Gut microbiota dynamics and uraemic toxins: one size does not fit all

In the recent paper by Chu and colleagues, the potential role of microbiota-related metabolites in the progression of non-alcoholic fatty liver disease is discussed. This topic has been studied in the context of chronic kidney disease, characterised by changes in gut microbiota composition, accumulation of microbiota-derived metabolites, interruption of intestinal barrier function and chronic inflammation. In line with this, we focused, in a cohort of 17 patients with end-stage kidney disease (ESKD), on the role of gut microbiota in the generation of precursors of specific uraemic toxins which are associated with negative outcomes in these patients. By collecting multiple samples over time, assessment of variability within and between patients in relation to disease progress and clinical variables was possible. Faecal and serum samples were collected at eight time-points over a 4-month period. Uraemic metabolites and microbial profiling were determined by HPLC and 16S rRNA amplicon sequencing, respectively. Variation in microbial profiles of patients with ESKD was compared with that of 1106 subjects from a population-based cohort, the Flemish Gut Flora Project (FGFP), which have a similar genetic and environmental background as well as to a subset of age-matched controls of comparable health status (n=32).

In this longitudinal study, within-patient analyses showed that variations in peripheral levels of p-cresyl conjugates (the composite of p-cresyl sulfate (pCS)/glucuronide (pCG); pC), indoxyl sulfate (lXs), indole acetic acid and creatinine significantly correlated with faecal microbial community dissimilarity (at 0.05 level after Benjamini-Hochberg correction). Moreover, the composition of the gut microbiota was found to be diverse among patients with ESKD without a common microbial signature. A significantly higher variability of the patients’ microbiome was observed in comparison to average subject-to-subject differences, even when matching for age and health status (both p<0.0001) (online supplementary figure S1). Projecting the patients’ samples on the PCoA plot of the FGFP confirmed that these patients do not cluster in a specific area but rather are dispersed over the entire space of the control population (online supplementary figure S2).

Figure 1 Main covariates of the faecal microbiota composition of patients with ESKD. Final selected numeric metadata in addition to top 10 taxa correlating with PCoA eigenvectors (ie, with overall community composition). Biplot computed with Bray Curtis dissimilarity on rarefied read counts. Length of arrows reflects correlation with overall community composition. Per patient, a different colour is used. CMPF, 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid; ESKD, end-stage kidney disease.
Covariate analyses of the intestinal microbiota composition in ESKD resulted in non-redundant parameters that significantly correlated with the overall composition, with length of scaled arrows reflecting correlation as depicted in figure 1 (list of covariates in online supplementary table 2 and figure S3). When focusing on the relationships between uraemic retention molecules and gut microbiota, significant correlations of two main uraemic toxins, IxS and pC, to the overall bacterial community composition (p<0.05 after multiple testing correction) stand out. Specifically, since they are associated with contrasting types of gut microbiota, as the arrows for IxS and pC pointed into an opposite direction. This, for the first time, provides a possible working hypothesis on the reported discordant effects of prebiotics, probiotics and synbiotics on circulatory levels of these two toxins.8–10

When further comparing samples of patients with highest pC and lowest IxS to samples with lowest pC and highest IxS serum concentrations in this cohort, the microbial composition of their faecal samples differed significantly. Taxon proportions that differed between both groups are visualised in figure 2A. The LEfSe method confirmed that both datasets were different and identified in total six significantly different taxa together with their effect sizes (figure 2B), all six overlapping with the top 10 taxa that we identified earlier.

Our results illustrate the implications of gut microbiota dynamics on chronic disease and underscore the potential difficulties with attempts to alter circulating levels of intestinally generated uraemic toxins and their corresponding toxicity through specific microbiota modulation. Nevertheless, six taxa are identified and can now be explored as microbial targets to lower uraemic toxin concentrations and to improve outcome of patients with CKD.

Marie Joossens,1,2 Karoline Faust,1 Tessa Gryp,1,3,4 Anh Thi Loan Nguyen,5 Jun Wang,1,5,6 Sunny Elloot7 Eva Schepers,3 Annemieke Dhondt,1 Anneleen Pletinck,2 Sara Vieira-Silva,1,7 Gwen Falony1,1,2 Mario Vaneechoutte,4 Raymond Vanholsbeke,3 Wim Van Biesen,3 Geert Roger Bertrand Huys,1,2 Jeroen Raes,1,2 Griet Glorieux3

1Laboratory of Molecular Bacteriology–Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
2Center for Microbiology, VIB, Leuven, Belgium
3Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, Ghent, Belgium
4Department of Clinical Chemistry, Microbiology and Immunology, Laboratory Bacteriology Research, Ghent University, Ghent, Belgium
5Address of current employer: Clinical Research SGS, Life Science Services, Mechelen, Belgium
6Current address: CAS Key Laboratory for Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China

Correspondence to Professor Griet Glorieux, Department of Internal Medicine, Nephrology Division, Ghent University Hospital, Ghent 9000, Belgium: griet.glorieux@ugent.be

Acknowledgements The authors thank Marina Delrue for their technical assistance, Willem Delrue (master student) for the assistance in the sample collection and Leo Lahti for health matching in the FGF dataset. The authors also thank the dialysis patients of the Ghent University Hospital for their effort to take part in this study.

Contributors GG, JR, MJ and GRBH made substantial contributions to conception and design of the study. TG, SE, ES, AD, AP and GG were involved in the acquisition of data. MF, TJ, TG, ALTN, JW and SVS made substantial contributions to the analysis of the data. MJ, TG, GF, MV, GRBH, JR and GG were involved in the interpretation of the data. MJ, TG, GF and KK drafted the article. All authors critically revised the draft and made important intellectual contributions. All co-authors approved the final version to be published and agree to be accountable for all aspects of the work.
Funding This study is supported by a project grant of the Research Foundation Flanders (FWO Vlaanderen; G0A4614N and G017815N). TG is a PhD student on this project. MJ is supported by a fellowship and AP is postdoctoral researcher of the Research Foundation Flanders (FWO). The Raes lab is supported by KU Leuven, Flemish Life Science Research Institute (VIB) and the Rega Institute.

Competing interests None declared.

Patient consent Not required.

Ethics approval Ethics Committee UZ Gent (Approval Ref. 2012/063, B670201214999).

Provenance and peer review Not commissioned; internally peer reviewed.

Received 10 September 2018
Revised 25 September 2018
Accepted 1 November 2018

Gut 2018;0:1–3. doi:10.1136/gutjnl-2018-317561

REFERENCES