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CRITERIA FOR BOCHNER’S EXTENSION PROBLEM

MICHAEL RUZHANSKY AND MITSURU SUGIMOTO

Abstract. A necessary and sufficient condition for the resolution of the weak
extension problem is given. This criterion is applied to also give a criterion for the
solvability of the classical Bochner’s extension problem in the Lp–category. The
solution of the Lp–extension problem by Bochner [1] giving the relation between
the order of the operator, the dimension, and index p, for which the Lp–extension
property holds, can be viewed as a subcritical case of the general Lp–extension
problem. In general, this property fails in some critical and in all supercritical
cases. In this paper, the Lp–extension problem is investigated for operators of all
orders and for all 1 ≤ p ≤ ∞. Necessary and sufficient conditions on the subset
of Lp are given for which the Lp–extension property still holds, in the critical and
supercritical cases.

1. Introduction

In this paper we investigate the removable singularity problem for a partial differ-
ential operator P = P (x,D). Let us assume that the open set X ⊂ Rn contains the
origin

A = {0}.

We assume that the distribution u ∈ D′(X) satisfies equation

(1.1) Pu = 0 on X\A

on the punctured space X\A, and the question is whether u extends to a solution of
Pu = 0 on the whole space X . We assume that operator P is given by

P (x,D) =
∑

|α|≤m

aα(x)∂
α,

with complex-valued coefficients aα(x). Equalities to zero on X or on X\A are
always understood in the distribution sense. We will also discuss the cases when P
is a matrix-valued operator and when A is a smooth submanifold of X .
We will first give a criterion for the solvability of this problem. The classical

Bochner’s solution gives the relation m ≤ n(1 − 1/p), 1 ≤ p < ∞, for the extension
to hold in Lp(X), and the extension property is known to fail in general for other
exponents. In this paper we will first give necessary and sufficient conditions for the
solvability of the general weak extension problem in the distribution space D′(X).
Moreover, in the Lp–setting this will recover Bochner’s result (which can be viewed
as the subcritical case of the general Lp–extension problem), but will also yield the
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necessary and sufficient criterion for the critical (L∞) and supercritical (Lp, 1 ≤ p ≤
∞, and m > n(1− 1/p)) cases.
The main idea is to consider the asymptotic behaviour of the quantity

||Q(aPu ∗ φǫ)||Lr

as ǫ > 0 tends to 0, where a ∈ C∞
0 (X), φ ∈ C∞

0 (Rn), φǫ(x) = ǫ−nφ(x/ǫ), and Q is a
partial differential operator with constant coefficients. The criterion can be described
by using the order of its behaviour in ǫ. The precise statement of this main result
(Theorem 2.1) will be given in Section 2.
As an application of this criterion, we can cover the related known and prove new

results on the Lp–extension problem, namely we will assume that solution u to (1.1)
satisfies u ∈ Lp(X), 1 ≤ p ≤ ∞. We will say that the Lp–extension holds if equality
(1.1) with u ∈ Lp(X) implies that Pu = 0 on X . Sometimes we will need to specify
u in this implication, in which case we will say that the Lp–extension holds for u.
Conversely, we will say that the Lp–extension fails if there is u ∈ Lp(X) such that
(1.1) holds but Pu 6= 0 on X . The following result goes back to Bochner [1], and
implies that the Lp–extension holds for m ≤ n(1− 1/p) and 1 ≤ p <∞.

Theorem 1.1. Let u ∈ Lp(X), m ≤ n(1 − 1/p), 1 ≤ p < ∞, and Pu = 0 on X\A.
Then Pu = 0 on X.

Theorem 1.1 is also proved by another method of Sugimoto and Uchida [11]. For
a brief explanation of the methods used in [1] and [11], see also [9] and [10]. But
we can obtain the same results from our criterion as well, see Corollary 3.2 and the
proof. A striking feature of this result is that it is independent of the type of operator
P , and that its proof is rather simple. Various generalisations of this relation have
been studied over the years describing conditions on more general removable sets
in terms of capacities and other quantities (see e.g. [1], [3], [5], [6], [7], [11], and
references therein, to mention only a few). Moreover, most of the existing literature
deals with the subcritical and certain critical cases of the weak extension problem
(in the terminology introduced below in detail), while the present paper concentrates
on the general critical and supercritical cases (while recovering subcritical results as
well).
In view of Theorem 1.1, for all 1 ≤ p ≤ ∞, we will call the cases m < n(1 − 1/p),

m = n(1 − 1/p), and m > n(1 − 1/p) to be subcritical, critical, and supercritical,
respectively. Thus, Bochner’s theorem says that for 1 ≤ p < ∞ the Lp–extension
property holds in the subcritical and critical cases. We remark that a generalisation
of Bochner’s Theorem 1.1 to the supercritical case is not generally possible because
the inequality m ≤ n(1 − 1/p) in Theorem 1.1 is sharp. Indeed, it is shown by e.g.
John [2] that if P has analytic coefficients and is elliptic, then function

(1.2) u(x) = |x|m−n {A(x) +B(x) log |x|}

solves Pu = δ on X , with some functions A(x), B(x) bounded in a neighbourhood of
0 ∈ X . Thus, Pu = 0 onX\A, and we can remark that u ∈ Lp(X) form > n(1−1/p),
implying that the Lp–extension property fails for 1 ≤ p <∞ in the supercritical cases.
Theorem 2.1 clearly also gives necessary and sufficient conditions when u ∈ Lp(X),

for all 1 ≤ p ≤ ∞ and all orders m of operator P . Moreover, this also yields some
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further simple sufficient conditions since the quantities in (2.3) and (2.4) can be ef-
ficiently estimated for u ∈ Lp(X). Therefore, our criterion will also give sufficient
conditions on functions for which the Lp–extension property still holds in the super-
critical cases when the Lp–extension property fails in general. All of such results will
be given in Section 3.
We will also consider the critical case p = ∞ (especially when m = n) which is

excluded from Theorem 1.1. Considering this case has special meaning because it
has many important application. However, the proof of Bochner [1] breaks down in
the case p = ∞ and m ≥ n. Moreover, the alternative proof of Theorem 1.1 given by
Sugimoto and Uchida [11] also breaks down in view of the failure of the boundedness
of pseudo-differential operators of order zero on the space L∞(X). On the other
hand, example (1.2) shows that the L∞–extension fails for m > n. Thus, the most
subtle critical case is m = n. In fact, various capacity methods (see e.g. Littman
[5], Harvey and Polking [3], Pokrovskii [6], or Polking [7]) are not applicable to this
situation in view of simple examples given in this paper. Our criterion will enable
us to carry out a rather comprehensive analysis in this case. Such discussion will be
given in Section 4.
In Section 5 we will give several generalisations of the obtained results. In partic-

ular, we will discuss modifications of statement in the case when the set A is not a
point, but a smooth submanifold of X of codimension k. In this case we can factor
out the problem to reduce the analysis to the previous situations. In particular, this
yields another proof of the fact that if A is a (complex) hypersurface in C

n and if a
bounded function is analytic in Cn\A, then it is analytic in Cn (in the case n = 1
this is the celebrated Riemann’s extension theorem, since A is a point). Among other
things, in Section 5 we will also discuss the case when A has a real codimension one
in Cn, which can be viewed as the critical L∞–extension problem.

2. A criterion for weak extension

Let X ⊂ R
n be an open set which contains the origin A = {0}. Let operator P

be a partial differential operator on X of order m, which always means in the paper
that it is of the form

(2.1) P =
∑

|α|≤m

aα(x)∂
α, aα ∈ C∞(X).

Functions {aα(x)}|α|≤m may be complex-valued. If they are constants, we call P a
partial differential equation with constant coefficients of order m. The condition of
the smoothness of aα can be weakened in some cases, see e.g. Remark 2.1 and also
Section 3.
For the distribution u ∈ D′(X) on X , the distribution Pu ∈ D′(X) is defined by

〈Pu, φ〉 =
∑

|α|≤m

(−1)|α|〈u, ∂α(aαφ)〉

for φ ∈ C∞
0 (X). It can be also regarded as a distribution on a smaller open set X\A if

we take test functions φ in C∞
0 (X\A). We note that Pu = 0 on X\A does not always

imply Pu = 0 on X , but we will give a criterion on such weak extension property.
Since the problem is local, we may multiply P by a cut-off function a ∈ C∞

0 (X) at
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the origin A. Then we can regard aPu as a distribution on Rn. The idea for the
analysis is to consider convolutions of aPu with certain families of functions, where
the convolution of a distribution f on Rn with a smooth function φ ∈ C∞

0 (Rn) is
defined in the usual way by

(f ∗ φ)(x) = 〈f, φ(x− ·)〉.

For φ ∈ C∞
0 (Rn) and ǫ > 0, we will always denote

(2.2) φǫ(x) = ǫ−nφ(x/ǫ).

The following is a necessary and sufficient condition for the weak extension property
to hold in the space of distributions. It will give many application to, in particular,
the Lp–extension problem in various settings.

Theorem 2.1. Let X ⊂ Rn be an open set, let A = {0} be the origin, and let P be

a partial differential operator on X as in (2.1). Suppose that u ∈ D′(X) satisfies

Pu = 0 on X\A.

Then the following statements are equivalent:

(i) Pu = 0 on X;

(ii) There exist 0 < r ≤ ∞, a ∈ C∞
0 (X) which is non-zero at the origin A, non-

zero φ ∈ C∞
0 (Rn), a sequence ǫj → 0+, and a non-zero partial differential

operator Q of order d with constant coefficients such that

(2.3) ǫ
n(1−1/r)+d
j ||Q(aPu ∗ φǫj)||Lr(Rn) → 0 as ǫj → 0+;

(iii) For every 0 < r ≤ ∞, all functions a ∈ C∞
0 (X), φ ∈ C∞

0 (Rn), and every

partial differential operator Q of order d with constant coefficients we have

(2.4) ǫn(1−1/r)+d||Q(aPu ∗ φǫ)||Lr(Rn) → 0 as ǫ→ 0 + .

We remark that Q(aPu ∗ φǫ) always tends to φ̂(0)Q(aPu) as ǫ→ 0+ in the distri-
butional sense, so that the expression

ǫn(1−1/r)+dQ(aPu ∗ φǫ)

always tends to zero as ǫ→ 0+ in the the distributional sense when d > −n(1−1/r),
in particular when 1 < r ≤ ∞. Property (2.3) or (2.4) requires that in order for the
weak extension property to hold, this convergence should be in a stronger sense. See
also Remark 4.1 for some special case.

Remark 2.1. We can assume that the operator P has non-smooth coefficients if we
restrict the class of distributions for u. For example, if the coefficients {aα}|α|≤m in

(2.1) satisfy only aα ∈ C |α|+k but the distribution u is of order k with some non-
negative integer k, then 〈Pu, φ〉 is still well-defined and Theorem 2.1 is still valid in
this setting.

Proof of Theorem 2.1. Implications (i) =⇒ (iii) and (iii) =⇒ (ii) are straightforward,
while the implication (ii) =⇒ (i) is based on the structure theorem for distributions.
Indeed, assumption Pu = 0 on X\A implies that the support of distribution Pu
on X is contained in the origin A = {0}, so we get that Pu is a finite sum of the
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derivatives of Dirac’s delta function. By multiplying a cut-off function a ∈ C∞
0 (X),

we have the expression

(2.5) aPu = Sδ on R
n,

for some partial differential operator S with constant coefficients. This conclusion is
also true in the setting of Remark 2.1. All our task now is to show that S = 0, so
that we can conclude that Pu = 0 on X .
We consider the convolution of both hand sides of (2.5) with test functions, and

obtain the equality

(2.6) aPu ∗ φǫ = Sφǫ,

where φǫ is defined as in (2.2) for φ ∈ C∞
0 (Rn). Implication (ii) =⇒ (i) readily follows

from the following lemma:

Lemma 2.2. Let 0 < r ≤ ∞. Let S be a non-zero partial differential operator of

order κ with constant coefficients, and assume that its top κth order part is non-zero.

Let φ ∈ C∞
0 (Rn) be a non-zero function. Then we have

(2.7) Cǫ−κ−n(1−1/r) ≤ ||Sφǫ||Lr(Rn) +O(ǫ−κ−n(1−1/r)+1)

for 0 < ǫ ≤ 1, where C > 0 is a constant independent of ǫ.

Let us first show that Lemma 2.2 implies that S = 0. In fact, on account of the
expression (2.6), condition (ii) of Theorem 2.1 says that

ǫ
n(1−1/r)+d
j ||QSφǫj ||Lr(Rn) → 0,

while we obtain from Lemma 2.2 that

0 < C ≤ ǫ
n(1−1/r)+d+κ
j ||QSφǫj ||Lr(Rn) +O(ǫj)

as ǫj → 0+, where d and κ are the orders of Q and S, respectively. It is a contradiction
if κ ≥ 0, hence we must have S = 0. �

Proof of Lemma 2.2. Since the order of the partial differential operator S is κ, we
can write it as S =

∑
|α|≤κ cα∂

α. Denoting its homogeneous top order part by Sκ =∑
|α|=κ cα∂

α, we have

Sφǫ(x) = ǫ−n
∑

|α|≤κ

ǫ−|α|cα(∂
αφ)(x/ǫ)

= ǫ−κ−n(Sκφ)(x/ǫ) + Fǫ(x/ǫ),

where
Fǫ(x) =

∑

|α|≤κ−1

ǫκ−|α|cα(∂
αφ)(x) and ||Fǫ(x)||Lr = O(ǫ).

Taking the Lr quantities of both sides, we have

ǫ−κ−n(1−1/r)||Sκφ||Lr ≤ C||Sφǫ||Lr(Rn) +O(ǫ−κ−n(1−1/r)+1),

Then the proof is complete if we show that ||Sκφ||Lr 6= 0. Indeed, if Sκφ ≡ 0, then

taking its Fourier transform, we would get Sκ(ξ)φ̂(ξ) = 0 for all ξ ∈ Rn. Since Sκ(ξ)
is a homogeneous polynomial of degree κ and Sκ 6≡ 0, its zero set is nowhere dense

in R
n. Since φ̂ is smooth, we get that φ̂(ξ) = 0 for all ξ, which contradicts the

assumption that φ 6≡ 0. �
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3. Lp-extension problem

In this section, we apply Theorem 2.1 for the distribution u ∈ Lp(X). Since it is
of order 0, we may assume that P in (2.1) is of the weaker form

(3.1) P =
∑

|α|≤m

aα(x)∂
α, aα ∈ C |α|(X).

as is mentioned in Remark 2.1. Using the criterion of Theorem 2.1, we can now derive
good estimates for the behaviour of the quantity ||Q(aPu∗φǫ)||Lr(Rn) as ǫ→ 0+, which
appeared in Theorem 2.1.

Proposition 3.1. Let X ⊂ Rn be an open set, let A = {0} be the origin, and let P
be a partial differential operator on X of order m. Let a ∈ C∞

0 (X), φ ∈ C∞
0 (Rn),

and let Q be a partial differential operator of order d with constant coefficients. Let

1 ≤ p ≤ r ≤ ∞ and suppose u ∈ Lp(X). Then we have

(3.2) ||Q(aPu ∗ φǫ)||Lr(Rn) = O(ǫ−d−m−n(1/p−1/r)) as ǫ→ 0 + .

Furthermore, if p 6= ∞ and Pu = 0 on X\A, then we have

(3.3) ||Q(aPu ∗ φǫ)||Lr(Rn) = o(ǫ−d−m−n(1/p−1/r)) as ǫ → 0 + .

The proof of Proposition 3.1 will be given later in this section, but now let us
state some results obtained from it as corollaries of Theorem 2.1. First we note
that Bochner’s result (Theorem 1.1 in Introduction) or even its generalised version
stated below is a straightforward consequence of Theorem 2.1 and Proposition 3.1
with r = p.

Corollary 3.2. Let 1 ≤ p ≤ ∞, let X ⊂ Rn be an open set, let A = {0} be the origin,

and let P be a partial differential operator on X as in (3.1) of order m < n(1− 1/p).
Suppose that u ∈ Lp(X) satisfies Pu = 0 on X\A. Then Pu = 0 on X. Moreover,

if 1 ≤ p <∞, the conclusion holds also for m ≤ n(1 − 1/p).

While Theorem 2.1 gives the necessary and sufficient condition also in the Lp–
setting, the combination of Theorem 2.1 and Proposition 3.1 can also give sufficient
conditions for the Lp-extension property for the critical case m = n(1 − 1/p) with
p = ∞, or even for the supercritical case m > n(1 − 1/p) for general 1 ≤ p ≤ ∞.
Indeed we have the following result:

Corollary 3.3. Let 1 ≤ p ≤ ∞, let X ⊂ Rn be an open set, let A = {0} be the origin,

and let P be a partial differential operator of order m < n(1 − 1/p) + 1 with smooth

coefficients as in (2.1). Suppose that u ∈ Lp(X) satisfies Pu = 0 on X\A. Let

1 ≤ q ≤ ∞, let Q be a non-zero partial differential operator of order d > m−n(1−1/q)
with constant coefficients, and also suppose that Qu ∈ Lq. Then Pu = 0 on X.

