Advanced search
1 file | 3.55 MB

Connectome sorting by Consensus Clustering increases separability in group neuroimaging studies

Author
Organization
Keywords
brain connectivity, fmri, machine learning, clustering

Downloads

  • netn a 00074.pdf
    • full text
    • |
    • open access
    • |
    • PDF
    • |
    • 3.55 MB

Citation

Please use this url to cite or link to this publication:

Chicago
Rasero, Javier, Ibai Diez, Jesus M Cortes, Daniele Marinazzo, and Sebastiano Stramaglia. 2018. “Connectome Sorting by Consensus Clustering Increases Separability in Group Neuroimaging Studies.” Network Neuroscience: 1–36.
APA
Rasero, J., Diez, I., Cortes, J. M., Marinazzo, D., & Stramaglia, S. (2018). Connectome sorting by Consensus Clustering increases separability in group neuroimaging studies. NETWORK NEUROSCIENCE, 1–36.
Vancouver
1.
Rasero J, Diez I, Cortes JM, Marinazzo D, Stramaglia S. Connectome sorting by Consensus Clustering increases separability in group neuroimaging studies. NETWORK NEUROSCIENCE. MIT Press - Journals; 2018;1–36.
MLA
Rasero, Javier, Ibai Diez, Jesus M Cortes, et al. “Connectome Sorting by Consensus Clustering Increases Separability in Group Neuroimaging Studies.” NETWORK NEUROSCIENCE (2018): 1–36. Print.
@article{8581551,
  author       = {Rasero, Javier and Diez, Ibai and Cortes, Jesus M and Marinazzo, Daniele and Stramaglia, Sebastiano},
  issn         = {2472-1751},
  journal      = {NETWORK NEUROSCIENCE},
  language     = {eng},
  pages        = {1--36},
  publisher    = {MIT Press - Journals},
  title        = {Connectome sorting by Consensus Clustering increases separability in group neuroimaging studies},
  url          = {http://dx.doi.org/10.1162/netn\_a\_00074},
  year         = {2018},
}

Altmetric
View in Altmetric