}(X)$ denotes the largest eigenvalue of operator X. An upper bound is therefore obtained by minimizing this largest eigenvalue. Therefore the standard techniques for differentiating the eigenvalues of a matrix have to be used: given a Hermitian matrix X, its eigenvalue decomposition $X = U\lambda U^\dagger$ and its variation \dot{X}, then the variation on its eigenvalues is given by $\dot{E} = \text{diag}\{U^\dagger \dot{U} \}$. Here we take

$$X = Z_0 \sum_i p_i D_i \otimes Z_0$$

$$Z_0 = A_0 \otimes B_0 \otimes C_0$$

$$D_i = |D_i|^2 \otimes |D_i|^2 \otimes |D_i|^2$$

Note that varying the free parameters $\{a_i, b_i, p_i\}$ only affects D and not Z_0. In the case of an extremal maximal eigenvalue all variations $\dot{\lambda}_{\text{max}} = \text{Tr} \left(\dot{E} \lambda_{\text{max}} \right)$ with $P_{11} = \text{diag}[1; 0; 0; 0; 0; 0; 0; 0]$ must be zero:

$$\text{Tr} \left((\delta D) Z_0 U P_{11} U^\dagger Z_0 \right) = 0$$

The following identities are easily verified:

$$\frac{\delta D}{\delta a_i} = \frac{2}{a_i} \text{diag}[0, 1, 0, 1, -1, 0, -1, 0] D_i$$

$$\frac{\delta D}{\delta b_i} = \frac{2}{b_i} \text{diag}[0, 0, -1, 0, 0, 1, -1, 0] D_i$$

$$\frac{\delta D}{\delta p_i} = 2 \sqrt{p_i} D_i$$

Therefore only the (real and positive) diagonal elements of $Z_0 U P_{11} U^\dagger Z_0$ are of importance and let us write them in the vector z_0. Similarly, we write the diagonal elements of D_i in the vector $d_i = \{1; |a_i b_i|^2; 1/|b_i|^2; |a_i|^2; 1/|a_i|^2; |b_i|^2; 1/|a_i b_i|^2; 1\}$, and the extremal relations become:

$$\forall i : 0 = d_i^2 \text{diag}[0, 1, 0, 1, -1, 0, -1, 0] z_0$$

$$0 = d_i^2 \text{diag}[0, 1, -1, 0, 1, -1, 0] z_0$$

$$\mu = d_i^2 z_0$$

where μ is the Lagrange multiplier corresponding to the condition $\sum_i (\sqrt{p_i})^2 = 1$. This forms sets of each time 3 equations for 2 unknowns a_i, b_i, which can be shown to have exactly one solution. Indeed, the first and second equation lead to

$$|a_i|^4 = \frac{z_0(5) + z_0(7) / |b_i|^2}{z_0(4) + z_0(2) / |a_i|^2}$$

$$|b_i|^4 = \frac{z_0(3) + z_0(7) / |a_i|^2}{z_0(6) + z_0(2) / |a_i|^2}$$

Let us analyze how these equations behave. When $b_i \to 0$ then the solution of the first equation goes like $|a_i| \sim 1 / \sqrt{|b_i|}$ and when $a_i \to 0$ then $|b_i| \sim 1 / |a_i|^2$. Exactly the opposite happens in the case of the second equation, and due to this different asymptotic behaviour it is assured that both curves cross and therefore at least one solution exists for all (real positive) values of z_0. Moreover there is always at most one solution. To prove this, we first note that $|a_i|$ and $|b_i|$ can be scaled such that both curves cross at the value $(1, 1)$, and we call these rescaled variables (x, y) and \tilde{z}_0. The hyperbola $x y = 1$ crosses both rescaled curves $(A4)$ at $(1, 1)$. Moreover it is trivial to check that the hyperbola does not cross any of the rescaled curves anymore in the first quadrant (this amount to solving a quadratic equation), and due to the asymptotic behaviour one curve lies below and the other one above the hyperbola (except in $(1, 1)$). Therefore both rescaled curves have exactly one crossing. Therefore for all (real positive) values in \tilde{z}_0, there is always exactly one real solution for $|a_i|, |b_i|$, and as \tilde{z}_0 is independent of the index i, all $|a_i|$ are equal to each other and the same applies to the $|b_i|$. Therefore at most the phase of the constants $\{a_i, b_i\}$ varies in different branches, and as this amounts to local unitary operations we conclude that all branches are equivalent and can be implemented by a one-branch protocol. This implies that the upper bound (A2) can be reached.

In the case of a one branch protocol, the eigenvectors of X can be calculated analytically as X becomes a tensor product of 2×2 matrices. Given particular determinant 1 transformations A, B, C and taking a, b to be real, the eigenvector v corresponding to the largest eigenvalue of
the matrix YY^\dagger with $Y = \begin{pmatrix} a & 0 \\ 0 & 1/a \end{pmatrix} A \otimes \begin{pmatrix} b & 0 \\ 0 & 1/b \end{pmatrix} B \otimes \begin{pmatrix} 1/ab & 0 \\ 0 & ab \end{pmatrix} C$ happens to be $v = v_1 \otimes v_2 \otimes v_3$ with

$$v_i = \left(-\beta_i + \sqrt{\alpha_i^2 + \beta_i^2} \right)$$

$$\alpha_1 = 2\sqrt{A_{11}^{(2)} - 1} \quad \beta_1 = A_{11}^{(2)} - A_{22}/a^2$$

$$\alpha_2 = 2\sqrt{B_{11}^{(2)} - 1} \quad \beta_2 = B_{11}^{(2)} - B_{22}/b^2$$

$$\alpha_3 = 2\sqrt{C_{11}^{(2)} - 1} \quad \beta_3 = C_{11}/(ab)^2 - C_{22}(ab)^2$$

The conditions (A3) then imply that β_i/α_i is a constant for all $i = 1..3$:

$$\frac{A_{11}^{(2)} - A_{22}/a^2}{\sqrt{A_{11}^{(2)} - 1}} = \frac{B_{11}^{(2)} - B_{22}/b^2}{\sqrt{B_{11}^{(2)} - 1}} = \frac{C_{11}/(ab)^2 - C_{22}(ab)^2}{\sqrt{C_{11}^{(2)} - 1}}$$

These two equations have to be solved in the unknowns a and b. b can readily be written in function of a through one of those, and then a sixth order equation in the remaining unknown a^2 results. As shown above, only one solution corresponding to a physical solution for a and b exists, and this solution can easily be solved numerically. The optimal local filtering operations and the maximal probability of making a GHZ-state (an entanglement monotone) can then easily be calculated.

The solution obtained is completely equivalent to the one of Acin et al. [10], although their proof did not include the uniqueness of the solution and needed exhaustive numerical calculations.

Note that the procedure outlined here is equally applicable to the problem of distilling a GHZ-state in a higher dimensional system.

APPENDIX: ACKNOWLEDGMENTS

FV acknowledges interesting discussions with K. Audenaert, T. Brun, P. Hayden, J. Kempe, R. Gingrich, A. Acin, E. Jane and G. Vidal. FV is very grateful to Hideo Mabuchi and the Institute of Quantum Information at Caltech, where part of this work has been done.

* frank.verstraete@esat.kuleuven.ac.be
jeroen.dehaene@esat.kuleuven.ac.be
$ bart.demoor@esat.kuleuven.ac.be