Moreover, if 1 ≤ p < ∞, the conclusion holds also for m ≤ n(1 − 1/p) + 1. If

1 ≤ q <∞, the conclusion holds also for d ≥ m− n(1− 1/q).

Remark 3.1. As a special case of the assumption Qu ∈ Lq in Corollary 3.3, we may
assume that u belongs to the Sobolev space W q,d. More strongly, we may just assume
Qu = 0 with a non-zero partial differential operator Q. In this case the condition
d > m− n(1− 1/q) is automatically satisfied if we take large d as the order of Q.
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Proof of Corollary 3.3. Let us show that property (2.4) in Theorem 2.1 holds for Q
which appeared in the assumption. Indeed, we have QaPu = ãRu + aPv, where
ã ∈ C∞

0 (X) is identically one on supp a, R = [Q, aP ] is a partial differential operator
of orderm+d−1, and v = Qu ∈ Lq. Hence we have Q(aPu∗φǫ) = ãRu∗φǫ+aPv∗φǫ.
Let r be such that p ≤ r and q ≤ r. Then from Proposition 3.1 with d = 0, we obtain

||ãRu ∗ φǫ||Lr(Rn) = O(ǫ−m−d+1−n(1/p−1/r)) as ǫ→ 0+,

or small o(ǫ−m−d+1−n(1/p−1/r))) if 1 ≤ p <∞, and

||aPv ∗ φǫ||Lr(Rn) = O(ǫ−m−n(1/q−1/r)) as ǫ→ 0+,

or small o(ǫ−m−n(1/q−1/r)) if 1 ≤ q <∞. Then we have

ǫn(1−1/r)+d||Q(aPu ∗ φǫ)||Lr(Rn) = O(ǫ−m+1+n(1−1/p)) +O(ǫd−m+n(1−1/q))

or small o(·)’s, respectively, and the the conclusion is straightforward. �

Now we prove Proposition 3.1. We note

(aPu ∗ φǫ)(x) =

∫ ∑

|α|≤m

(aaα)(x− y)(∂αu)(x− y)φǫ(y)dy

=
∑

|α|≤m

∫
[(−∂)αu(x− ·)] (y)(aaα)(x− y)φǫ(y)dy

=

∫
u(x− y)

∑

|α|≤m

∂αy [(aaα)(x− y)φǫ(y)] dy,

where we used the identity (∂αu)(x− y) = ((−∂)α(u(x− ·)))(y). Hence we obtain

(3.4) (aPu ∗ φǫ)(x) = (u ∗Rxφǫ)(x),

where

(3.5) (Rxφǫ)(y) =
∑

|α|≤m

∂αy [(aaα)(x− y)φǫ(y)] .

These formulae can be easily extended in the sense of distributions for u ∈ Lp(X) by
extending by zero outside of X ⊂ Rn. Estimate (3.2) is a consequence of the following
lemma if we note that Q(aPu ∗ φǫ) = aPu ∗ Qφǫ and Qφǫ is a linear combination of
the functions of the form ǫ−|α|(∂αφ)ǫ (|α| ≤ d):

Lemma 3.4. Let X ⊂ Rn be an open set, and let P be a partial differential operator

of order m. Let a ∈ C∞
0 (X) and φ ∈ C∞

0 (Rn). Let 1 ≤ p ≤ r ≤ ∞ and suppose

u ∈ Lp(X). Then we have the estimate

(3.6) ||aPu ∗ φǫ||Lr(Rn) ≤ Cǫ−m−n(1/p−1/r)||u||Lp(X)

for 0 < ǫ ≤ 1, where C > 0 is a constant independent of u and ǫ.

Proof of Lemma 3.4. On account of (3.5), let us define

v(x, z) =
∑

|α|≤m

ǫm−|α|∂αz [(aaα)(x− ǫz)φ(z)] ,
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so v also depends on ǫ > 0. Taking z = ǫ−1y, so that ∂αz = ǫ|α|∂αy , we get

ǫ−mv(x, y/ǫ) =
∑

|α|≤m

∂αy [(aaα)(x− y)φ(y/ǫ)] = ǫn(Rxφǫ)(y).

Denoting

(3.7) vx,ǫ(y) = ǫ−nv(x, y/ǫ) = ǫm(Rxφǫ)(y),

we get by (3.4) that

(aPu ∗ φǫ)(x) = ǫ−mu ∗ vx,ǫ(x).

Taking the Lr–norm of this equality implies that

||aPu ∗ φǫ||Lr(Rn) ≤ ǫ−m||u||Lp(X)

∥∥∥∥ sup
x∈Rn

|vx,ǫ|

∥∥∥∥
Lq

by Young’s inequality, where 1 + 1/r = 1/p + 1/q. Furthermore, there is a constant
C > 0 such that the estimate

|v(x, z)| ≤ C
∑

|α|≤m

|(∂αφ)(z)|

holds for all x ∈ Rn, z ∈ Rn, and 0 < ǫ ≤ 1, because aaα ∈ C
|α|
0 (X). From this

inequality and (3.7), we obtain easily
∥∥∥∥ sup
x∈Rn

|vx,ǫ|

∥∥∥∥
Lq

≤ Cǫ−n(1−1/q)
∑

|α|≤m

||∂αφ||Lq

for 0 < ǫ ≤ 1. By all of these arguments together with estimate (3.7), the proof is
complete. �

If we assume Pu = 0 on X\A, we have the expression (2.5) by the structure
theorem for distributions, hence the equality Q(aPu ∗ φǫ) = QSφǫ. Then by a direct
computation of ||QSφǫ||Lr , we have readily the property

||Q(aPu ∗ φǫ)||Lr(Rn) = O(ǫ−d−κ−n(1−1/r)),

where κ denotes the order of S. We obtain estimate (3.3) if we combine this property
with the following result by Harvey and Polking [3, Theorem 6.1], for which we can
also give a short alternative proof based on Lemmas 2.2 and 3.4.

Lemma 3.5. Let 1 ≤ p ≤ ∞ and let X ⊂ Rn be an open set. Let P be a partial

differential operator on X of order m and let S be a partial differential operator of

order κ with constant coefficients. Suppose that u ∈ Lp(X) satisfies

(3.8) Pu = Sδ on X.

Then we have κ ≤ m − n(1 − 1/p). Moreover, if 1 ≤ p < ∞, then we have κ <
m− n(1− 1/p).

Proof of Lemma 3.5. We start from the expression (2.6) since assumption (3.8) im-
plies it. We may assume the top κth order of S is non-zero. Then the combination of
Lemmas 2.2 and 3.4 with r = p yields the estimate

(3.9) 1 ≤ Cǫκ−(m−n(1−1/p))||u||Lp +O(ǫ),
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for 0 < ǫ ≤ 1, where C > 0 is a constant independent of u and ǫ. Hence κ > m−n(1−
1/p) implies the contradiction. Furthermore, let us fix χ ∈ C∞

0 (X ∩ B(0, 1)) such
that χ ≡ 1 in some neighbourhood of the origin. Then function uR(x) = χ(x/R)u(x)
satisfies uR ∈ Lp(X) and PuR = Sδ on X , for sufficiently small R > 0. Since
||uR||Lp(X) ≤ ||u||Lp(|x|≤R) → 0 as R → 0 in the case 1 ≤ p <∞, plugging uR instead
of u in estimate (3.9) with κ = m− n(1− 1/p) yields a contradiction again. �

4. L∞-extension problem

In the last section, we have established Proposition 3.1 by using Lemma 3.5. In
the statements of the Lp–extension results which follow it, we have sometimes only
weaker results for the case p = ∞ than those for the case 1 ≤ p < ∞. For example,
Corollary 3.2 says that m = n(1− 1/p) is the critical index for the Lp-extension, and
the Lp–extension property actually holds if p 6= ∞, while the critical case m = n for
p = ∞ is excluded.
But this exceptional case is important since it contains several interesting situations

like the analytic extension problem, harmonic functions in R2, or the case of bounded
eigenfunctions or bounded fundamental solutions for partial differential operators. It
is also related to the Riemann’s extension theorem, which ensures that if a function
is analytic on C\{0} and is bounded near 0, then it can be extended to an analytic
function on C. This problem will be discussed again in Section 5.
Now, we can observe that the L∞–extension fails in general in the critical case

m = n. Indeed, let Hj denote the Heaviside function Hj(x) = 0 for xj < 0 and
Hj(x) = 1 for xj ≥ 0. Then we easily see that ∂x1

H1 = δ0 and ∂x1
∂x2

(H1H2) =
δx1=0δx2=0 = δ(0,0) are examples of the failure of the L∞–extension in R1 and R2,
respectively, for operators of orderm = n, with similar examples in higher dimensions.
On the other hand, it can be shown that the L∞–extension holds for the Laplacian

P = ∆ in R
2. Indeed, let X be a ball in R

2 of radius one, and suppose that ∆u = 0
in X\A. Then, using spherical harmonics, u can be written in the form

u(x) = h(x) + c log |x|,

for some constant c and some function h satisfying ∆h = 0 in X . It follows that
∆u = 2πcδ on X . On the other hand, for the L∞–extension problem we assume that
u ∈ L∞(X), thus implying that c = 0 and, therefore, ∆u = 0 in X .
The L∞–extension problem is closely related to the analysis of bounded eigenfunc-

tions of operators. For example, let u ∈ L∞(X) be a bounded function which is an
eigenfunction for the operator P on a punctured domain, with an eigenvalue λ ∈ C,
i.e. let u satisfy

Pu = λu on X\A.

Then u is an eigenfunction of operator P on the whole domain X if and only if the
L∞–extension holds for the operator P (x,D)− λ.
Thus, we will be interested in characterising operators P of order m = n, for which

the L∞–extension holds. We will show that in this case the L∞–extension holds
if and only if the operator P has no bounded fundamental solutions. In general,
operator P may have fundamental solutions that are bounded or unbounded. If
P has constant coefficients, it is shown in Hörmander [4, Theorem 3.1.1] that P
always has a fundamental solution in the space Bloc

∞, eP
(Rn), which roughly means that
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its Fourier transform is bounded with the weight P̃ (here we use the notation of
[4]). For example, if P (D) is an elliptic partial differential operator with constant
coefficients of order m = n, then its fundamental solution is given by the formula
going back to G. Herglotz (see e.g. Shimakura [8]):

E(x) =
i−2

(2πi)n

∫

Sn−1

log(−iω · x)

P (ω)
dSw.

This function can be written as a sum of a bounded function and a function of at most
logarithmic growth (see also (1.2)). In fact, it can be shown that this fundamental
solution is bounded for odd n and has at most logarithmic growth at the origin for
even n. Thus, for even n, we need the logarithmic term to vanish for the corresponding
P to have the L∞–extension property for all u. This extends the argument given
above for the Laplacian on R2.
Now we give a different type of condition for L∞-extension to hold in the critical

case m = n from those given in Section 3, but by using Lemma 3.5 again.

Corollary 4.1. Let X ⊂ Rn be an open bounded set, let A = {0} be the origin, and let

P be a partial differential operator of order m = n. Suppose that u ∈ L∞(X) satisfies
Pu = 0 on X\A. Then either u is a non-zero constant multiple of a fundamental

solution of P or Pu = 0 on X. In other words, L∞–extension fails if and only if P
has a bounded fundamental solution in X

Proof of Corollary 4.1. Assumption that Pu = 0 on X\A implies expression (3.8) by
the structure theorems for distributions. Then by Lemma 3.5 with p = ∞ andm = n,
we have that Pu = cδ with a constant c. Then the conclusion is straightforward. �

For example, fundamental solutions of the Laplace operator ∆ in R2 all have log-
arithmic growth at the origin, hence the L∞–extension holds by Corollary 4.1. From
this observation and Corollary 3.2 with p = ∞, we obtain the following well-known
(at least for n = 2 when A is a point) result:

Corollary 4.2. Let X ⊂ Rn, n ≥ 2, be an open bounded set and let A be a smooth

submanifold of X of codimension 2. Every bounded harmonic function on X\A is

harmonic on X if it is bounded in a neighbourhood of A.

The case of a smooth manifold A of dimension greater than zero will follow from
the arguments of the following section.
Finally, let us give an additional clarification of conditions (2.3) and (2.4) in the

critical case of L∞(X) and m = n:

Remark 4.1. Let us take p = r = ∞ in Theorem 2.1. Condition (2.3) requires that
for some φ, ǫj , and Q we have

(4.1) ǫn+d
j Q(aPu ∗ φǫj) → 0 as ǫj → 0+,

with the convergence in the L∞–norm. We claim that it actually always holds in the
weak∗ topology of L∞(X) (for a subsequence which we may in turn choose to be the
sequence {ǫj} in (2.3)). Indeed, since by Proposition 3.1 the norm ||Q(aPu ∗φǫj)||L∞

is of order ǫ−d−m for ǫ→ 0+, it follows that the family in (4.1) is uniformly bounded
in L∞(X), provided that m ≤ n. Since the balls are compact in the weak∗ topol-
ogy of L∞, it follows that there is a subsequence of ǫj , for which the corresponding
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subsequence of the family in (4.1) converges in the weak∗ topology. Since the distri-
butional limit is zero, it follows that the subsequence also converges to zero in the
weak∗ topology of L∞(X).

5. Concluding remarks

The results in this paper can be extended to the case when the removable set A
under study is not a point but a smooth submanifold of X of codimension k. Let us
take local coordinates x = (x1, . . . , xn) on X so that

A = {(x′, x′′) : x′′ = 0},

where we denote x′ = (x1, . . . , xn−k), x
′′ = (xn−k+1, . . . , xn). Let us also use the

notation
D′ = (D1, . . . , Dn−k), D′′ = (Dn−k+1, . . . , Dn),

where Dj = ∂/∂xj (j = 1, . . . , n). Then, by the structure theorem, distribution f on
Rn with support in A is expressed as

f = S(x′, D′′)δ(x′′)

for a differential operator S(x′, D′′) with distribution coefficients in x′ and indepen-
dent of D′, where δ(x′′) denotes the delta function in x′′.
On account of these observation, for every a(x) ∈ C∞

0 (X) and ψ(x′) ∈ C∞
0 (Rn−k),

condition
Pu = 0 on X\A

implies
〈aPu, ψ(x′)⊗ ·〉 = S(D′′)δ(x′′) on R

k,

which is a starting expression instead of (2.5). Then all the results in Section 2 and
Section 3 for the case A = {0} can be easily generalised to the case A = {(x′, x′′) :
x′′ = 0} by replacing the dimension n by the codimension k of the set A. For example,
Theorem 2.1 is true in such a general case if condition (2.3) (similarly (2.4)) is replaced
by

ǫ
k(1−1/r)+d
j ||Q(aPu ∗ φǫj)(0, x

′′))||Lr(Rk) → 0 as ǫj → 0 + .

Proposition 3.1 is also true if we replace ||Q(aPu ∗ φǫ)||Lp(Rn) in (3.2) and (3.3) by
||Q(aPu ∗ φǫ)(0, x

′′))||Lp(Rk). Hence Corollary 3.2 holds when we replace n(1 − 1/p)
by k(1− 1/p).
It is also easy to see that all the results in this paper, including the discussion

above, are still true in the case when P is a matrix of partial differential operators of
order m, and u is a vector of functions in Lp(X). In this way, we can also discuss the
case when P = P (z,Dz) is a partial differential operators of order m on the complex
space Cn. In fact, equation Pu = 0 on Cn can be written as a system of equations on
R2n if we regard the complex variable z as a pair of real variables (x, y) and consider
the real and imaginary part of the equation independently.
Furthermore, generalisation of the results to the case of higher dimensional A as

above implies that the critical case of the L∞-extension problem corresponds to the
analytic extension over smooth real surfaces A in Cn of real codimension one. Indeed,
the standard Riemann’s extension problem is the subcritical case of the L∞–extension
problem, while the extension problem over curves in C is the critical case since the
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codimension of a curve equals to the order of the Cauchy–Riemann operator, and it
can be easily seen that the analytic extension fails in this case (in our terminology
the L∞–extension property fails for operator ∂ in the critical case). For example,
take an analytic function in the unit disc in C, cut the disc by a straight line and
then shift the graph of the function in one of the half-discs along this line.
In particular, Corollary 4.1 corresponds to the analogue of the Riemann’s extension

theorem for analytic functions over real curves in C. This corresponds to the existence
of bounded fundamental solutions for the Cauchy–Riemann operator restricted to
smooth real curves in the complex plane.
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