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Abstract—We develop and benchmark four RSS localisation
algorithms where different a priori knowledge is required. The
selection of the best algorithm depends on the availability of
additional information on path loss exponent and/or transmit
power. We compare our algorithms with centroid localization and
show that the algorithms provide better results for shadowing
on the values not exceeding 6dB. We perform experiments
and simulations with Bluetooth Low Energy and LoRaWAN
technologies and select the best technology and algorithm for
localisation in large open industrial environments.

Index Terms—LoRA, BLE, RSS, Localization, Algorithm,open
environment, industry

I. INTRODUCTION

Asset tracking in large industrial warehouses is mandatory
to optimize the logistic supply chain processes. A localization
solution is mostly a trade off between accuracy, delay, energy
consumption, scalability and other metrics such as cost and
implementation effort. Although many localization methods
exist, we consider Received Signal Strength (RSS)-based
localization since it is well suited for localization in zones
where only coarse grained accuracy is needed. An important
advantage of RSS is the fact there is no additional hardware
cost since RSS values are mostly available on each hardware
platform. Once RSS information is available from different
anchors with a known location, an algorithm is needed to
convert the RSS values to a location estimate. The novelties
of the paper are threefold. Firstly, it describes 4 simple and
effective algorithms for RSS-based localization. Secondly, it
describes the best algorithm to use in line-of sight conditions.
Finally, it compares experimentally Bluetooth Low Energy
(BLE) and LoRa technologies in terms of achievable accuracy
in a large open industrial hall. The paper is structured as
follows. Section II describes related work on RSS-based algo-
rithms. Section III describes our simple implemented methods
for RSS-based localization. Section IV provides simulation
results and discussion. In Section V experimental RSS models
are described for Bluetooth Low energy and LoRa. The best
technology is selected based on the results from Section IV.
Finally, we conclude the paper in Section V.

II. RELATED WORK

Although not accurate, probably the most simple RSS
algorithms are the centroid and proximity localisation methods
[1]. The centroid algorithm maps the estimated location at

Fig. 1. Solution to the trilateration problem when the distances from the
mobile node to the anchors are known.

the center of the base stations that received the packet. The
proximity algorithm maps the location at the base station that
received the packet with highest RSS value. In [2], a weighted
centroid localisation algorithm is presented. It consists of a
simple combination of centroid and proximity algorithms and
takes into account the actual received RSS values. Although it
can provide more accurate results than centroid or proximity
algorithms, the weighting factor still needs to be determined.
In [3], a straightforward algorithm is presented for cases where
the distance is known from the anchors. The distance input
can be estimated from the RSS values using a RSS model.
Figure 1 shows the estimated location (B) when the distances
rl, r2 and r3 to the anchors P1, P2, P3 are known. However,
in practice the circles do not intersect due to inaccuracies in
the distance estimations. Although [3] still can provide the
most likely location, its implementation is complex. It depends
on a correct RSS model and can give a solution which is
not on the considered map. In [4], a method is described
to perform multilateration without known transmit power and
RSS model, i.e. without knowledge of the transmitting node



Fig. 2. Picture of the indoor open environment.
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Fig. 3. BLE anchor placement (Triangles) for one-slope RSS model estimation
in the indoor environment.

or the environment. The method provides a fairly simple
mathematical framework but the analytical solution might not
be within the considered map due to the fact that it considers
all possible solutions in an infinite 2D space. An extensive
overview and comparison of analytical RSS algorithms that
provide more accurate localization can be found in [5]. Per-
forming localisation in more complex environments is done in
the work of [8]. Our work will provide simple low-information
algorithms in large open environments.

III. MATERIALS AND METHODS
A. Creation of one-slope RSS model

Figure 2 shows a picture of the indoor open industrial
environment where RSS measurements have been performed.
These measurements will be used to benchmark the perfor-
mance of different localization algorithms. In Figures 3 and 4,
the floorplan of the indoor hall is shown. The BLE and LoRa
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Fig. 4. LoRa anchor placement (Triangles) for one-slope RSS model
estimation in the indoor environment.

anchor locations are shown by triangles in Figures 3 and 4 re-
spectively. The indoor environment is a large open space where
line-of sight conditions (LOS) apply and measures 69m x 69m.
We define 100 testpoints, homogeneously spaced 5 m apart in
the test environment. At these 100 test locations we transmit
LoRa [7] packets on spreading factor 7 (has the highest update
rate) with a mobile node (LoRa scenario, Fig. 4) or receive
BLE packets from the anchor nodes (BLE scenario, Fig. 3).
Table I lists the used hardware to perform these experiments.
All antennas were omnidirectional dipoles at 2.4GHz (BLE)
and 868MHz (LoRa). During the measurements the influence
of the body on the antennas was kept minimal [9]. Details
of the configuration and settings can be found in Table III-A.
Next, we record the RSS values together with the distance to
the anchors on the test points. The final step is to plot the RSS
values as a function of distance and perform a linear regression
on the data in order to estimate the (one-slope RSS) model.

