Advanced search

Optical simulation study for high resolution monolithic detector design for TB-PET

Mariele Stockhoff (UGent) , Roel Van Holen (UGent) and Stefaan Vandenberghe (UGent)
Author
Organization
Abstract
Background The main limitations in positron emission tomography (PET) are the limited sensitivity and relatively poor spatial resolution. The administered radioactive dose and scan time could be reduced by increasing system sensitivity with a total-body (TB) PET design. The second limitation, spatial resolution, mainly originates from the specific design of the detectors that are implemented. In state-of-the-art scanners, the detectors consist of pixelated crystal arrays, where each individual crystal is isolated from its neighbors with reflector material. To obtain higher spatial resolution the crystals can be made narrower which inevitably leads to more inter-crystal scatter and larger dead space between the crystals. A monolithic detector design shows superior characteristics in (i) light collection efficiency (no gaps), (ii) timing, as it significantly reduces the number of reflections and therefore the path length of each scintillation photon and (iii) spatial resolution (including better depth-of-interaction (DOI)). The aim of this work is to develop a precise simulation model based on measured crystal data and use this powerful tool to find the limits in spatial resolution for a monolithic detector for the use in TB-PET. Materials and methods A detector (Fig. 1) based on a monolithic 50x50x16 mm3 lutetium-(yttrium) oxyorthosilicate (L(Y)SO) scintillation crystal coupled to an 8x8 array of 6x6mm2 silicon photomultipliers (SiPMs) is simulated with GATE. A recently implemented reflection model for scintillation light allows simulations based on measured surface data (1). The modeled surfaces include black painted rough finishing on the crystal sides (16x50mm2) and a specular reflector attached to a polished crystal top (50x50mm2). Maximum Likelihood estimation (MLE) is used for positioning the events. Therefore, calibration data is obtained by generating 3.000 photo-electric events at given calibration positions (Fig. 1). Compton scatter is not (yet) included. In a next step, the calibration data is organized in three layers based on the exact depth coordinate in the crystal (i.e. DOI assumed to be known). For evaluating the resolution, the full width at half maximum (FWHM) is estimated at the irradiated positions of Fig. 2 as a mean of all profiles in vertical and horizontal direction. Next, uniformity is evaluated by simulating 200k events from a flood source, placed in the calibrated area. Results For the irradiation pattern in Fig. 2 the resolution in terms of FWHM when applying MLE is: 0.86±0.13mm (Fig. 3a). Nevertheless, there are major artifacts also at non-irradiated positions. By positioning the events based on three DOI-based layers it can be seen that the events closest to the photodetector introduce the largest artifacts (Fig. 3b-d). The FWHM improves for Layer 1 and 2, to 0.69±0.04mm and 0.59±0.02mm, respectively. Layer 3 introduces major artifacts to the flood map, as events are positioned at completely different locations as the initial irradiation. A FWHM estimation is thus not useful. The uniformity (Fig. 4) degrades with proximity to the photodetector. The map in Fig. 4c shows that the positioning accuracy depends not only on DOI but also the position in the plane parallel to the photodetector array. Conclusions A simulation model for a monolithic PET detector with good characteristics for TB-PET systems was developed with GATE. A first estimate of the spatial resolution and uniformity was given, pointing out the importance of depth-dependent effects. Future studies will include several steps towards more realistic simulations e.g. surface measurements of our specific crystals for the optical surface model and inclusion of the Compton effect.

Citation

Please use this url to cite or link to this publication:

Chicago
Stockhoff, Mariele, Roel Van Holen, and Stefaan Vandenberghe. 2018. “Optical Simulation Study for High Resolution Monolithic Detector Design for TB-PET.” In Abstracts of the Total Body PET Conference 2018. Vol. 5. Springer.
APA
Stockhoff, M., Van Holen, R., & Vandenberghe, S. (2018). Optical simulation study for high resolution monolithic detector design for TB-PET. Abstracts of the Total Body PET conference 2018 (Vol. 5). Presented at the 1st Total-Body PET Conference, Springer.
Vancouver
1.
Stockhoff M, Van Holen R, Vandenberghe S. Optical simulation study for high resolution monolithic detector design for TB-PET. Abstracts of the Total Body PET conference 2018. Springer; 2018.
MLA
Stockhoff, Mariele, Roel Van Holen, and Stefaan Vandenberghe. “Optical Simulation Study for High Resolution Monolithic Detector Design for TB-PET.” Abstracts of the Total Body PET Conference 2018. Vol. 5. Springer, 2018. Print.
@inproceedings{8583762,
  abstract     = {Background

The main limitations in positron emission tomography (PET) are the limited sensitivity and relatively poor spatial resolution. The administered radioactive dose and scan time could be reduced by increasing system sensitivity with a total-body (TB) PET design. The second limitation, spatial resolution, mainly originates from the specific design of the detectors that are implemented. In state-of-the-art scanners, the detectors consist of pixelated crystal arrays, where each individual crystal is isolated from its neighbors with reflector material. To obtain higher spatial resolution the crystals can be made narrower which inevitably leads to more inter-crystal scatter and larger dead space between the crystals.

A monolithic detector design shows superior characteristics in (i) light collection efficiency (no gaps), (ii) timing, as it significantly reduces the number of reflections and therefore the path length of each scintillation photon and (iii) spatial resolution (including better depth-of-interaction (DOI)). The aim of this work is to develop a precise simulation model based on measured crystal data and use this powerful tool to find the limits in spatial resolution for a monolithic detector for the use in TB-PET.

Materials and methods

A detector (Fig. 1) based on a monolithic 50x50x16 mm3 lutetium-(yttrium) oxyorthosilicate (L(Y)SO) scintillation crystal coupled to an 8x8 array of 6x6mm2 silicon photomultipliers (SiPMs) is simulated with GATE. A recently implemented reflection model for scintillation light allows simulations based on measured surface data (1). The modeled surfaces include black painted rough finishing on the crystal sides (16x50mm2) and a specular reflector attached to a polished crystal top (50x50mm2).

Maximum Likelihood estimation (MLE) is used for positioning the events. Therefore, calibration data is obtained by generating 3.000 photo-electric events at given calibration positions (Fig. 1). Compton scatter is not (yet) included. In a next step, the calibration data is organized in three layers based on the exact depth coordinate in the crystal (i.e. DOI assumed to be known). For evaluating the resolution, the full width at half maximum (FWHM) is estimated at the irradiated positions of Fig. 2 as a mean of all profiles in vertical and horizontal direction. Next, uniformity is evaluated by simulating 200k events from a flood source, placed in the calibrated area.

Results

For the irradiation pattern in Fig. 2 the resolution in terms of FWHM when applying MLE is: 0.86{\textpm}0.13mm (Fig. 3a). Nevertheless, there are major artifacts also at non-irradiated positions. By positioning the events based on three DOI-based layers it can be seen that the events closest to the photodetector introduce the largest artifacts (Fig. 3b-d). The FWHM improves for Layer 1 and 2, to 0.69{\textpm}0.04mm and 0.59{\textpm}0.02mm, respectively. Layer 3 introduces major artifacts to the flood map, as events are positioned at completely different locations as the initial irradiation. A FWHM estimation is thus not useful.

The uniformity (Fig. 4) degrades with proximity to the photodetector. The map in Fig. 4c shows that the positioning accuracy depends not only on DOI but also the position in the plane parallel to the photodetector array.

Conclusions

A simulation model for a monolithic PET detector with good characteristics for TB-PET systems was developed with GATE. A first estimate of the spatial resolution and uniformity was given, pointing out the importance of depth-dependent effects. Future studies will include several steps towards more realistic simulations e.g. surface measurements of our specific crystals for the optical surface model and inclusion of the Compton effect.
},
  author       = {Stockhoff, Mariele and Van Holen, Roel and Vandenberghe, Stefaan},
  booktitle    = {Abstracts of the Total Body PET conference 2018},
  language     = {eng},
  location     = {Ghent, Belgium},
  number       = {(Suppl 1): 19},
  publisher    = {Springer},
  title        = {Optical simulation study for high resolution monolithic detector design for TB-PET},
  url          = {http://dx.doi.org/10.1186/s40658-018-0218-7},
  volume       = {5},
  year         = {2018},
}

Altmetric
View in Altmetric