Advanced search
1 file | 4.57 MB

Quantification of submarine groundwater discharge in the Gaza strip

Ashraf Mushtaha (UGent) and Kristine Walraevens (UGent)
(2018) WATER. 10(12).
Author
Organization
Abstract
Gaza Strip has suffered from seawater intrusion during the past three decades due to low rainfall and high abstraction from the groundwater resource. On a yearly basis, more than 170 million m(3) of groundwater is abstracted, while the long-term average recharge from rainfall is 24.4 million m(3)/year. Submarine groundwater discharge (SGD) has never been studied in the Gaza Strip, due to lack of experience in this field, next to the ignorance of this subject due to the seawater intrusion process taking place. Continuous radon measurements were carried out in six sites along the Gaza Strip to quantify the SGD rate. The final result shows SGD to occur in all sampled sites. The range of SGD rates varies from 0.9 to 5.9 cmday(-1). High values of SGD are found in the south (Rafah and Khan Younis governorates). The high values are probably related to the shallow unconfined aquifer, while the lowest values of SGD are found in the middle of Gaza Strip, and they are probably related to the Sabkha formation. In the north of Gaza Strip, SGD values are in the range of 1.0 to 2.0 cmday(-1). Considering that SGD would occur with the measured rates in a strip of 100 m wide along the whole coast line, the results in a quantity of 38 million m(3) of groundwater being discharged yearly to the Mediterranean Sea along Gaza coast. Nutrient samples were taken along Gaza Strip coastline, and they were compared to the onshore wells, 600 m away from the Mediterranean Sea. The results show that SGD has higher NO3- + NO2- than nutrient-poor seawater, and that it is close to the onshore results from the wells. This confirms that the source of SGD is groundwater, and not shallow seawater circulation. In a coastal strip of 100 m wide along the Gaza coast, a yearly discharge of over 400 tons of nitrate and 250 tons of ammonium occurs from groundwater to the Mediterranean Sea.
Keywords
SUBTERRANEAN ESTUARY, WATER, RN-222, GULF, SEA, NUTRIENTS, NEARSHORE, INPUT, ZONE, BAY, SGD, SGD model, Radon, coastal aquifer, nutrient discharge, Gaza Strip

Downloads

  • 2018-Ashraf-SGD-water-10-01818.pdf
    • full text
    • |
    • open access
    • |
    • PDF
    • |
    • 4.57 MB

Citation

Please use this url to cite or link to this publication:

Chicago
Mushtaha, Ashraf, and Kristine Walraevens. 2018. “Quantification of Submarine Groundwater Discharge in the Gaza Strip.” Ed. Maurizio Polemio and Kristine Walraevens. Water 10 (12).
APA
Mushtaha, A., & Walraevens, K. (2018). Quantification of submarine groundwater discharge in the Gaza strip. (M. Polemio & K. Walraevens, Eds.)WATER, 10(12).
Vancouver
1.
Mushtaha A, Walraevens K. Quantification of submarine groundwater discharge in the Gaza strip. Polemio M, Walraevens K, editors. WATER. 2018;10(12).
MLA
Mushtaha, Ashraf, and Kristine Walraevens. “Quantification of Submarine Groundwater Discharge in the Gaza Strip.” Ed. Maurizio Polemio & Kristine Walraevens. WATER 10.12 (2018): n. pag. Print.
@article{8592032,
  abstract     = {Gaza Strip has suffered from seawater intrusion during the past three decades due to low rainfall and high abstraction from the groundwater resource. On a yearly basis, more than 170 million m(3) of groundwater is abstracted, while the long-term average recharge from rainfall is 24.4 million m(3)/year. Submarine groundwater discharge (SGD) has never been studied in the Gaza Strip, due to lack of experience in this field, next to the ignorance of this subject due to the seawater intrusion process taking place. Continuous radon measurements were carried out in six sites along the Gaza Strip to quantify the SGD rate. The final result shows SGD to occur in all sampled sites. The range of SGD rates varies from 0.9 to 5.9 cmday(-1). High values of SGD are found in the south (Rafah and Khan Younis governorates). The high values are probably related to the shallow unconfined aquifer, while the lowest values of SGD are found in the middle of Gaza Strip, and they are probably related to the Sabkha formation. In the north of Gaza Strip, SGD values are in the range of 1.0 to 2.0 cmday(-1). Considering that SGD would occur with the measured rates in a strip of 100 m wide along the whole coast line, the results in a quantity of 38 million m(3) of groundwater being discharged yearly to the Mediterranean Sea along Gaza coast. Nutrient samples were taken along Gaza Strip coastline, and they were compared to the onshore wells, 600 m away from the Mediterranean Sea. The results show that SGD has higher NO3- + NO2- than nutrient-poor seawater, and that it is close to the onshore results from the wells. This confirms that the source of SGD is groundwater, and not shallow seawater circulation. In a coastal strip of 100 m wide along the Gaza coast, a yearly discharge of over 400 tons of nitrate and 250 tons of ammonium occurs from groundwater to the Mediterranean Sea.},
  articleno    = {1818},
  author       = {Mushtaha, Ashraf and Walraevens, Kristine},
  editor       = {Polemio, Maurizio and Walraevens, Kristine},
  issn         = {2073-4441},
  journal      = {WATER},
  keywords     = {SUBTERRANEAN ESTUARY,WATER,RN-222,GULF,SEA,NUTRIENTS,NEARSHORE,INPUT,ZONE,BAY,SGD,SGD model,Radon,coastal aquifer,nutrient discharge,Gaza Strip},
  language     = {eng},
  number       = {12},
  pages        = {15},
  title        = {Quantification of submarine groundwater discharge in the Gaza strip},
  url          = {http://dx.doi.org/10.3390/w10121818},
  volume       = {10},
  year         = {2018},
}

Altmetric
View in Altmetric
Web of Science
Times cited: