
 
 

 
 
 
 
 

 
Bulletin of the American Meteorological Society 

 

EARLY ONLINE RELEASE 
 

This is a preliminary PDF of the author-produced 
manuscript that has been peer-reviewed and 
accepted for publication. Since it is being posted 
so soon after acceptance, it has not yet been 
copyedited, formatted, or processed by AMS 
Publications. This preliminary version of the 
manuscript may be downloaded, distributed, and 
cited, but please be aware that there will be visual 
differences and possibly some content differences 
between this version and the final published version. 

 
The DOI for this manuscript is doi: 10.1175/BAMS-D-17-0138.1 
 
The final published version of this manuscript will replace the 
preliminary version at the above DOI once it is available. 
 
If you would like to cite this EOR in a separate work, please use the following full 
citation: 
 
Beck, H., E. Wood, M. Pan, C. Fisher, D. Miralles, A. van Dijk, T. McVicar, and R. 
Adler, 2018: MSWEP V2 global 3-hourly 0.1° precipitation: methodology and 
quantitative assessment. Bull. Amer. Meteor. Soc. doi:10.1175/BAMS-D-17-
0138.1, in press. 

 
AMERICAN  
METEOROLOGICAL  

SOCIETY 

 
© 2018 American Meteorological Society 



MSWEP V2 global 3-hourly 0.1◦ precipitation:1

methodology and quantitative assessment2

Hylke E. Beck∗, Eric F. Wood, Ming Pan, and Colby K. Fisher3

Princeton University, Department of Civil and Environmental Engineering, Princeton, NJ, USA4

Diego G. Miralles5

Ghent University, Laboratory of Hydrology and Water Management, Ghent, Belgium6

Albert I.J.M. van Dijk7

Australian National University, Fenner School of Environment & Society, Canberra, ACT,

Australia

8

9

Tim R. McVicar10

CSIRO Land and Water, Canberra, ACT, Australia11

Australian Research Council Centre of Excellence for Climate System Science, Sydney, Australia12

Robert F. Adler13

University of Maryland, Earth System Science Interdisciplinary Center, College Park, MD, USA14

∗Corresponding author address: Hylke Beck, Princeton University, Department of Civil and Envi-

ronmental Engineering, 59 Olden Street, Princeton, NJ 08544, USA

15

16

E-mail: hylke.beck@gmail.com17

Generated using v4.3.2 of the AMS LATEX template 1

LaTeX File (.tex, .sty, .cls, .bst, .bib) Click here to access/download;LaTeX File (.tex, .sty, .cls,
.bst, .bib);article_35_submitted_rev2.tex



ABSTRACT
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We present Multi-Source Weighted-Ensemble Precipitation (MSWEP) Ver-

sion 2 (V2), a gridded precipitation (P) dataset spanning 1979–2017.

MSWEP V2 is unique in several aspects: (i) full global coverage (all land

and oceans); (ii) high spatial (0.1◦) and temporal (3 hourly) resolution;

(iii) optimal merging of P estimates based on gauges (WorldClim, GHCN-

D, GSOD, GPCC, and others), satellites (CMORPH, GridSat, GSMaP, and

TMPA 3B42RT), and reanalyses (ERA-Interim and JRA-55); (iv) distribu-

tional bias corrections, mainly to improve the P frequency; (v) correction of

systematic terrestrial P biases using river discharge (Q) observations from

13 762 stations across the globe; (vi) incorporation of daily observations

from 76 747 gauges worldwide; and (vii) correction for regional differences

in gauge reporting times. MSWEP V2 compares substantially better with

Stage-IV gauge-radar P data than other state-of-the-art P datasets for the US,

demonstrating the effectiveness of the MSWEP V2 methodology. Global

comparisons suggest that MSWEP V2 exhibits more realistic spatial patterns

in mean, magnitude, and frequency. Long-term mean P estimates for the

global, land, and ocean domains based on MSWEP V2 are 955, 781, and

1025 mm y−1, respectively. Other P datasets consistently underestimate P

amounts in mountainous regions. Using MSWEP V2, P was estimated to oc-

cur 15.5 %, 12.3 %, and 16.9 % of the time on average for the global, land,

and ocean domains, respectively. MSWEP V2 provides unique opportuni-

ties to explore spatio-temporal variations in P, improve our understanding of

hydrological processes and their parameterization, and enhance hydrological

model performance. The dataset is available via www.gloh2o.org.
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Capsule summary42

MSWEP V2 is the first fully global precipitation dataset with a 0.1◦ resolution derived by optimally43

merging a range of gauge, satellite, and reanalysis estimates.44

1. Introduction45

Precipitation (P) drives the terrestrial hydrological cycle (Oki and Kanae 2006; Trenberth et al.46

2007). It is also among the most difficult meteorological variables to estimate due to its high47

spatio-temporal heterogeneity (Daly et al. 1994; Adler et al. 2001; Roe 2005; Stephens et al. 2010;48

Herold et al. 2016; Prein and Gobiet 2017). A plethora of regional, quasi-global, and fully global49

gridded P datasets have been developed over the past decades (for an overview see Maggioni et al.50

2016; Beck et al. 2017c; Levizzani et al. 2018; Sun et al. 2018; http://ipwg.isac.cnr.it; and51

http://reanalyses.org). These datasets differ in terms of design objective (instantaneous ac-52

curacy, temporal homogeneity, record length, or combinations thereof), data source (gauge, ground53

radar, satellite, analysis, reanalysis, or combinations thereof), spatial resolution (from 0.05◦ to54

2.5◦), and temporal resolution (30 minutes to monthly).55

Multi-Source Weighted-Ensemble Precipitation (MSWEP) is a recently released global P dataset56

with a 3-hourly temporal resolution, covering the period 1979 to the near-present (Beck et al.57

2017b). The dataset is unique in that it takes advantage of the complementary strengths of gauge-,58

satellite-, and reanalysis-based data to provide reliable P estimates over the entire globe. Since59

the release of V1 (0.25◦ spatial resolution) in May 2016, MSWEP has been successfully ap-60

plied at global scales for a variety of purposes, such as modeling soil moisture and evaporation61

(Martens et al. 2017), estimating plant rooting depth (Yang et al. 2016), water resources reanalysis62

(Schellekens et al. 2017), and evaluating climatic controls on vegetation (Papagiannopoulou et al.63

2017a,b). MSWEP has also been successfully used for several purposes regionally, for example, to64
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analyze diurnal variations in rainfall (Chen and Dirmeyer 2017; Chen et al. 2017), investigate lake65

dynamics (Satgé et al. 2017; Wang et al. 2017), evaluate root-zone soil moisture patterns (Zohaib66

et al. 2017), and drive a dynamic ecohydrological model (Liu et al. 2016). In addition, MSWEP67

has been included in at least four regional P dataset evaluation studies focusing respectively on the68

Amazon (Correa et al. 2017), Chile (Zambrano-Bigiarini et al. 2017), India (Nair and Indu 2017),69

and the Sahel (Zhang et al. 2017).70

Since the release of MSWEP V1, considerable improvements were implemented, resulting in71

MSWEP V2, the focus of the present study. Improvements include: (i) the introduction of cu-72

mulative distribution function (CDF) and P frequency corrections, to account for spurious drizzle,73

attenuated peaks, and temporal discontinuities evident in V1 (Nair and Indu 2017; Zhang et al.74

2017); (ii) increasing spatial resolution from 0.25◦ to 0.1◦ to increase the local relevance of the75

P estimates (especially important for high water-yield mountainous regions); (iii) the inclusion76

of ocean areas to enable oceanic studies and terrestrial hydrology studies for coastal areas and77

small islands; (iv) the addition of P estimates derived from Gridded Satellite (GridSat) thermal78

infrared (IR) imagery (Knapp et al. 2011) for the pre-TRMM era to supplement the reanalysis and79

gauge data; (v) the use of a daily (rather than monthly) gauge correction scheme that accounts for80

regional differences in reporting times, to minimize timing mismatches when applying the daily81

gauge corrections; (vi) the use of a large database of daily gauge observations compiled from82

several sources to replace the 0.5◦ CPC Unified dataset (Xie et al. 2007; Chen et al. 2008); and83

(vii) extension of the data record to 2017 (MSWEP V1 finished in 2015).84

MSWEP V2 is the first fully global P dataset with a spatial resolution of 0.1◦ (11 km at the85

equator), supporting global-scale land surface modeling at hyper-resolution (Wood et al. 2011;86

Bierkens et al. 2015). Other P datasets with a high spatial resolution (≤0.1◦) include CHIRPS87

(0.05◦; Funk et al. 2015b), CMORPH (0.07◦; Joyce et al. 2004), GSMaP (0.1◦; Ushio et al. 2009;88
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Mega et al. 2014), IMERG (0.1◦; Huffman et al. 2014), and PERSIANN-CCS (0.04◦; Hong et al.89

2004). However, these datasets are limited to latitudes ≤ 60◦N/S (≤ 50◦N/S for CHIRPS), do90

not take advantage of river discharge (Q) observations for bias correction, and do not incorporate91

reanalysis-based P estimates (with the arguable exception of CHIRPS, which uses them to tem-92

porally disaggregate from 5-day to daily estimates). Additionally, none of these datasets apply P93

gauge corrections at the daily time scale, with the exception of GSMaP, although it fails to account94

for differences in gauge reporting times. Moreover, CHIRPS and PERSIANN-CCS do not inte-95

grate passive microwave-based P retrievals, and the daily temporal resolution of CHIRPS renders96

it less suitable in highly dynamic P environments. Finally, with the exception of CHIRPS, these97

datasets span ≤ 20 years, which is less optimal to assess long-term hydrological changes/trends98

(Weatherhead et al. 1998).99

Here, we describe the data and methodology underlying MSWEP V2, evaluate the performance100

of the dataset for the conterminous US (CONUS), and assess spatio-temporal P patterns globally.101

2. Data and methods102

a. MSWEP V2 methodology103

Figure 1a flowcharts the main processing steps implemented to produce MSWEP V2. The com-104

plete methodology is provided in the Appendix. The main steps can be summarized as follows:105

1. Daily P gauge observations were used for three purposes: (i) to determine the merg-106

ing weights for the six 3-hourly non-gauge-based P datasets incorporated in MSWEP V2107

(CMORPH, ERA-Interim, GridSat, GSMaP, JRA-55, and TMPA 3B42RT; see Table 1 for108

details on the datasets); (ii) to calculate the wet-day biases for the reanalyses (ERA-Interim109

and JRA-55); and (iii) to correct the P estimates near gauge stations. Initially 117 759 P110
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gauges were compiled from various global and national databases. Extensive quality control111

was applied, for example, to remove erroneous zeros frequently present in records from the112

Global Summary Of the Day (GSOD) database (https://data.noaa.gov; Figure 2a). Af-113

ter quality control, a final gauge dataset comprising 76 747 gauges remained (Figure 2b). See114

Appendix a for details.115

2. Information about gauge reporting times is crucial to avoid timing mismatches when applying116

daily gauge corrections, but is generally not provided. We developed a procedure to infer117

reporting times for all gauges based on correlations with four non-gauge-based P datasets118

(CMORPH, ERA-Interim, GSMaP, and JRA-55). See Appendix b for details.119

3. MSWEP V1 relied entirely on reanalysis and gauge data during the pre-TRMM era (prior120

to 2000; Beck et al. 2017b). For MSWEP V2, we supplemented the reanalysis and gauge121

data during the pre-TRMM era with rainfall estimates based on IR data from the GridSat122

B1 archive (0.07◦ resolution; Knapp et al. 2011), to improve the P estimates in convection-123

dominated regions. Rainfall was estimated using a parsimonious CDF-matching approach.124

See Appendix c for details.125

4. To assess the individual performance of the six non-gauge-based P datasets incorporated in126

MSWEP V2, we calculated, for each of the 76 747 gauges, Pearson correlation coefficients127

between 3-day mean gauge and gridded P time series (r3 day). In addition, since reanalyses128

tend to consistently overestimate the P frequency and underestimate the intensity (Zolina129

et al. 2004; Sun et al. 2006; Lopez 2007; Stephens et al. 2010; Skok et al. 2015; Herold et al.130

2016), for ERA-Interim and JRA-55 we calculated the bias in the number of wet days per131

year, using the gauge observations as reference, according to:132

βWD =
WDgridded

WDgauge
, (1)
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where βWD (unitless) is the bias in number of wet days, and WDgridded and WDgauge rep-133

resent the mean annual number of wet days in the reanalysis and the gauge observations,134

respectively. WDgridded was computed from daily accumulations to be consistent with the135

gauge observations. Wet days were identified using a 0.5 mm d−1 threshold, similar to sev-136

eral previous studies (e.g., Akinremi et al. 1999; Haylock et al. 2008; Driouech et al. 2009;137

Trenberth and Zhang 2018). See Appendix d for details.138

5. Global weight maps were derived for each of the six non-gauge-based P datasets incorporated139

in MSWEP V2 based on the r3 day values calculated in the preceding step. The r3 day values140

were squared to yield the coefficient of determination, and subsequently interpolated to yield141

gap-free global weight maps. Similarly, gap-free global maps of βWD were produced for the142

reanalyses, to correct the P frequency prior to the data merging. See Appendix e for details.143

6. MSWEP V1 used CHPclim (0.05◦ resolution; Funk et al. 2015a) to determine the long-term144

mean over the land surface. For MSWEP V2, we used WorldClim (1-km resolution; Fick and145

Hijmans 2017), due to the better P gauge coverage. Systematic P underestimation over land146

due to gauge under-catch and orographic effects was corrected similarly to MSWEP V1, by147

inferring the “true” P using river discharge (Q) observations. See Appendix f for details.148

7. To correct the P frequency of the reanalyses, we subtracted, for each grid-cell, a small amount149

of P calculated using the interpolated βWD values from step 5 (Figure 1b). In addition, the150

six non-gauge-based P datasets incorporated in MSWEP V2 were resampled to 0.1◦ and151

rescaled to minimize the presence of temporal discontinuities after merging. See Appendix g152

for details.153
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8. Three-hourly reference P distributions were calculated by weighted averaging of the distri-154

butions of five non-gauge-based P datasets (CMORPH, ERA-Interim, GSMaP, JRA-55, and155

TMPA 3B42RT) using the interpolated weight maps from step 5. See Appendix h for details.156

9. The six non-gauge-based P datasets incorporated in MSWEP V2 were merged for every pos-157

sible P dataset combination by weighted averaging using the interpolated weight maps from158

step 5. The merged P estimates of each dataset combination were subsequently CDF-matched159

to the reference P distributions derived in step 8, after which we selected, for each 3-hourly160

time step and 0.1◦ grid-cell, the merged and CDF-corrected P value from the dataset combina-161

tion with the highest cumulative weight (Figures 1c and 1d). The CDF matching corrects the162

spurious drizzle and attenuated peaks, and ensures that temporal transitions from one dataset163

combination to another are largely unnoticeable. See Appendix i for details.164

10. The 3-hourly merged P estimates were corrected using daily and monthly P gauge observa-165

tions through a multiplicative approach. For each grid-cell, we looped over the five closest166

gauges and corrected the 3-hourly merged P data at the daily time scale. When applying the167

daily corrections we accounted for the gauge reporting times derived in step 2 to reduce tem-168

poral mismatches (Figures 1e and 1f). We subsequently applied monthly gauge corrections169

using the GPCC FDR V7 dataset (0.5◦ resolution; Schneider et al. 2014b), which incorporates170

a more extensive collection of gauges, following the same procedure but without accounting171

for gauge reporting times, to yield the final gauge-corrected MSWEP V2. See Appendix j for172

details.173
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b. Evaluation using Stage-IV gauge-radar data for the CONUS174

We evaluated the performance of MSWEP V2, and for the sake of comparison, MSWEP V1,175

a widely used satellite-based dataset (CMORPH), a widely used reanalysis (ERA-Interim), and176

a state-of-the-art reanalysis corrected using daily gauge observations (MERRA-2; Table 1). The177

evaluation was performed at a 3-hourly temporal and 0.1◦ spatial resolution for 2002–2015. As178

reference, we used the National Centers for Environmental Prediction (NCEP) Stage-IV dataset179

(Lin and Mitchell 2005), which has a 0.04◦ spatial and hourly temporal resolution, and merges data180

from 140 radars and ∼5500 gauges for the CONUS. Stage-IV provides high-quality P estimates181

and has therefore been widely used as reference for the evaluation of P datasets (e.g., Hong et al.182

2006; Habib et al. 2009; AghaKouchak et al. 2011, 2012; Zhang et al. 2018). To reduce systematic183

biases, the Stage-IV dataset was rescaled such that its long-term mean matches that of the PRISM184

dataset (Daly et al. 2008) for the evaluation period (2002–2015).185

As performance metric, we used the Kling-Gupta Efficiency (KGE; Gupta et al. 2009; Kling186

et al. 2012), an objective performance metric combining correlation, bias, and variability, intro-187

duced in Gupta et al. (2009) and modified in Kling et al. (2012). The KGE is calculated as follows:188

KGE = 1−
√

(r−1)2 +(β −1)2 +(γ −1)2, (2)

where the correlation component r is represented by the (Pearson’s) coefficient of correlation, the189

bias component β by the ratio of estimated and observed means, and the variability component γ190

by the ratio of the estimated and observed coefficients of variation:191

β =
µs

µo
and γ =

σs/µs

σo/µo
, (3)

where µ and σ are the distribution mean and standard deviation, respectively, and the subscripts192

s and o indicate estimate and reference, respectively. Three-hourly accumulations were calculated193

for the P datasets with a temporal resolution < 3 h (CMORPH, MERRA-2, and Stage-IV). The194
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P datasets with a spatial resolution > 0.1◦ (MSWEP V1, ERA-Interim, and MERRA-2) were195

downscaled to 0.1◦ using nearest neighbour, while the dataset with a spatial resolution < 0.1◦196

(CMORPH) was upscaled to 0.1◦ using bilinear interpolation.197

3. Results and discussion198

a. Gauge reporting times199

For the GHCN-D database, we found marked differences in reporting times between neighbor-200

ing countries (e.g., between Canada and USA, and Portugal and Spain) and sometimes within201

countries (e.g., Mexico, Namibia, and South Africa; Figure 2c), reflecting differences in report-202

ing practices among hydrological and meteorological agencies. Our reporting times correspond203

well with published times available for Australia (Viney and Bates 2004), Brazil (Liebmann and204

Allured 2005), the eastern CONUS (DeGaetano 2000), India (Yatagai et al. 2012), the Nether-205

lands (Holleman 2006), and Japan (Yatagai et al. 2012). Although the GSOD gauges represent206

automated gauges with reporting times officially at around midnight UTC (Menne et al. 2012),207

our analysis yielded considerably earlier reporting times averaging at around −12 h UTC (except208

for eastern Australia; Figure 2d). A potential explanation for this discrepancy could be that satel-209

lites represent radiation from an atmospheric column rather than P that has reached the surface.210

However, Villarini and Krajewski (2007) obtained timing differences ranging from 30 to 90 min211

for TMPA 3B42 using 5-min rain gauge data for a single 0.25◦ grid-cell in Oklahoma, suggesting212

that this explanation is insufficient to account for the full 12-h difference. Additionally, the differ-213

ences are also found in high-latitudes (> 60◦N/S), where the reporting times were inferred using214

reanalysis data. An alternative, more likely explanation is that the daily GSOD values incorporate215
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a significant portion of P from the previous day. Overall, these results highlight the importance of216

accounting for reporting times in time-critical applications relying on daily gauge observations.217

b. Gauge-based assessment of satellite and reanalysis datasets218

Figures 3a and 3b present r3 day (temporal correlation) values obtained for CMORPH and ERA-219

Interim, respectively. Since the results were very similar for all satellite datasets (with the excep-220

tion of GridSat) and for all reanalysis datasets, we only present results for one dataset of each221

kind. ERA-Interim is most skillful in mid- and high-latitude coastal regions in the path of the222

prevailing westerlies (notably along the Pacific coast of North America, in southern Chile, and in223

western Europe; Figure 3a), whereas CMORPH performs best in moist mid-latitude regions with224

mild winters (e.g., the southeastern US, eastern South America, and eastern China; Figure 3b).225

When we calculate the difference in r3 day values between the datasets, a clear picture emerges:226

CMORPH consistently performs better at low-latitudes and ERA-Interim at high-latitudes (Fig-227

ure 3d). These results underscore the long-recognized but sometimes overlooked complementary228

P estimation performance of satellites and weather models (e.g., Janowiak 1992; Huffman et al.229

1995; Xie and Arkin 1997; Adler et al. 2001; Ebert et al. 2007; Massari et al. 2017). MSWEP is the230

only P dataset besides CMAP (Xie and Arkin 1997) to exploit this complementary relationship.231

Figure 3c presents r3 day values for the GridSat IR-based rainfall dataset, which has been pro-232

duced to complement the gauge and reanalysis data during the pre-TRMM era (Appendix c). The233

r3 day values for GridSat are consistently lower than those obtained for CMORPH (Figure 3a),234

which was expected since cloud-top IR brightness temperatures are only indirectly related to sur-235

face rainfall (Adler and Negri 1988; Vicente et al. 1998; Scofield and Kuligowski 2003). Com-236

pared to r3 day values obtained using the IR-based PERSIANN dataset (Sorooshian et al. 2000)237

presented in Beck et al. (2017b, their Figure 3c), the Gridsat-based r3 day values are slightly lower238
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in some regions, suggesting there may still be some opportunity for improving the GridSat-based239

rainfall estimates. We refer to Beck et al. (2017c) for a more comprehensive evaluation of the240

GridSat rainfall.241

Figures 3e and 3f present βWD (bias in the number of wet days per year) values for CMORPH242

and ERA-Interim, respectively. The results were again similar among satellite datasets and243

among reanalysis datasets, and therefore we again present results for only one of each. Globally,244

CMORPH represents the P frequency substantially better than ERA-Interim. CMORPH slightly245

overestimates (underestimates) the P frequency at low (high) latitudes (Figure 3e). Conversely,246

ERA-Interim strongly overestimates the P frequency across the entire globe (Figure 3f), due to247

deficiencies in the parameterization of the processes controlling P generation (Zolina et al. 2004;248

Sun et al. 2006; Lopez 2007; Stephens et al. 2010; Skok et al. 2015; Herold et al. 2016). These249

findings highlight the importance of the P frequency corrections implemented in MSWEP V2 (Ap-250

pendix g). When interpreting these results, it must be kept in mind that point observations from251

gauges tend to underestimate the number of wet days compared to similar estimates from gridded252

data from satellites and reanalyses (as the former samples a much smaller area; Osborn and Hulme253

1997; Ensor and Robeson 2008).254

c. Global patterns in weights255

Figure 4 shows global maps of the relative weights assigned to the gauge-, satellite-, and256

reanalysis-based P estimates for three periods: (i) 1979–1982; (ii) 1983–1999; and (iii) 2000–257

2017. The gauge weights were calculated as a function of distance to surrounding gauges (Ap-258

pendix j), whereas the satellite and reanalysis weights were calculated based on the performance of259

the respective satellite and reanalysis datasets at surrounding gauges (Appendix e). Gauge-based260

P estimates provide the main contribution over the terrestrial surface for all periods (Figure 4).261
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Gridsat data are introduced in 1980 and represent the only satelite-based source of P estimates262

until 2000, when passive microwave-based estimates are introduced (CMORPH, GSMaP, and263

TMPA 3B42RT). Prior to 1982, however, GridSat provides limited coverage over South Asia264

and particularly Africa, and a horizontal striping pattern can be observed in some regions caused265

by gaps in the GridSat data (Figure 4a). In regions without rain gauges, reanalyses provide the266

dominant contribution over most of the globe until 1999, while from 2000 onwards the dominant267

contribution comes from satellite data at low and mid latitudes and reanalysis data at high-latitudes268

(Figure 4).269

d. Evaluation using Stage-IV gauge-radar data for the CONUS270

Beck et al. (2017c) evaluated MSWEP V2 and 20 other P datasets globally using observa-271

tions from 76 086 gauges and hydrological modeling for 9053 catchments at daily and monthly272

time-steps. However, evaluation at the 3-hourly time-step was lacking. We therefore evaluated273

MSWEP V2, and for comparison purposes, MSWEP V1, CMORPH, ERA-Interim, and MERRA-274

2 (details provided in Table 1) at the 3-hourly time-step for the CONUS using the Stage-IV gauge-275

radar P dataset (Lin and Mitchell 2005) as reference. Consistent with the global evaluation by276

Beck et al. (2017c), MSWEP V2 was found to perform best overall, yielding a median KGE score277

of 0.70 (Figure 5a). The second and third best performing P datasets were MSWEP V1 (Beck et al.278

2017b; Figure 5e) and MERRA-2 (Reichle et al. 2017; Figure 5q), exhibiting median KGE scores279

of 0.53 and of 0.41, respectively. Similar to MSWEP V2, MSWEP V1 and MERRA-2 include280

daily gauge corrections (based on the CPC Unified dataset; Xie et al. 2007; Chen et al. 2008).281

However, in contrast to MSWEP V2, they did not account for gauge reporting times (Section 3a),282

which has resulted in temporal mismatches when applying the corrections (Figures 1e and 1f).283

CMORPH (Joyce et al. 2004; Figure 5i) and ERA-Interim (Dee et al. 2011; Figure 5m) obtained284
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lower median KGE scores of 0.36 and 0.35, respectively. Performance was markedly worse for all285

datasets in the western CONUS, due to the more complex topography and greater spatio-temporal286

heterogeneity of P (Daly et al. 2008).287

e. Global patterns in long-term mean P288

Figure 6a presents a global map of long-term mean P from MSWEP V2 (Appendix f). Fig-289

ure 6b–f, respectively, present the difference in long-term mean P between MSWEP V2 and five290

other P datasets (Table 1): (i) MSWEP V1 (1979–2015; 3-hourly; 0.25◦; Beck et al. 2017b);291

(ii) GPCC V2015 (1951–2000; monthly, 0.5◦; Schneider et al. 2014b, 2017); (iii) GPCP V2.3292

(1979–2013; monthly, 2.5◦; Adler et al. 2003, 2017, 2018); (iv) HOAPS V3.2 (1987–2008; 0.5◦,293

6 hourly; Schlosser and Houser 2007; Andersson et al. 2010); and (v) MERRA-2 (1980–2017;294

∼50 km, hourly; Reichle et al. 2017). The differences between MSWEP V1 and V2 (Figure 6b)295

primarily reflect the change from CHPclim to WorldClim in V2. Compared to MSWEP V2, the296

fully gauge-based GPCC V2015 dataset shows consistently lower mean P at high northern lati-297

tudes (Figure 6c), whereas the gauge- and satellite-based GPCP V2.3 dataset exhibits lower mean298

P only in northern North America and northeastern Asia, but generally higher mean P in Europe299

and northwestern Asia (Figure 6d). These differences probably reflect the use of different gauge300

under-catch correction schemes; GPCC V2015 (Legates and Willmott 1990) and GPCP V2.3301

(Legates 1988) employ more conventional approaches using WMO gauge under-catch correc-302

tion equations in combination with daily observations of P, Ta, and wind speed from a relatively303

sparse station network. Conversely, MSWEP V2 infers the “true” P using Q observations and Pe304

estimates from 13 762 catchments globally (Beck et al. 2017b). The gauge- and reanalysis-based305

MERRA-2 dataset exhibits good agreement with MSWEP V2 at high-latitudes, but shows sub-306

stantially lower P over tropical regions (except in Africa; Figure 6f). Compared to MSWEP V2,307
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the other P datasets (GPCC V2015, GPCP V2.3, and MERRA-2) exhibit substantially less P at308

high elevations (e.g., in the Rocky Mountains, the southern Andes, and most Asian mountainous309

regions; Figures 6c, 6d, and 6f, respectively). This is attributable to their coarser resolutions (0.5◦,310

2.5◦, and 0.5◦, respectively) and lack of explicit orographic corrections. The differences between311

MSWEP V2 and the other P datasets over the equatorial oceans are probably at least partly because312

MSWEP V2 computes the long-term mean using satellite data from 2000–2017, during which the313

meridional location of the maximum intertropical convergence zone (ITCZ) convection was more314

northerly (Schneider et al. 2014a).315

Using MSWEP V2, we obtained a long-term mean global P estimate of 955 mm y−1 (Table 2) or316

488 100 km3 yr−1. This estimate is based on terrestrial P data representative of 1970–2000 (i.e.,317

the range of the WorldClim gauges; Fick and Hijmans 2017) and oceanic P data representative318

of 1979–2017 (i.e., the range of the satellite and reanalysis datasets). The long-term mean P of319

MSWEP V2 over land (excluding Antarctica) is 839 mm y−1, corresponding to 113 100 km3 y−1.320

The same estimate for MSWEP V1 is 858 mm y−1, slightly (2.3 %) higher due to the switch from321

CHPclim to WorldClim and the reduction of the Chilean and Iranian bias correction factors in V2322

(Appendix f). The estimate for GPCP V2.3 is 853 mm y−1, also slightly (1.7 %) higher than323

the MSWEP V2 estimate. For GPCC V2015, the corresponding estimate is 793 mm y−1, which324

is considerably (5.5 %) lower for the reasons previously explained. The estimate for MERRA-325

2 is 785 mm y−1, also considerably (6.4 %) lower than the MSWEP V2 estimate, mainly due326

to the aforementioned differences in tropical and mountainous regions. The long-term mean P327

for ocean areas based on MSWEP V2 amounted to 1025 mm y−1 (Table 2), corresponding to328

373 200 km3 y−1. Arguably the most comprehensive P datasets with ocean coverage currently329

available are the satellite-based GPCP V2.3 and HOAPS V3.2 datasets. Compared to our estimate,330

GPCP V2.3 yields a 3.1 % higher estimate of 1057 mm y−1 (Figure 6d). Over the area for which331
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HOAPS V3.2 has continuous data (coastal areas are missing and there are seasonal gaps at high-332

latitudes), the dataset yields a 2.9 % lower long-term mean P than MSWEP V2 (1037 versus333

1068 mm y−1; Figure 6e). Another estimate of 1074 mm y−1 for the entire ocean area was derived334

from satellite radar reflectivities (2007–2009) by the TRMM and CloudSat instruments (Behrangi335

et al. 2014) is 4.8 % higher than our estimate. In summary, our P estimate is close to the average336

of previous estimates (Table 2).337

f. Global patterns in P extremes338

Figure 7 presents global maps of 99.99th percentile 3-hourly P amounts (equivalent to a return339

period of 3.42 year) for MSWEP V2, and for illustrative purposes, CMORPH and ERA-Interim.340

CMORPH agrees well with MSWEP V2 in the tropics, but appears to overestimate the 99.99th per-341

centile P with respect to MSWEP V2 in some mid-latitude regions (e.g., in the central CONUS and342

in Argentina). Indeed, Beck et al. (2017c) recently found CMORPH to overestimate the 99th per-343

centile daily P magnitude in precisely these regions, and Tian et al. (2009) also found CMORPH344

to overestimate summer P extremes strongly in the CONUS. As expected, ERA-Interim fails to345

resolve small-scale orographic features due to its coarse (∼0.7◦) resolution and consistently es-346

timates lower 99.99th percentile P amounts due to the model parameterization challenges men-347

tioned. Compared to a global map (1◦) of 99th percentile daily P amounts (equivalent to a return348

period of 100 days) derived from the Expert Team on Climate Change and Indices (ETCCDI) P349

dataset (Dietzsch et al. 2017, their Figure 5d), our 99.99th percentile 3-hourly P map (Figure 7a)350

exhibits more plausible patterns. Most importantly, Dietzsch et al.’s (2017) map fails to represent351

small-scale P variations, due mainly to its coarse resolution, and shows unrealistically low val-352

ues over land compared to the oceans, reflecting the use of different P data sources for land and353

ocean areas (the gauge-based GPCC and satellite-based HOAPS datasets, respectively). The pres-354
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ence of slight discontinuities in the MSWEP V2 map at approximately 50◦S (Figure 7a) suggests355

that there are still inhomogeneities among the incorporated datasets, despite the frequency cor-356

rection and harmonization applied. The higher 99.99th percentile amounts near gauge locations357

(most noticeable in the Amazon in Figure 7a) reflect the loss of variance between P gauges due to358

interpolation (Hutchinson 1998; Haberlandt 2007).359

g. Global patterns in P occurrence360

Figure 8 presents global maps of the percentage of time without P for MSWEP V2, CMORPH,361

and ERA-Interim. CMORPH agrees fairly well overall with MSWEP V2 in the tropics, although362

it exhibits less frequent P at mid- and high-latitudes (notably in southern Chile and along the363

Pacific coast of North America), in agreement with our P gauge-based assessment (Figure 3e).364

This reflects the inability of current generation satellites to detect P signals at high-latitudes (Ebert365

et al. 2007; Tian et al. 2009; Tian and Peters-Lidard 2010; Behrangi et al. 2012; Massari et al.366

2017; Beck et al. 2017c). Also in agreement with our P gauge-based assessment (Figure 3f),367

ERA-Interim severely overestimates the P frequency across the entire globe. Our P frequency368

map (Figure 8a) visually compares well with an equivalent map for the land surface derived from369

gauge observations from 1840–2001 produced by Sun et al. (2006, their Figure 1). Additionally,370

our map agrees closely with ocean maps based on CloudSat data from 2006–2007 (Ellis et al.371

2009, their Figure 3a) and CloudSat, TRMM, and AMSR-E data from 2007–2009 (Behrangi et al.372

2014, their Figure 1a). We did, however, obtain a somewhat higher P frequency over the Southern373

Ocean, possibly due to uncertainties in the P frequency corrections caused by the near-complete374

absence of gauges south of 60◦S (Figure 2b).375

Trenberth and Zhang (2018) examined how often it rains (or snows) worldwide for lati-376

tudes ≤ 60◦N/S, using a gauge-corrected version of CMORPH (hourly, 0.25◦ resolution) and a377
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0.02 mm h−1 threshold, and found that P occurs 11.0 % of the time on average (8.2 % over land378

and 12.1 % over oceans). Using 3-hourly accumulations and a 0.06 mm 3h−1 threshold (triple the379

hourly threshold), they found that P occurs 13.8 % of the time on average (10.7 % over land and380

15.0 % over oceans). The averages calculated using 3-hourly data are thus ∼25 % higher than381

the ones calculated using hourly data. Based on MSWEP V2 (3-hourly, 0.1◦ resolution), using382

the same 0.06 mm 3h−1 threshold, we found that P occurs 15.0 % of the time on average (11.5 %383

over land and 16.2 % over oceans) for the same region (≤ 60◦ latitude). Therefore, our estimates384

are similar to, but slightly (∼9 %) higher than, those of Trenberth and Zhang (2018), but possibly385

more accurate given that the corrected CMORPH exhibits difficulties in detecting northern P (Beck386

et al. 2017c, their Figure 2b). For the entire globe, based on MSWEP V2, P occurs 15.5 % of the387

time on average, while P occurs 12.3 % of the time over the land surface (excluding Antarctica)388

and 16.9 % of the time over ocean areas. All estimates should, however, be interpreted with some389

caution due to the detection limits of satellite sensors (∼0.8 mm h−1 over land and ∼0.02 mm h−1
390

over ocean; Wolff and Fisher 2008) and rain gauges (∼0.25 mm; Kuligowski 1997), as well as the391

scale discrepancy between point observations from rain gauges and gridded data from satellites392

and reanalyses (Osborn and Hulme 1997; Ensor and Robeson 2008).393

h. Trends in mean annual P394

Figure 9 presents global maps of the linear trend in mean annual P for MSWEP V2 and V1,395

CHIRPS V2.0, CMAP V1707, GPCC FDR V7, GPCP V2.3, and HOAPS V3.2 (details in Ta-396

ble 1). The trends were estimated at each grid-cell using simple linear regression (Kenney and397

Keeping 1962). Over land, the datasets exhibit good agreement overall (with the exception of398

CMAP V1707 and MERRA-2), which was expected since all datasets use similar gauge data399

sources. MERRA-2 exhibits suspect trend patterns over tropical land areas (Figure 9h), which400
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could be related to the bias adjustment using CMAP and CPC Unified (Reichle et al. 2017). The401

small differences in trends between MSWEP V1 and V2 (e.g., over the Amazon and the southwest402

Indian Ocean islands; Figures 9a and 9b) are attributable to the new daily gauge data (Appendix j).403

The correspondence in trends is considerably less over the oceans, presumably due to the lack of404

gauge observations to constrain uncertainty (Figure 2b). CMAP V1707 (and MERRA-2, which405

has been bias adjusted using CMAP over the oceans) generally tends more toward negative trends406

(Figure 9d), which Yin et al. (2004) attributed to discontinuities caused by changes in gauge cov-407

erage and satellite input data. HOAPS V3.2 exhibits a substantially noisier trend pattern and more408

pronounced trends overall (Figure 9g), which are both likely attributable to its shorter data record.409

In the Southern Ocean HOAPS V3.2 not only shows P underestimation (Figure 6e), but also a410

spurious upward trend, as reported in previous studies (Romanova et al. 2010; Liu et al. 2011). We411

refer to Adler et al. (2017) and Schneider et al. (2017) for a more comprehensive overview of the412

current state of knowledge with respect to trends in P worldwide.413

Any P trend estimates should, however, be interpreted with caution due to the potential presence414

of temporal inhomogeneities. For gauge data, inhomogeneities tend to be caused by measurement415

errors and changes in station coverage (Sevruk et al. 2009; Schneider et al. 2014b); for satellite416

estimates, by instrument changes, sensor degradation, and algorithm changes (Kummerow et al.417

1998; Biswas et al. 2013); and for reanalyses, by production stream transitions and changes in the418

observing systems (Dee et al. 2011; Trenberth et al. 2011; Kang and Ahn 2015; Kobayashi et al.419

2015). Additionally, agreement in trends among different P datasets does not necessarily imply420

less uncertainty because the input data may be the same. MSWEP V2 trends are likely subject421

to much less uncertainty after the year 2000, due to the relative stability of the observing systems422

and the addition of multiple passive microwave-based P datasets. Beck et al. (2017c) recently423

evaluated 22 P datasets using observations from 76 086 gauges worldwide covering 2000–2016424
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and found that MSWEP V2 exhibits more reliable trends overall than MSWEP V1 as well as other425

P datasets.426

4. Conclusion427

We presented MSWEP V2, a gridded P dataset spanning 1979–2017 which has several unique428

aspects: (i) fully global coverage including all land and oceans (most satellite-based datasets are429

limited to 50/60◦ latitude); (ii) high spatial (0.1◦) and temporal (3 hourly) resolution, increasing430

the local relevance of the P estimates; (iii) optimal merging of a wide range of gauge, satellite, and431

reanalysis P datasets, to obtain the best possible P estimates at any location; (iv) correction for432

distributional biases, to eliminate spurious drizzle and restore attenuated peaks; (v) correction of433

systematic terrestrial P biases due to gauge undercatch using observed Q from 13 762 catchments434

worldwide; (vi) corrections using daily (instead of monthly) observations from 76 747 gauges435

across the globe; and (vii) a gauge correction scheme that accounts for gauge reporting times. The436

main findings are:437

1. There are marked differences in reporting times between neighboring countries and some-438

times within countries. Contrary to expectations, the automated GSOD gauges exhibited439

reporting times averaging at around 1200 h UTC rather than midnight (i.e., 2400 h) UTC.440

These findings underscore the importance of accounting for reporting times when applying441

daily gauge corrections.442

2. The gauge-based assessment of the satellite and reanalysis P datasets revealed that the reanal-443

yses strongly overestimate the P frequency across the globe. Confirming previous studies,444

we found that reanalyses exhibit lower skill than the satellite estimates in the (sub-)tropics,445
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whereas the opposite was the case at high-latitudes. MSWEP is the only high-resolution P446

dataset to date that exploits this complementary relationship.447

3. For the CONUS, we evaluated MSWEP V2 and four other P datasets at a 3-hourly time448

scale using Stage-IV gauge-radar P data as reference. MSWEP V2 provided the best overall449

performance, followed in order by MSWEP V1, MERRA-2, CMORPH, and ERA-Interim.450

These results confirm the effectiveness of the MSWEP V2 methodology.451

4. Long-term mean P estimates for the global, land, and ocean domains based on MSWEP V2452

are 955, 781, and 1025 mm y−1, respectively. This is in close agreement with the published453

estimates, yet importantly for hydrological applications other datasets appear to consistently454

underestimate P amounts in mountainous regions due to a lack of orographic corrections and455

coarser spatial resolutions.456

5. Compared to other state-of-the-art P datasets, MSWEP V2 shows more plausible spatial pat-457

terns in mean, magnitude, and frequency. Using MSWEP V2, we estimated that P occurs458

15.5 %, 12.3 %, and 16.9 % of the time on average for the global, land, and ocean domains,459

respectively; slightly more frequent than previous estimates based on CMORPH.460

6. Trends in 1979–2017 mean annual P among state-of-the-art P datasets are generally agree461

over land, at least partly due to the use of common input datasets. Over oceans the agreement462

is considerable less, possibly reflecting the lack of marine gauge observations.463
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APPENDIX480

Here, we describe in detail the different processing steps involved in the production of481

MSWEP V2 (Figure 1a).482

a. Gauge data quality control483

Daily gauge observations were used to determine the merging weights and wet-day biases for the484

individual P datasets (Appendix e) and to improve P estimates near gauge stations (Appendix j).485

Our initial database comprises 117 759 gauges worldwide compiled from the Global Historical486

Climatology Network-Daily (GHCN-D) database (Menne et al. 2012), the Global Summary Of487

the Day (GSOD) database (https://data.noaa.gov), the Latin American Climate Assessment488

& Dataset (LACA&D) database (http://lacad.ciifen.org/), the Chile Climate Data Library489
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(http://www.climatedatalibrary.cl), and national databases for Mexico, Brazil, Peru, and490

Iran.491

Gauge data can have considerable measurement errors and therefore quality control is important492

(Goodison et al. 1998; Viney and Bates 2004; Sevruk et al. 2009; Schneider et al. 2014b). For493

example, GSOD records frequently contain long series of erroneous zero rainfall (Durre et al.494

2010; Funk et al. 2015b). To identify and discard these periods, we developed an automated495

procedure entailing the following steps: (i) for each month, we computed the fraction of days496

without P ( fD); (ii) we excluded months without any P ( fD = 1) and computed the distribution497

mean (µ) and standard deviation (σ ); (iii) if the CDF of the normal distribution with µ and σ498

evaluated at fD = 0.9 exceeds 0.85, the gauge was considered to be sufficiently ‘wet’ for detecting499

the erroneous zeros and we proceeded to the next step; (iv) a year was marked as erroneous if500

the median of the 12 monthly fD values exceeded 0.9; and (v) the six months preceding and501

following each erroneous year were also marked as erroneous. Figure 2a illustrates the procedure502

for an arbitrarily selected GSOD gauge with the described issue.503

Additionally, we eliminated all days with P > 2000 mm (approximately the maximum recorded504

24-h rainfall; Cerveny et al. 2007), and discarded gauges with record length < 4 years during505

1979–2017. From the remaining set of 81 047 gauges we also discarded those matching one506

or more of the following criteria (% of remaining gauges satisfying the criteria reported between507

parentheses): (i) 3-day Pearson correlation coefficient (r3 day) with five non-gauge-based P datasets508

(CMORPH, ERA-Interim, GSMaP, JRA-55, and TMPA 3B42RT; Table 1) < 0.4, and r3 day with509

the nearest gauge also < 0.4 (1.01 %); (ii) more than half of the 3-day intervals contain missing510

values (1.62 %); (iii) less than 15 unique values in the entire record (1.02 %); (iv) the highest511

and/or second highest values were present > 3 times in the record, indicative of truncated peaks512

(0.60 %); and (v) > 99.5 % of the record is dry (< 0.5 mm d−1; 3.05 %). In total, 4300 (5.31 %) of513
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the remaining gauges fulfilled one or more of these criteria and hence were discarded; the resultant514

dataset comprised 76 747 gauges (Figure 2b).515

b. Inferring gauge reporting times516

Information about gauge reporting times is crucial to avoid timing mismatches when applying517

daily gauge corrections, but is generally not provided. We developed a procedure to infer gauge re-518

porting times using four gridded 3-hourly non-gauge-based P datasets (CMORPH, ERA-Interim,519

GSMaP, and JRA-55; Table 1). Specifically, we calculated, for each gauge, Spearman rank corre-520

lation coefficients (ρ) between daily grid- and gauge-based time series, with the grid-based time521

series shifted by offsets of −36,−33,−30, . . . ,+30,+33, and +36 hours, resulting in 4×25= 100522

ρ values for each gauge. The dataset and temporal-offset combination yielding the highest ρ value523

was subsequently taken to reflect the UTC boundary of the 24-hour accumulation period for the524

gauge under consideration. It should be kept in mind, however, that the inferred estimates are525

subject to a rounding error of at most 1.5 h and on average 45 min due to the 3-hourly tempo-526

ral resolution of the P datasets. In addition, the estimates are affected by the fact that satellites527

represent radiation from an atmospheric column, whereas gauges represent P that has reached the528

surface (Villarini and Krajewski 2007). Furthermore, the approach relies on the assumption of529

a temporally constant reporting time, which may not be true for every gauge (Viney and Bates530

2004).531

c. Rainfall estimation using thermal infrared imagery532

MSWEP V1 relied exclusively on reanalysis and gauge data during the pre-TRMM era (< 1998;533

Beck et al. 2017b). For MSWEP V2, we supplemented the reanalysis and gauge data with rainfall534

estimates based on cloud-top IR temperatures during the pre-TRMM era, to improve the accu-535
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racy in convection-dominated regions. Although several IR-based rainfall datasets already ex-536

ist (e.g., CHIRP, Hydro-Estimator, PERSIANN, PERSIANN-CCS, PERSIANN-CDR, and TAM-537

SAT), none of these meet all of our requirements: (i) quasi-global coverage over land and ocean;538

(ii) temporal coverage from the 1980s to the near present; (iii) spatial resolution ≤ 0.1◦; (iv) tem-539

poral resolution ≤ 3 hours; and (v) no gauge corrections. We therefore produced a new 3-hourly540

0.1◦ rainfall dataset based on the GridSat B1 IR archive (V02R01; 3-hourly, 0.07◦ resolution;541

1980 to the near present) containing IR imagery from various intercalibrated geostationary satel-542

lites (Knapp et al. 2011).543

Although the GridSat archive has already had some quality control applied, we still observed544

numerous navigation, calibration, and masking errors (particularly prior to 1983). To ensure that545

the data were robust, several additional quality control steps were applied. First, all grid-cells with546

values < 173K (the record minimum, Ebert and Holland 1992) were assumed to be erroneous547

and discarded. Additionally, if the percentage of grid-cells with temperature < 173K exceeded548

1 %, the entire image was discarded. Furthermore, if the spatial (Pearson) correlation between549

the current image and the previous image (both resampled to 1◦ using bilinear interpolation) was550

< 0.75, both images were discarded. Finally, assuming that sudden isolated changes in the record551

are indicative of errors, images were discarded if the global mean deviated > 3K from the 24-hour552

running global mean. Note that prior to 1998 there are extensive periods of missing data due to a553

poorer spatial coverage.554

IR data can be used to estimate rainfall in several ways (Scofield and Kuligowski 2003; Stephens555

and Kummerow 2007; Michaelides et al. 2009; Kidd and Levizzani 2011). Hydro-Estimator, for556

example, employs an empirical equation calibrated using ground radar data to obtain an initial557

rain rate estimate which is subsequently corrected using precipitable water and relative humid-558

ity outputs from an atmospheric analysis model (Scofield and Kuligowski 2003). Conversely,559
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CHIRP employs Cold-Cloud Duration (CCD) values derived from IR data using a fixed 235K560

threshold to estimate 5-day rain rates, where the CCD-rain relationship is established by linear561

regression against TMPA 3B42 data (Funk et al. 2015b). Similarly, the African TAMSAT dataset562

uses IR-based CCD values to estimate 10-day rainfall, but uses gauge observations to determine563

the regression parameters and temperature thresholds (Tarnavsky et al. 2014). CCD-based meth-564

ods are, however, unsuitable for our purposes as it would require IR data with a temporal resolution565

< 3 hours to derive 3-hourly CCD values. PERSIANN-CCS employs a more elaborate method566

using artificial neural networks and IR data patterns to distinguish between cloud types, which are567

subsequently related to specific rainfall intensities (Ashouri et al. 2015).568

Here, we used a parsimonious method entailing the following steps: (i) resampling the GridSat569

IR data to 0.1◦ using bilinear interpolation; (ii) rejecting IR data when daily mean Ta is < 5◦C,570

given the difficulty of detecting P signals in cold conditions (Kidd and Levizzani 2011; Beck et al.571

2017b); (iii) reversing the sign of the values, since lower IR radiances correspond to higher rainfall572

intensities (Adler and Negri 1988); and (iv) converting the values to rain rates by CDF matching573

against the warm-period reference P distribution produced in Appendix h. Our approach bears574

some resemblance to that of Karbalaee et al. (2017), who CDF matched the IR-based PERSIANN-575

CCS rainfall dataset to a passive microwave-based reference. The method used here may not576

perform well in regions with a marked temporal variability in storm type and correspondingly, in577

the relationship between IR radiance and rainfall. Any such deficiencies would be reflected in low578

weights in the merging process (Appendix e).579

d. Gauge-based assessment of satellite and reanalysis P datasets580

MSWEP V2 incorporates six gridded non-gauge-based P datasets (CMORPH, ERA-Interim,581

GridSat, GSMaP, JRA-55, and TMPA 3B42RT; Table 1). To assess the individual performance582
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of these datasets, we calculated, for each P gauge, Pearson correlation coefficients between 3-day583

mean gauge- and grid-based P time series (r3 day) for 2000–2017 (the start date is limited by the584

GSMaP and TMPA 3B42RT datasets). To minimize timing mismatches between the gauge- and585

grid-based time series, prior to calculating the r3 day values, the records of gauges with reporting586

times >+12 h UTC were shifted backward by −1 day, while the records of gauges with reporting587

times < −12 h UTC were shifted forward by +1 day (Appendix b). The use of 3-day rather588

than daily averages has two benefits: first, it minimizes the impact of any remaining temporal589

mismatches in the 24-hour accumulation period between the gridded datasets and the gauges; and590

second, it reduces the influence of days with potentially erroneous gauge measurements. The591

r3 day values were calculated for the full period of contemporaneous gauge- and grid-based data,592

as well as for ‘cold’ and ‘warm’ conditions, distinguished using a daily mean air temperature (Ta)593

threshold of 5◦C. MSWEP V1 employed a 1◦C threshold, which we increased in V2 to further594

reduce the likelihood of incorporating potentially unreliable satellite data. For Ta, we used ERA-595

Interim (Dee et al. 2011) downscaled to 0.1◦ using nearest neighbour resampling and offset to596

match the long-term mean of the high-resolution, station-based WorldClim V2.0 dataset (Fick597

and Hijmans 2017). We only calculated an r3 day value if > 1 year of simultaneous gauge and598

gridded 3-day means were available. The r3 day values range from −1 to 1, with higher values599

corresponding to better performance.600

Reanalyses tend to overestimate the P frequency and underestimate the intensity due to defi-601

ciencies in the parameterization of the physical processes controlling P generation (Zolina et al.602

2004; Sun et al. 2006; Lopez 2007; Stephens et al. 2010; Skok et al. 2015; Herold et al. 2016).603

To quantify and correct for this, we calculated the bias in the number of wet days per year, using604

the P gauge observations as reference, according to Equation 1. Wet days were identified using605

a 0.5 mm d−1 threshold, similar to several previous studies (e.g., Akinremi et al. 1999; Haylock606
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et al. 2008; Driouech et al. 2009; Trenberth and Zhang 2018). βWD values range from 0 to ∞, with607

values closer to unity corresponding to better performance.608

e. Global maps of weights and wet-day biases609

Global weight maps were derived for the entire period and for warm and cold conditions for each610

of the non-gauge-based satellite and reanalysis P datasets (Table 1) from the gauge-based r3 day611

values (Appendix d). The r3 day values were truncated at zero, squared to yield the coefficient of612

determination, and subsequently interpolated to yield gap-free global weight maps by calculating,613

for each 0.1◦ grid-cell, the median of the 10 nearest gauges. The cold-condition weights were set614

to zero for the satellite datasets. Similarly, gap-free global maps of βWD were produced for the615

reanalyses, to correct the P frequency prior to the merging.616

Due to a lack of gauges over ocean areas, the use of the 10 nearest gauges in the interpolation617

frequently resulted in strong discontinuities in the middle of oceans due to contrasting values618

on opposite sides of the oceans. To eliminate these discontinuities, we applied an exponential619

smoothing kernel with a bandwidth of 1000 km over the ocean areas of the interpolated weight620

and βWD maps.621

f. Determination of long-term mean P622

The long-term mean P over the land surface was determined in V2 using the WorldClim dataset623

(1-km resolution; V2.0; Fick and Hijmans 2017) rather than the CHPclim dataset (0.05◦ reso-624

lution; Funk et al. 2015a). We switched from CHPclim to WorldClim due to the better gauge625

coverage in South America, Scandinavia, India, Australia, and New Zealand. Systematic P un-626

derestimation over land due to gauge under-catch and orographic effects (Kauffeldt et al. 2013;627

Beck et al. 2015, 2017a; Prein and Gobiet 2017) was corrected similarly to MSWEP V1, by in-628
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ferring catchment-average P using the Zhang et al. (2001) relationship in combination with river629

discharge (Q) observations and potential evaporation (Ep) estimates (Beck et al. 2017b). However,630

for MSWEP V2, the correction factors inferred for Chilean and Iranian catchments were set to 1631

prior to the interpolation, due to suspected issues with the observed Q data.632

The long-term mean P over the oceans was estimated by weighting the long-term means of five633

satellite and reanalysis datasets (CMORPH, ERA-Interim, GSMaP, JRA-55, and TMPA 3B42RT;634

Table 1). The weights for the satellite datasets (ws) were set to 1 for latitudes < 20◦ and 0 for635

latitudes > 40◦, decreasing linearly from 1 at 20◦ to 0 at 40◦. The weights for the reanalyses (wr)636

were set to 1−ws. Thus, wr was set to 0 at latitudes < 20◦, due to the tendency of reanalyses to637

overestimate tropical P amounts (Trenberth et al. 2011; Kang and Ahn 2015).638

g. P frequency correction and dataset harmonization639

The following three steps were implemented to reduce the P frequency of the two reanalyses640

and harmonize the six non-gauge-based P datasets incorporated in MSWEP V2 (CMORPH, ERA-641

Interim, GridSat, GSMaP, JRA-55, and TMPA 3B42RT; Table 1):642

1. The datasets with spatial resolutions higher or lower than 0.1◦ (CMORPH, ERA-Interim,643

JRA-55, and TMPA 3B42RT) were resampled to 0.1◦ using nearest neighbor resampling,644

and 3-hourly means were calculated for the datasets with temporal resolutions < 3 hours645

(CMORPH and GSMaP).646

2. The WATCH (Weedon et al. 2011) and WFDEI (Weedon et al. 2014) datasets (derived respec-647

tively from the ERA-40 and ERA-Interim reanalyses) were corrected for overestimations in648

P frequency by progressively removing the smallest events until the P frequency matched649

that of the gauge-based CRU dataset. However, this approach results in P distributions with650
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a lack of light P events. We therefore employed an alternative approach to correct the P651

frequency of the reanalyses (ERA-Interim and JRA-55). First, for grid-cells with interpo-652

lated βWD values > 1, we calculated the ‘correct’ annual number of wet days (WDobjective)653

according to: WDobjective = WDgridded/βWD, where WDgridded was calculated from daily ac-654

cumulations and βWD represents the interpolated value (Appendix e). Next, we iteratively655

carried out the following steps: (i) subtract d mm 3h−1 from the original 3-hourly time series,656

starting with d = 0.01 mm 3h−1; (ii) truncate the resulting values to zero and rescale them to657

restore the original long-term mean; (iii) calculate the annual number of wet days from daily658

accumulations (WDnew); (iv) return to step (i), increasing d in 0.01 mm 3h−1 increments,659

until WDnew ≤ WDobjective. Figure 1b illustrates the procedure for ERA-Interim.660

3. The reanalysis datasets, which are valid for the entire period, and the satellite datasets, which661

are only valid for warm conditions, were rescaled to minimize the presence of spurious tem-662

poral discontinuities after merging. For this purpose, we first rescaled the reanalyses to match663

the long-term P estimates derived in Appendix f. Next, means were calculated for the entire664

period and for warm and cold conditions based on the rescaled reanalyses, using the full-665

period weight maps derived in Appendix e. Finally, the satellite datasets were rescaled to666

match the rescaled warm-condition reanalysis mean.667

h. Reference P distributions668

In MSWEP V2, the 3-hourly merged satellite and reanalysis P estimates were CDF matched to669

reference P distributions (Figure 1), to correct the spurious drizzle and attenuated peaks evident670

in V1 (Nair and Indu 2017; Zhang et al. 2017). Two separate 3-hourly reference distributions671

(0.1◦ resolution) were calculated, one representing warm conditions and one representing cold672

conditions (as before distinguished using a daily mean Ta threshold of 5◦C). The reference dis-673
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tribution for warm conditions was calculated by weighted-median averaging of the distributions674

of five satellite and reanalysis P datasets (CMORPH, ERA-Interim, GSMaP, JRA-55, and TMPA675

3B42RT; Table 1). The GridSat dataset was excluded because it does not represent an independent676

estimate, being derived using the reference distributions (Appendix c). For cold conditions, the677

reference distribution was calculated by weighted-mean averaging of only the two reanalysis P678

datasets (ERA-Interim and JRA-55). Prior to the averaging, the P frequency of the reanalyses was679

corrected and the datasets were homogenized as decribed in the previous section. We only used680

data observed since 2000 to derive the reference distributions for two reasons: (i) to avoid incon-681

sistencies between the warm- and cold-condition reference distributions due to the much longer682

temporal coverage of the reanalyses; and (ii) because satellite data prior to 2000 are subject to683

more uncertainty (Xie et al. 2017).684

i. Merging of satellite and reanalysis P datasets685

Six 3-hourly non-gauge-based P datasets (CMORPH, ERA-Interim, GridSat, GSMaP, JRA-55,686

and TMPA 3B42RT; Table 1) were merged through the following steps:687

1. For cold and warm conditions separately, and for every possible P dataset combination, the688

3-hourly estimates were merged by weighted-mean averaging using the interpolated weight689

maps (Appendix e). The total number of combinations comprising two or more P datasets690

equals 57 for warm conditions, while just one combination (containing both reanalyses) is691

valid for cold conditions (the satellite data were discarded). Prior to the merging, the P692

frequency of the reanalyses was corrected and the datasets were harmonized (Appendix g).693

Satellite data were discarded prior to 2000 and for grid-cells with daily mean Ta ≥ 5◦C less694

than 10 % of the time.695
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2. Averaging multiple P datasets tends to result in spurious drizzle and attenuated peaks, as was696

the case for MSWEP V1 (Nair and Indu 2017; Zhang et al. 2017). To correct for this, we CDF697

matched the merged P estimates from 2000–2017 of each dataset combination, for cold and698

warm conditions separately, to the reference P distributions (which represent 2000–2017; see699

Appendix h). Similar CDF-matching approaches have been used to correct other P datasets,700

including CMORPH (Xie et al. 2017), GEFS (Zhu and Luo 2015), and PERSIANN-CCS701

(Karbalaee et al. 2017). To obtain consistent time series for the entire 1979–2017 period,702

we first calculated the change in the P estimates due to the CDF corrections for different P703

magnitudes, after which we applied the same magnitude-specific changes to the P estimates704

from 1979–1999.705

3. A side effect of the implemented CDF corrections is that they result in regionally ampli-706

fied trends. These corrections essentially increase (decrease) the magnitude of large (small)707

P events, inadvertently causing the trends associated with large events to become not just708

stronger, but also more prominent in the overall record. We therefore rescaled the merged709

CDF-corrected estimates, for cold and warm conditions separately, and for each dataset com-710

bination, such that their trends match those of the merged non-CDF-corrected estimates.711

Trends were calculated using simple linear regression (Kenney and Keeping 1962).712

4. For cold and warm conditions separately, and for each possible dataset combination, we sub-713

sequently summed the interpolated weights of the incorporated datasets, yielding the cumu-714

lative interpolated weight, which roughly reflects the total information content of the dataset715

combination in question. Next, we selected, for each 3-hourly time step and 0.1◦ grid-cell,716

the merged and corrected P value from the dataset combination with the highest cumula-717

tive weight. The applied CDF corrections ensure that temporal transitions from one dataset718
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combination to another are largely unnoticeable. Figures 1c and 1d illustrate the merging719

procedure for a single grid-cell.720

j. Gauge correction scheme721

The merged 3-hourly satellite- and reanalysis-based P data (referred to hereafter as pmerge; Ap-722

pendix i) were corrected using gauge P observations through an iterative, multiplicative approach723

that accounts for variability in the reporting times of gauges (Appendix b). We used a multi-724

plicative rather than an additive correction method (Vila et al. 2009) to preserve the sub-daily725

distribution of pmerge. The approach assumes that the long-term mean of pmerge, being based on726

the gauge-corrected WorldClim dataset (Appendix f), is already reliable and therefore only adjusts727

the temporal variability of pmerge using the gauge data. The approach entails the following steps:728

1. For each 0.1◦ grid-cell, very small P amounts were added to pmerge, to avoid a high gauge729

estimate from yielding a zero estimate after the correction when pmerge = 0, which occurs730

frequently in MSWEP V2 due to the P frequency and CDF corrections. Specifically, we added731

an almost negligible amount (0.1 %) of the non-CDF-matched (and thus drizzly) merged732

satellite- and reanalysis-based P data. The resulting estimate will be referred to hereafter as733

pdrizzly.734

2. The five nearest (as the crow flies) gauges were selected (Appendix a), and each gauge record735

was rescaled such that its mean equals that of pmerge for the period of overlap.736

3. pdrizzly was corrected at the daily time scale in an iterative manner by looping through the five737

nearest gauges. During each loop, daily P accumulations of pdrizzly were calculated for the738

24-hour period ending at the reporting time, after which a blended estimate was calculated739

by weighted-mean averaging of the daily pdrizzly and gauge accumulations. Figures 1e and 1f740
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illustrate the importance of accounting for reporting times. The 3-hourly pdrizzly data were741

subsequently rescaled to match this blended estimate and passed on to the next loop iteration.742

The gauge weight (wg, unitless) was calculated according to wg = 4exp
(
−di
d0

)
, where di (km)743

represents the distance from the grid-cell center to the gauge, and d0 (km) represents the range744

of influence (set to 25 km using trial and error). The pdrizzly weight was calculated as the sum745

of the weights assigned to the incorporated gridded P datasets (Appendix i step 3) and the746

gauge weights from the previous loop iterations.747

4. To take advantage of the wider availability of monthly gauge data, we subsequently corrected748

pdrizzly using the monthly 0.5◦ GPCC FDR V7 dataset (Schneider et al. 2014b, 2017) follow-749

ing the same procedure but without accounting for gauge reporting times to yield the final750

gauge-corrected MSWEP V2.751
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Skok, G., N. Žagar, L. Honzak, R. Žabkar, J. Rakovec, and A. Ceglar, 2015: Precipitation inter-1001

comparison of a set of satellite- and raingauge-derived datasets, ERA Interim reanalysis, and a1002

single WRF regional climate simulation over Europe and the North Atlantic. Theoretical and1003

Applied Climatology, 123 (1), 217–232.1004

Sorooshian, S., K.-L. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite, 2000: Evaluation1005

of PERSIANN system satellite-based estimates of tropical rainfall. Bulletin of the American1006

Meteorological Society, 81 (9), 2035–2046.1007

Stephens, G. L., and C. D. Kummerow, 2007: The remote sensing of clouds and precipitation from1008

space: a review. Journal of the Atmospheric Sciences, 64 (11), 3742–3765.1009

Stephens, G. L., and Coauthors, 2010: Dreary state of precipitation in global models. Journal of1010

Geophysical Research: Atmospheres, 115 (D24), doi:10.1029/2010JD014532.1011

Sun, Q., C. Miao, Q. Duan, H. Ashouri, S. Sorooshian, and K.-L. Hsu, 2018: A review of global1012

precipitation datasets: data sources, estimation, and intercomparisons. Reviews of Geophysics,1013

56 (1), 79–107.1014

Sun, Y., S. Solomon, A. Dai, and R. W. Portmann, 2006: How often does it rain? Journal of1015

Climate, 19 (6), 916–934.1016

Tarnavsky, E., D. Grimes, R. Maidment, E. Black, R. P. Allan, M. Stringer, R. Chadwick, and1017

F. Kayitakire, 2014: Extension of the TAMSAT satellite-based rainfall monitoring over Africa1018

47



and from 1983 to present. Journal of Applied Meteorology and Climatology, 53 (12), 2805–1019

2822.1020

Tian, Y., and C. D. Peters-Lidard, 2010: A global map of uncertainties in satellite-based precipi-1021

tation measurements. Geophysical Research Letters, 37 (24), doi:10.1029/2010GL046008.1022

Tian, Y., and Coauthors, 2009: Component analysis of errors in satellite-based precipita-1023

tion estimates. Journal of Geophysical Research: Atmospheres, 114 (D24), doi:10.1029/1024

2009JD011949.1025

Trenberth, K. E., J. T. Fasullo, and J. Mackaro, 2011: Atmospheric moisture transports from ocean1026

to land and global energy flows in reanalyses. Journal of Climate, 24 (18), 4907–4924.1027

Trenberth, K. E., L. Smith, T. Qian, A. Dai, and J. Fasullo, 2007: Estimates of the global water1028

budget and its annual cycle using observational and model data. Journal of Hydrometeorology,1029

8 (4), 758–769.1030

Trenberth, K. E., and Y. Zhang, 2018: How often does it really rain? Bulletin of the American1031

Meteorological Society, 99 (2), 289–298.1032

Ushio, T., and Coauthors, 2009: A Kalman filter approach to the Global Satellite Mapping of Pre-1033

cipitation (GSMaP) from combined passive microwave and infrared radiometric data. Journal1034

of the Meteorological Society of Japan, 87A (II), 137–151.1035

Vicente, G. A., R. A. Scofield, and W. P. Menzel, 1998: The operational GOES infrared rainfall1036

estimation technique. Bulletin of the American Meteorological Society, 79 (9), 1883–1898.1037

Vila, D. A., L. G. G. de Goncalves, D. L. Toll, and J. R. Rozante, 2009: Statistical evaluation1038

of combined daily gauge observations and rainfall satellite estimates over continental South1039

America. Journal of Hydrometeorology, 10 (2), 533–543.1040

48



Villarini, G., and W. F. Krajewski, 2007: Evaluation of the research version TMPA three-hourly1041

0.25◦ × 0.25◦ rainfall estimates over Oklahoma. Geophysical Research Letters, 34 (5), doi:1042

10.1029/2006GL029147.1043

Viney, N. R., and B. C. Bates, 2004: It never rains on Sunday: the prevalence and implications of1044

untagged multi-day rainfall accumulations in the Australian high quality data set. International1045

Journal of Climatology, 24 (9), 1171–1192.1046

Wang, Y., Z. Guo, and G. Li, 2017: Precipitation estimation and analysis of the Three Gorges Dam1047

region (1979–2014) by combining gauge measurements and MSWEP with generalized additive1048

model. Acta Geographica Sinica, 72 (7), 1207–1220.1049

Weatherhead, E. C., and Coauthors, 1998: Factors affecting the detection of trends: Statistical1050

considerations and applications to environmental data. Journal of Geophysical Research: At-1051

mospheres, 103 (D14), 17 149–17 161.1052

Weedon, G. P., G. Balsamo, N. Bellouin, S. Gomes, M. J. Best, and P. Viterbo, 2014: The WFDEI1053

meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim1054

reanalysis data. Water Resources Research, 50 (9), 7505–7514.1055

Weedon, G. P., and Coauthors, 2011: Creation of the WATCH forcing data and its use to assess1056

global and regional reference crop evaporation over land during the twentieth century. Journal1057

of Hydrometeorology, 12 (5), 823–848.1058

Wolff, D. B., and B. L. Fisher, 2008: Comparisons of instantaneous TRMM ground validation1059

and satellite rain-rate estimates at different spatial scales. Journal of Applied Meteorology and1060

Climatology, 47 (8), 2215–2237.1061

49



Wood, E. F., and Coauthors, 2011: Hyperresolution global land surface modeling: Meeting a1062

grand challenge for monitoring Earth’s terrestrial water. Water Resources Research, 47 (5), doi:1063

10.1029/2010WR010090.1064

Xie, P., and P. A. Arkin, 1997: Global precipitation: a 17-year monthly analysis based on gauge1065

observations, satellite estimates, and numerical model outputs. Bulletin of the American Meteo-1066

rological Society, 78 (11), 2539–2558.1067

Xie, P., M. Chen, S. Yang, A. Yatagai, T. Hayasaka, Y. Fukushima, and C. Liu, 2007: A gauge-1068

based analysis of daily precipitation over East Asia. Journal of Hydrometeorology, 8 (3), 607–1069

626.1070

Xie, P., R. Joyce, S. Wu, S.-H. Yoo, Y. Yarosh, F. Sun, and R. Lin, 2017: Reprocessed, bias-1071

corrected CMORPH global high-resolution precipitation estimates from 1998. Journal of Hy-1072

drometeorology, 18 (6), 1617–1641.1073

Yang, Y., R. J. Donohue, and T. R. McVicar, 2016: Global estimation of effective plant rooting1074

depth: Implications for hydrological modeling. Water Resources Research, 52 (10), 8260–8276.1075

Yatagai, A., K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, and A. Kitoh, 2012:1076

APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a1077

dense network of rain gauges. Bulletin of the American Meteorological Society, 93 (9), 1401–1078

1415.1079

Yin, X., A. Gruber, and P. Arkin, 2004: Comparison of the GPCP and CMAP merged gauge-1080

satellite monthly precipitation products for the period 1979–2001. Journal of Hydrometeorol-1081

ogy, 5 (6), 1207–1222.1082

50



Zambrano-Bigiarini, M., A. Nauditt, C. Birkel, K. Verbist, and L. Ribbe, 2017: Temporal and spa-1083

tial evaluation of satellite-based rainfall estimates across the complex topographical and climatic1084

gradients of Chile. Hydrology and Earth System Sciences, 21 (2), 1295–1320.1085

Zhang, L., W. R. Dawes, and G. R. Walker, 2001: Response of mean annual evapotranspiration1086

to vegetation changes at catchment scale. Water Resources Research, 37 (3), 701–708, doi:1087

10.1029/2000WR900325.1088

Zhang, W., M. Brandt, F. Guichard, Q. Tian, and R. Fensholt, 2017: Using long-term daily satellite1089

based rainfall data (1983–2015) to analyze spatio-temporal changes in the Sahelian rainfall1090

regime. Journal of Hydrology, 550, 427–440.1091

Zhang, X., E. N. Anagnostou, and C. S. Schwartz, 2018: NWP-based adjustment of IMERG pre-1092

cipitation for flood-inducing complex terrain storms: evaluation over CONUS. Remote Sensing,1093

10 (4), 642.1094

Zhu, Y., and Y. Luo, 2015: Precipitation calibration based on the frequency-matching method.1095

Weather and Forecasting, 30 (5), 1109–1124.1096

Zohaib, M., H. Kim, and M. Choi, 2017: Evaluating the patterns of spatiotemporal trends of root1097

zone soil moisture in major climate regions in East Asia. Journal of Geophysical Research:1098

Atmospheres, 122 (15), 7705–7722.1099

Zolina, O., A. Kapala, C. Simmer, and S. K. Gulev, 2004: Analysis of extreme precipitation over1100

Europe from different reanalyses: a comparative assessment. Global and Planetary Change,1101

44 (1–4), 129–161.1102

51



LIST OF TABLES1103

Table 1. Overview of the gridded P datasets incorporated in MSWEP V2 and used for1104

comparison. Abbreviations: G=gauge; S=satellite; R=reanalysis; N=radar;1105

NRT=near real-time. In the spatial coverage column, “global” indicates fully1106

global coverage including ocean areas, whereas “land” indicates that the cov-1107

erage is restricted to the land surface. MSWEP V2 has been added for the sake1108

of completeness. . . . . . . . . . . . . . . . . . . 511109

Table 2. Long-term mean annual P estimates (mm y−1) for global, land, and ocean do-1110

mains from various sources. . . . . . . . . . . . . . . . 521111

52



TABLE 1. Overview of the gridded P datasets incorporated in MSWEP V2 and used for comparison. Abbre-

viations: G=gauge; S=satellite; R=reanalysis; N=radar; NRT=near real-time. In the spatial coverage column,

“global” indicates fully global coverage including ocean areas, whereas “land” indicates that the coverage is

restricted to the land surface. MSWEP V2 has been added for the sake of completeness.

1112

1113

1114

1115

Name Details Data Spatial Spatial Temporal Temporal Reference(s)

source(s) resolution coverage resolution coverage

Datasets incorporated in MSWEP V2

CMORPH CPC MORPHing technique (CMORPH) V1.0
and V0.x

S 0.07◦ ≤ 60◦N/S 30 minutes 1998–NRT1 Joyce et al. (2004)

Daily gauge data Compiled from GHCN-D, GSOD, and other
sources

G − Land Daily 1979–2017 This study (Appendix j)

ERA-Interim European Centre for Medium-range Weather
Forecasts ReAnalysis Interim (ERA-Interim)

R ∼80 km Global 3 hourly 1979–NRT3 Dee et al. (2011)

GPCC FDR Global Precipitation Climatology Centre
(GPCC) Full Data Reanalysis (FDR) V7
extended using First Guess

G 0.5◦/1◦ Land Monthly 1951–NRT2 Schneider et al. (2014b,
2017)

GridSat Derived from the Gridded Satellite (GridSat) B1
infrared archive V02R01 using CDF matching

S 0.1◦ <∼70◦N/S 3 hourly 1980–2016 Knapp et al. (2011); this
study (Appendix c)

GSMaP Global Satellite Mapping of Precipitation
(GSMaP) Moving Vector with Kalman (MVK)
standard V5 supplemented with V6

S 0.1◦ ≤ 60◦N/S Hourly 2000–NRT2 Ushio et al. (2009)

JRA-55 Japanese 55-year ReAnalysis (JRA-55) R ∼60 km Global 3 hourly 1959–NRT2 Kobayashi et al. (2015)

TMPA 3B42RT TRMM Multi-satellite Precipitation Analysis
(TMPA) 3B42RT V7

S 0.25◦ ≤ 50◦N/S 3 hourly 2000–NRT1 Huffman et al. (2007)

WorldClim WorldClim V2.0 monthly climatic dataset, cor-
rected for gauge-undercatch and orographic ef-
fects

G ∼1 km Global Monthly Climatic Fick and Hijmans (2017);
this study (Appendix f)

Datasets used for comparison

CHIRPS V2.0 Climate Hazards group Infrared Precipitation
with Stations (CHIRPS) V2.0

G, S, R 0.05◦ Land, ≤ 50◦N/S Daily 1981–NRT2 Funk et al. (2015b)

CMAP V1707 CPC Merged Analysis of Precipitation
(CMAP) V1707

G, S, R 2.5◦ Global 5 days 1979–2017 Xie and Arkin (1997)

GPCC V2015 Global Precipitation Climatology Centre
(GPCC) Climatology V2015

G 0.25◦ Land Monthly 1951–2000 Schneider et al. (2014b,
2017)

GPCP V2.3 Global Precipitation Climatology Project
(GPCP) Monthly Analysis Product V2.3

G, S 2.5◦ Global Monthly 1996–NRT2 Adler et al. (2003, 2018)

HOAPS V3.2 Hamburg Ocean Atmosphere Parameters and
fluxes from Satellite data (HOAPS) V3.2

S 0.5◦ Ocean 6 hourly 1987–2008 Andersson et al. (2010)

MERRA-2 Modern-Era Retrospective analysis for Research
and Applications, Version 2 (MERRA-2)

G, R ∼50 km Global Hourly 1980–NRT3 Reichle et al. (2017)

MSWEP V1 Multi-Source Weighted-Ensemble Precipitation
(MSWEP) V1

G, S, R 0.25◦ Land 3 hourly 1979–2015 Beck et al. (2017b)

MSWEP V2 Multi-Source Weighted-Ensemble Precipitation
(MSWEP) V2

G, S, R 0.1◦ Global 3 hourly 1979–2017 This study

Stage-IV Stage-IV gauge-adjusted, radar-based dataset G, N ∼5 km CONUS Hourly 2002–NRT1 Lin and Mitchell (2005)

1Available until the present with a delay of several hours.

2Available until the present with a delay of several days.

3Available until the present with a delay of several months.
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TABLE 2. Long-term mean annual P estimates (mm y−1) for global, land, and ocean domains from various

sources.

1116

1117

Domain MSWEP V2 MSWEP V1 GPCC V2015 GPCP V2.3 HOAPS V3.2 MERRA-2 Behrangi et al. (2014)

Global 955 − − 982 − 946 −

Land (excl. Antactica) 839 858 793 853 − 785 −

Land (incl. Antactica) 781 798 − 798 − 735 −

Ocean1 1025 − − 1057 − 1031 10743

Ocean (HOAPS mask2) 1068 − − 1101 1037 1066 −

1Includes the Hudson Bay, Baltic Sea, Mediterranean Sea, Black Sea, Caspian Sea, and Red Sea.

2Smaller mask that excludes coastal and high-latitude regions for which HOAPS does not provide continuous data.

3Based on the 2007–2009 period.
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FIG. 1. (a) Flowchart outlining the main processing steps implemented to produce MSWEP V2. For each step,

the reference to the Appendix subsection that provides detail is provided between parentheses. (b) Example

of the wet-day bias correction for ERA-Interim. Time series of the satellite and reanalysis P datasets and

MSWEP V2 are presented in (c) and (d). The importance of accounting for reporting times when applying

gauge corrections is illustrated in (e) and (f).
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(c) Reporting times of GHCN-D gauges

(a) Detection of erroneous zeros

(b) Location of gauges

(d) Reporting times of GSOD gauges

FIG. 2. (a) Daily P measured at GSOD station 038660 (50.58◦N, 1.30◦W) with the automatically detected

erroneous zeros indicated in red. (b) The gauges used to produce MSWEP V2 in blue (n = 76747) and the

gauges that did not pass the quality control in red (n = 4300). Also shown are the inferred reporting times

(expressed in h UTC) for gauges from the (c) GHCN-D and (d) GSOD databases. A reporting time of +6 h

UTC, for example, means that the daily gauge accumulations represent the 24-hour period starting at 0600 UTC

of the current day and ending at 0600 UTC of the next day.
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(c) GridSat r3 day (d) ERA-Interim r3 day minus CMORPH r3 day

(a) CMORPH r3 day (b) ERA-Interim r3 day

(e) CMORPH βWD (f) ERA-Interim βWD

FIG. 3. Temporal correlations (r3 day) for (a) CMORPH, (b) ERA-Interim, and (c) GridSat. The difference in

r3 day values between CMORPH and ERA-Interim is presented in (d). Also shown is the bias in the number of wet

days (βWD) for (e) CMORPH and (f) ERA-Interim (note the non-linear color scale). The results for CMORPH

and ERA-Interim are representative of the other satellite and reanalysis datasets, respectively. CMORPH is

limited to latitudes ≤ 60◦. Each data point represents a gauge.
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FIG. 4. Relative weights assigned to the gauge-, satellite, and reanalysis-based P estimates shown using a

barycentric color map for the periods (a) 1979–1982, (b) 1983–1999, and (c) 2000–2017. The weights represent

averages over the respective periods. The satellite and reanalysis weights represent cumulative weights assigned

to the respective satellite and reanalysis P datasets.
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FIG. 5. KGE, correlation, bias, and variability ratio scores for the CONUS calculated from 3-hourly P time

series using the Stage-IV gauge-radar dataset as reference. Regions without Stage-IV coverage are shown in

white.
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FIG. 6. The long-term mean P (mm y−1) for MSWEP V2 is presented in (a). Also shown are the differ-

ences in long-term mean P between MSWEP V2 and (b) MSWEP V1, (c) GPCC V2015, (d) GPCP V2.3,

(e) HOAPS V3.2, and (f) MERRA-2. The values represent 1979–2015 for MSWEP V1, 1987–2008 for

HOAPS V3.2, 1980–2017 for MERRA-2, and 1979–2017 for the other datasets. Areas with no data are shown

in white. For HOAPS V2.3, only grid-cells with continuous data are displayed.
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FIG. 7. Global maps of 99.99th percentile 3-hourly P amounts (mm 3h−1) for (a) MSWEP V2, (b) CMORPH,

and (c) ERA-Interim for 2000–2017. CMORPH is limited to latitudes ≤ 60◦. Note the non-linear color scale.
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FIG. 8. The percentage of time without P for (a) MSWEP V2, (b) CMORPH, and (c) ERA-Interim for 2000–

2017. A 0.06 mm 3h−1 threshold was used to identify 3-hourly intervals with P. Areas with no data are shown

in white. Note the highly non-linear color scale.
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FIG. 9. Linear trends in mean annual P (mm y−2) for (a) MSWEP V2, (b) MSWEP V1, (c) CHIRPS V2.0,

(d) CMAP V1707, (e) GPCC FDR V7, (f) GPCP V2.3, (g) HOAPS V3.2, and (h) MERRA-2. The trends

represent 1979–2015 for MSWEP V1, 1981–2017 for CHIRPS V2.0, 1987–2008 for HOAPS V3.2, 1980–2017

for MERRA-2, and 1979–2017 for the other datasets. Areas with no data are shown in white.
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