Advanced search
1 file | 3.95 MB

Nitrogen limitations on microbial degradation of plant substrates are controlled by soil structure and moisture content

Peter Maenhout (UGent) , Jan Van den Bulcke (UGent) , Luc Van Hoorebeke (UGent) , Veerle Cnudde (UGent) , Stefaan De Neve (UGent) and Steven Sleutel (UGent)
Author
Organization
Abstract
Mineral nitrogen (N) availability to heterotrophic micro-organisms is known to impact organic matter (OM) decomposition. Different pathways determining the N accessibility depend to a large extent on soil structure. Contact between soil mineral and OM substrate particles can facilitate N transport toward decomposition hot spots. However, the impact of soil structure on N availability to microbes and thus heterotrophic microbial activity and community structure is not yet fully understood. We hypothesized that carbon mineralization (Cmin) from low-N substrate would be stimulated by increased N availability caused by closer contact with soil particles or by a higher moisture level, enhancing potential for N-diffusion. Under opposite conditions retarded heterotrophic activity and a dominance of fungi were expected. A 128-days incubation experiment with CO2 emission monitoring from artificially reconstructed miniature soil cores with contrasting soil structures, viz. high or low degree of contact between soil particles, was conducted to study impacts on heterotrophic activity. The soil cores were subjected to different water filled pore space percentages (25 or 50% WFPS) and amended with either easily degradable OM high in N (grass) or more resistant OM low in N (sawdust). X-ray μCT image processing allowed to quantify the pore space in 350 μm around OM substrates, i.e., the microbial habitat of involved decomposers. A lower local porosity surrounding sawdust particles in soils with stonger contact was confirmed, at least at 25% WFPS. Mineral N addition to sawdust amended soils with small particle contact at 25% WFPS resulted in a stimulated respiration. Cmin in the latter soils was lower than in case of high particle contact. This was not observed for grass substrate particles or at 50% WFPS. The interactive effect of substrate type and soil structure suggests that the latter controls Cmin through mediation of N diffusion and in turn N availability. Phospholipid fatty acid did not reveal promotion of fungal over bacterial biomarkers in treatments with N-limited substrate decomposition. Combining X-ray μCT with tailoring soil structure allows for more reliable investigation of effects on the soil microbial community, because as also found here, the established soil pore network structure can strongly deviate from the intended one.
Keywords
C mineralization, soil contact, nitrogen availability, microbial community, X-ray mu CT, ORGANIC-MATTER, CARBON MINERALIZATION, COMPUTED-TOMOGRAPHY, COMMUNITY STRUCTURE, RHIZOCTONIA-SOLANI, PARTICLE-SIZE, CROP RESIDUES, PORE, DECOMPOSITION, FUNGAL

Downloads

  • 8588145.pdf
    • full text
    • |
    • open access
    • |
    • PDF
    • |
    • 3.95 MB

Citation

Please use this url to cite or link to this publication:

Chicago
Maenhout, Peter, Jan Van den Bulcke, Luc Van Hoorebeke, Veerle Cnudde, Stefaan De Neve, and Steven Sleutel. 2018. “Nitrogen Limitations on Microbial Degradation of Plant Substrates Are Controlled by Soil Structure and Moisture Content.” Frontiers in Microbiology 9.
APA
Maenhout, P., Van den Bulcke, J., Van Hoorebeke, L., Cnudde, V., De Neve, S., & Sleutel, S. (2018). Nitrogen limitations on microbial degradation of plant substrates are controlled by soil structure and moisture content. FRONTIERS IN MICROBIOLOGY, 9.
Vancouver
1.
Maenhout P, Van den Bulcke J, Van Hoorebeke L, Cnudde V, De Neve S, Sleutel S. Nitrogen limitations on microbial degradation of plant substrates are controlled by soil structure and moisture content. FRONTIERS IN MICROBIOLOGY. 2018;9.
MLA
Maenhout, Peter et al. “Nitrogen Limitations on Microbial Degradation of Plant Substrates Are Controlled by Soil Structure and Moisture Content.” FRONTIERS IN MICROBIOLOGY 9 (2018): n. pag. Print.
@article{8588145,
  abstract     = {Mineral nitrogen (N) availability to heterotrophic micro-organisms is known to impact organic matter (OM) decomposition. Different pathways determining the N accessibility depend to a large extent on soil structure. Contact between soil mineral and OM substrate particles can facilitate N transport toward decomposition hot spots. However, the impact of soil structure on N availability to microbes and thus heterotrophic microbial activity and community structure is not yet fully understood. We hypothesized that carbon mineralization (Cmin) from low-N substrate would be stimulated by increased N availability caused by closer contact with soil particles or by a higher moisture level, enhancing potential for N-diffusion. Under opposite conditions retarded heterotrophic activity and a dominance of fungi were expected. A 128-days incubation experiment with CO2 emission monitoring from artificially reconstructed miniature soil cores with contrasting soil structures, viz. high or low degree of contact between soil particles, was conducted to study impacts on heterotrophic activity. The soil cores were subjected to different water filled pore space percentages (25 or 50\% WFPS) and amended with either easily degradable OM high in N (grass) or more resistant OM low in N (sawdust). X-ray \ensuremath{\mu}CT image processing allowed to quantify the pore space in 350 \ensuremath{\mu}m around OM substrates, i.e., the microbial habitat of involved decomposers. A lower local porosity surrounding sawdust particles in soils with stonger contact was confirmed, at least at 25\% WFPS. Mineral N addition to sawdust amended soils with small particle contact at 25\% WFPS resulted in a stimulated respiration. Cmin in the latter soils was lower than in case of high particle contact. This was not observed for grass substrate particles or at 50\% WFPS. The interactive effect of substrate type and soil structure suggests that the latter controls Cmin through mediation of N diffusion and in turn N availability. Phospholipid fatty acid did not reveal promotion of fungal over bacterial biomarkers in treatments with N-limited substrate decomposition. Combining X-ray \ensuremath{\mu}CT with tailoring soil structure allows for more reliable investigation of effects on the soil microbial community, because as also found here, the established soil pore network structure can strongly deviate from the intended one.},
  articleno    = {1433},
  author       = {Maenhout, Peter and Van den Bulcke, Jan and Van Hoorebeke, Luc and Cnudde, Veerle and De Neve, Stefaan and Sleutel, Steven},
  issn         = {1664-302X},
  journal      = {FRONTIERS IN MICROBIOLOGY},
  language     = {eng},
  pages        = {15},
  title        = {Nitrogen limitations on microbial degradation of plant substrates are controlled by soil structure and moisture content},
  url          = {http://dx.doi.org/10.3389/fmicb.2018.01433},
  volume       = {9},
  year         = {2018},
}

Altmetric
View in Altmetric
Web of Science
Times cited: