Oxidation and luminescence quenching of europium doped BaMgAl$_{10}$O$_{17}$ probed by HERFD-XANES

Lucia Amidani1, K. Korthout2, J. J. Joos2, M. van der Linden1,3, H. F. Sijbom2, A. Meijerink4, D. Poelman2, P. F. Smet2, P. Glatzel1

1European Synchrotron Radiation Facility, 38043 Grenoble, France
2Lumilab, Department of Solid State Sciences, Ghent University, Belgium
3Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, The Netherlands
4Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, The Netherlands

lucia.amidani@esrf.fr

Eu-doped BaMgAl$_{10}$O$_{17}$ (BAM) is an excellent inorganic phosphor. Its luminescence efficiency is however severely degraded during prolonged vacuum-ultraviolet (VUV) excitation. Furthermore, the degradation process at the atomic level is not yet fully understood. To shed light on this process, we simultaneously employed X-rays as an equivalent but accelerated source of damage, as an excitation source of luminescence and as an element-selective probe of both dopants and host-lattice chemical species.

We investigated commercial samples of Eu doped and Mn, Eu co-doped BAM. We measured High-Energy Resolution Fluorescence Detected (HERFD)-XANES at Eu and Ba L$_3$-edges and at Mn K-edge. The X-ray induced radio-luminescence (RL) and the HERFD-XANES spectra were simultaneously acquired while progressive damage was induced.

The evolution of the RL spectra confirms that the degradation induced by X-rays and by VUV irradiation are equivalent. The HERFD-XANES reveals that Ba and Mn are stable under the X-ray beam, while Eu$^{2+}$ undergoes a rapid oxidation to Eu$^{3+}$. We found that the correlation between Eu oxidation and RL intensity decay is non-linear and that a significant fraction of Eu$^{2+}$ resists to irradiation, implying that an additional mechanism is responsible for the quenching of the remaining Eu$^{2+}$. A kinetic Monte Carlo simulation indicates that the creation of defects acting as killer centers in the vicinity of a photo-oxidized Eu$^{3+}$ can reproduce the dynamics observed on RL and Eu oxidation.

By simultaneously degrading and probing Eu-doped BAM we found [1] that the degradation process is due to oxidation of the luminescence impurities combined with the formation of killer centers that quench the luminescence of the remaining Eu$^{2+}$.