TABLE I
HARDWARE USED FOR THE EXPERIMENTS

Technology
LoRa TX (Mobile Node)
LoRa RX (Gateway Anchor)
BLE TX (Beacon Anchor)
BLE RX (Mobile Node)

Type
Microchip LoRa Mote
Multitech Conduit
AnkhMaway USB iBeacon
Nordic nRF52 DK

The RSS model is described as:

RSS[dBm] = RSSy — 10.n.logl0(d) + X, (1)

The parameters to estimate are RSSy[dBm], n, and o[dB]
which denote the RSS value at distance d = 1 m, the path loss
exponent and the standard deviation of the shadowing X, [dB]
around the model, respectively.

B. Localization Algorithms

Four localization algorithms were developed. All four as-
sume a different availability of information on the configura-



Parameter BLE Value LoRa Value
Frequency band 2.4GHz 868MHz
Anchor height 1.5m 1.5m
Mobile node height 2m 2m
Radiation pattern Omnidirectional Omnidirectional
Transmit power 18dBm 14dBm
Antenna gains 2dBi 2dBi

Transmission
Packet RSS Averaging

anchor to mobile node
yes (over 14-16 packets in 1.65s)

mobile node to anchor
no (single packet)

TABLE 11
CONFIGURATION AND SETTINGS FOR BLE AND LORA

tion such as transmit power and path loss exponent as indicated
in Table III. For example RSS(Ptx) only requires input of
the transmit power Ptx of the transmitting node (or anchor).
In what follows, we will describe the operation of the 4
algorithms. For all algorithms, the floorplan is considered and
divided into grid points (100x100 points) of possible mobile
locations.

TABLE III
LOCALIZATION ALGORITHMS AND DEPENDENCIES ON CONFIGURATION
INFORMATION (N = PATH LOSS EXPONENT, PTX = TRANSMIT POWER)

Algorithm  PL exponent  Transmit power

RSS(n,Ptx) Required Required
RSS(Ptx) - Required
DRSS(n) Required -
DRSS() - -

1) RSS(Ptx,n) algorithm: During the offline phase,
theoretical received RSS values are calculated according to
the representative (measured) RSS model for each point of
the grid. During the online phase the measured RSS values
are 'compared’ with the theoretical ones for each grid point.
The grid point which has its theoretical RSS values closest
(least squares) to the ones measured is determined as the
estimated location (X,Y):

N
(X,Y) = min ;(Rss(x,y)ﬂ ~RSS;m)? (@

Here RSS(; )1 denotes the theoretical RSS value at
position (x,y) from or at anchor i (see eq. 1), i =1..N with
N the number of anchors. RS'S; js is the measured RSS value
from or at anchor i and is therefore required. RS'S is obtained
from a measurement at power Ptx.

2) RSS(Ptx) algorithm: This algorithm operates the same
as RSS(Ptx,n) but since the RSS model is unknown, it is
estimated from the measured samples (for each location).
The path loss exponent n is first assumed to be equal to n
= 1. Then RSS(Ptx,n) estimates an optimal location for that
n (see first algorithm). The parameter n is then increased up
to 6 in steps of 0.2. After these iterations a set of optimal
locations are found for each iteration of n. For each location
we calculate the cost function (as in [6]), which determines

for which location and corresponding path loss exponent the
one-slope model gives the best fit:

N
Mopt = argmin Z[(dl,n/dim) — (PP (3)

i=2
here d;,, and P; denote the distance to the i-th anchor and
received power respectively. The latter is converted from the
RSS value in dBm to a power unit in watts. N is the total
number of anchors and n,,,; the estimated path loss exponent.
3) DRSS(n) algorithm: This Differential RSS algorithm
operates without prior knowledge of the transmit power.
All RSS vales are normalized to the strongest RSS value
effectively eliminating Ptx (and RSSj) from the model. The
operation is then similar to the first algorithm RSS(Ptx,n) but

with RSS replaced by DRSS which is obtained by:

DRSS; = RSS; — RSS 4)

Where RSS; denotes the strongest received signal strength.
In the algorithm, n is considered to be constant and known.

4) DRSS() algorithm: This Differential RSS algorithm
operates without information on path loss exponent or
transmit power. Its operation is a combination of the 2" and
37 algorithm. First all possible DRSS values are calculated
and stored in a database for path loss exponent n =1. The
measured RSS values are converted to DRSS and a best
match is searched through the database. This location is
stored and the process is repeated for all n. Then, the location
which best bests the one slope model with the corresponding
n is taken as the estimated location.

The algorithms can be used on experimental or simulated
data. For the simulation we consider the same 100 testpoint
locations from our measurement campaign and calculate the
theoretical RSS values from/to the anchors using a one-slope
RSS model using eq. (1). All our processing was done in
MATLAB.

C. k-NN applied to the algorithms

In [10] a possible well known localization improvement is
suggested. The idea is to estimate multiple (k) nearest neighbor



(NN) solutions instead of a single (NN) one. After the multiple
solutions are found they are weighted and a final solution
is obtained. The k-NN method is applied to our RSS(Ptx,N)
algorithm with k = 4.

D. Performance for different o values

The parameter that affects the localization accuracy the
most is the (fixed) o parameter. The higher this value the
more variation on the RSS and therefore the error on the
localisation estimate gets larger. To quantify the impact of this
parameter on the p50 en p90 accuracy metrics a simulation
(100 testpoints, 30 simulations per testpoint) is carried out. o
is varied from 1 to 10 dB in steps of 1dB. At each step the
performance of the 4 algorithms is evaluated. For comparison,
the centroid method is also simulated.

IV. RESULTS
A. Experimental one-slope RSS model

RSS data was collected from 100 testpoints in a 10x10 grid
with testpoints spaced 5m apart in the environment. For BLE,
14 samples were collected per testpoint per anchor during a
period of 1.65s. For LoRa only 1 sample per testpoint per
anchor was collected. Figure 5 shows the RSS variation over
distance from each anchor for BLE without averaging. The
combined estimated BLE RSS model parameters are RS.Sy =
-26 dBm, n =1.4 and ¢ = 5.2 dB. Figure 6 shows the RSS
model in case the averaged samples are fit. The combined
estimated BLE RSS model parameters are now RSSy = -26
dBm, n =1.2 and ¢ = 3.2 dB. The averaging therefore helps
to reduce the overall variation around the model which will
lead to better localisation results.

For LoRa the RSS model parameters are RSSy = -23 dBm,
n =1.5 and ¢ = 6 dB. The model is shown in Fig. 7. Note that
for LoRa the term Equivalent Signal Power (ESP) is equivalent
to RSS if the signal to noise ratio is greater than 1 (0 dB).
The variation (o) around the model is also much smaller for
BLE then for LoRa because BLE allows for averaging over
(14-16) different transmissions in a short period of time (only
1.65s), which is not possible for LoRa (One sample each
5s). Therefore, BLE will obtain better localisation results then
LoRa for the same setup. When comparing all RSS models
with free space we note that free space underestimates the RSS
model at short distances and overestimates the RSS model at
larger distances. The real RSS model can be approximated by
the free space RSS model only if an error of up to 6 dB is
allowed.

B. Performance of algorithms

The performance of the localisation using the algorithms is
shown for BLE in Figure 8. The performance was assessed
for both experimental and simulated data from 100 testpoints
spaced 5m apart. For the simulation, we calculate the the-
oretical RSS values from/to the anchors using a one-slope
RSS model using eq. (1). Table IV lists the obtained accuracy
metrics (50 and 90 percentiles). All 4 algorithms have similar
performance and that simulated performance agrees well with
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Fig. 5. Experimental RSS model for BLE without averaging. FB, EC, C3
,D6 are the samples collected on the different anchors
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Fig. 6. Experimental RSS model for BLE with averaging.FB, EC, C3 ,D6
are the RSS samples collected on the different anchors

-~
.
¥
°

4sf
+ C3ESP
| ¢ 5EESP . )

C4 ESP $ . :
| © DSESP e
—C3 Fit (RSS@1m =-23 dBm , n= 1.5, sigma = 5.50B) o d
—S5E Fit (RSS@1m =-23 dBm , n= 1.5, signa = 64B) B .

C4 Fit (RSS@1m =-23 dBm , n= 1.6, sigma = 6.6dB)

D5 Fit (RSS@1m =-23 dBm , n= 1.5, sigiha = 5.6dB) .o
65 [emeFit All (RSS@1m =-23 dBm , n= 1.5, sigma = 6dB) o
- - Free Space

ESP [dBm]

I .
10 20 30 40 50 60 70
Distance [m]

Fig. 7. Experimental RSS model for LoRa .C3, 5E, C4, D5, are the Equivalent
Signal Power (ESP) samples collected on the different anchors

the measurement. Even without prior knowledge of transmit
power and path loss exponent (DRSS()), the median error
is 17m and is still better than the median of the centroid
localisation (20m).

Figure 9 and Table V show the localisation results for LoRa.
Again the measurements are in agreement with the simula-
tions. The obtained experimental median error is around 19-
22m for our algorithms and the centroid median error is 19m.
We note that the centroid provides better results than our
algorithms. This is due to the high fluctuations of RSS values
as seen in the RSS model (high o values) and no averaging
possibility on the samples. Therefore, LoRa RSS is not suited
well for indoor localisation in open environments. Since BLE
provides better results than LoRa and due to the fact its cost is
also lower per anchor, it is chosen as the preferred technology
for indoor localization in the considered industrial open hall.
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Fig. 8. Localisation accuracy for BLE when considering the algorithms for
both the measured and simulated case .

TABLE IV
LOCALISATION ACCURACY RESULTS FOR BLE. THE SUBSCRIPTS S AND
M DENOTE SIMULATION AND MEASUREMENT RESPECTIVELY FOR THE 50
AND 90 PERCENTILE ERRORS

Algorithm  p3o[m] pB[m]  pgo[m]  pggim]
RSS(Ptx,n) 12 16 36 44
RSS(Ptx) 13 13 34 38
DRSS(n) 15 13 34 37
DRSS() 15 17 36 37
Centroid 20 20 29 29
TABLE V

LOCALISATION ACCURACY RESULTS FOR LORA. THE SUBSCRIPTS S AND
M DENOTE SIMULATION AND MEASUREMENT RESPECTIVELY FOR THE 50
AND 90 PERCENTILE ERRORS

Algorithm  p3o[m] pfi[m]  pgylm]  pgglm]

RSS(Ptx,n) 25 19 4 41
RSS(Ptx) 28 22 45 42
DRSS(n) 25 22 47 39
DRSS() 24 22 47 39
Centroid 19 19 28 28

C. Performance of k-NN when applied to RSS(Ptx,n)

Figure 10 shows the performance of the RSS(Ptx,n) with
and without applying the k-NN method for both the simulation
and experimental case. From the figure it is clear k-NN does
not improve the obtained accuracy. This is due to the fact our
fingerprint map was very dense (50x50 points) with almost
identical k neighbor points in this open environment. Weighted
k-NN therefore has similar performance as NN [10].

D. Performance for different o values

Figures 11 and 12 show the p50 and p90 accuracy simula-
tion results repectively for different o values. We clearly see
all 4 algorithms have similar performance and provide better
results than centroid when o is relatively small. For high o
(o >7dB for p50, ¢ >4.5dB for p90) we see that centroid
provides better results. Therefore it is advisable to estimate o
in the environment in advance before selecting an algorithm.
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Fig. 9. Localisation accuracy for LoRa when considering the algorithms for
both the measured and simulated case .
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V. CONCLUSION

In this paper we developed 4 simple low-information local-
ization algorithms. We applied the algorithms to the special
case of a large indoor indoor environment for which we
experimentally obtained a one-slope RSS model. The preferred
algorithm does not rely on additional information such as
transmit power and path loss exponent. We compared BLE
and LoRa technologies. The preferred technology turned out
to be BLE due to its lower cost and averaging capabilities.
Considering our configuration when using BLE, we obtained
a median accuracy of 15m with just 4 BLE beacons placed
in an environment measuring 69 m x 69 m. There was good
agreement between the obtained measurements and simulation
localization results. Further work includes the investigation of
the improvement of the accuracy by placing more anchors and
determining their optimal location. Finally, the sensitivity of
the algorithms to the correctness of the provided RSS model
and/or transmit power is part of future work.
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