Advanced search
1 file | 537.10 KB Add to list

Convolution, Fourier analysis, and distributions generated by Riesz bases

(2018) MONATSHEFTE FUR MATHEMATIK. 187(1). p.147-170
Author
Organization
Abstract
In this note we discuss notions of convolutions generated by biorthogonal systems of elements of a Hilbert space. We develop the associated biorthogonal Fourier analysis and the theory of distributions, discuss properties of convolutions and give a number of examples.
Keywords
Convolution, Basis, Biorthogonal system, Fourier analysis, Hilbert space, TRIEBEL-LIZORKIN SPACES, HILBERT-SPACES, WAVE-EQUATION, FRAMES, OPERATORS

Downloads

  • Ruzhansky-Tokmagambetov2018 Article ConvolutionFourierAnalysisAndD.pdf
    • full text
    • |
    • open access
    • |
    • PDF
    • |
    • 537.10 KB

Citation

Please use this url to cite or link to this publication:

MLA
Ruzhansky, Michael, and Niyaz Tokmagambetov. “Convolution, Fourier Analysis, and Distributions Generated by Riesz Bases.” MONATSHEFTE FUR MATHEMATIK 187.1 (2018): 147–170. Print.
APA
Ruzhansky, M., & Tokmagambetov, N. (2018). Convolution, Fourier analysis, and distributions generated by Riesz bases. MONATSHEFTE FUR MATHEMATIK, 187(1), 147–170.
Chicago author-date
Ruzhansky, Michael, and Niyaz Tokmagambetov. 2018. “Convolution, Fourier Analysis, and Distributions Generated by Riesz Bases.” Monatshefte Fur Mathematik 187 (1): 147–170.
Chicago author-date (all authors)
Ruzhansky, Michael, and Niyaz Tokmagambetov. 2018. “Convolution, Fourier Analysis, and Distributions Generated by Riesz Bases.” Monatshefte Fur Mathematik 187 (1): 147–170.
Vancouver
1.
Ruzhansky M, Tokmagambetov N. Convolution, Fourier analysis, and distributions generated by Riesz bases. MONATSHEFTE FUR MATHEMATIK. 2018;187(1):147–70.
IEEE
[1]
M. Ruzhansky and N. Tokmagambetov, “Convolution, Fourier analysis, and distributions generated by Riesz bases,” MONATSHEFTE FUR MATHEMATIK, vol. 187, no. 1, pp. 147–170, 2018.
@article{8585462,
  abstract     = {{In this note we discuss notions of convolutions generated by biorthogonal systems of elements of a Hilbert space. We develop the associated biorthogonal Fourier analysis and the theory of distributions, discuss properties of convolutions and give a number of examples.}},
  author       = {{Ruzhansky, Michael and Tokmagambetov, Niyaz}},
  issn         = {{0026-9255}},
  journal      = {{MONATSHEFTE FUR MATHEMATIK}},
  keywords     = {{Convolution,Basis,Biorthogonal system,Fourier analysis,Hilbert space,TRIEBEL-LIZORKIN SPACES,HILBERT-SPACES,WAVE-EQUATION,FRAMES,OPERATORS}},
  language     = {{eng}},
  number       = {{1}},
  pages        = {{147--170}},
  title        = {{Convolution, Fourier analysis, and distributions generated by Riesz bases}},
  url          = {{http://dx.doi.org/10.1007/s00605-018-1158-y}},
  volume       = {{187}},
  year         = {{2018}},
}

Altmetric
View in Altmetric
Web of Science
Times cited: