The effect of aquatraining and dry treadmill training on muscle morphometric and muscle metabolomics in horses.

1De Meeus d’Argenteuil C., 1,2Boshuizen B., 3Van de Winkel D., 1Van Hauwe L, 2de Bruijn M., 3Touwen N., 4Goethals K., 5Oosterlinck M., 6Pille F., 4Vanderperren K. and 1Delesalle C.

1Department of Virology, Parasitology and Immunology, Research Group Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Belgium; 2Wolvega Equine Hospital, Stellingenweg 10, 8474 EA, Oldeholtpade, The Netherlands; 3VHL, University of Applied Sciences, Leeuwarden, The Netherlands; 4Department of Nutrition, Genetics and Ethology, Research Group Biometrics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; 5Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; 6Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Belgium.

Background: Little is known about the effect of training on muscular metabolism and morphometry because of a lack of standardized equine studies. Objectives: (1) comparing muscle morphometric changes induced by dry treadmill training (DT) versus aquatraining (AT), (2) comparing metabolic profiles of the muscle pectoralis profundus (PP) and vastus lateralis of the quadriceps femoris (QF) in dry treadmill trained Friesians (DT_after), untrained Friesians (DT_before) and untrained Warmblood horses. Study design: Prospective clinical study Methods: Twelve untrained Friesians were subjected to 2 different training programs: 7 horses completed 8-weeks of AT, 5 horses a DT training program. Morphometric assessment of 15 muscles was performed at start, after 4 weeks and at finish using ultrasound. Muscle biopsies were harvested from the DT_before and DT_after group at start and finish from the PP and the QF. Metabolomic profiling was performed by (RP)/UPLC-MS/MS and HILIC/UPLC-MS/MS. Results: (1) AT increased muscle diameter of the cervical and thoracic part of the trapezius muscle, brachioccephalicus, QF , semitendinosus, semimembranosus and the thoracic part of the erector spinae (2) DT significantly increased long chain and decreased medium chain acylcarnitines in PP and QF. Early and late stage glycolytic intermediates and pentose-phosphate pathway intermediates were significantly increased in the QF. A significant increase in oxidized glutathione and intermediates of the glutamine/glutamate metabolism and decrease in glycine and acetyl-glycine was found in the PP (p<0.05). Main limitations The effect of AT on muscle metabolomics was not studied yet. Conclusions: AT causes hypertrophy of muscles in the forelimb, back, and hindlimb, particularly muscles involved in forelimb elevation and forward movement, flexion of the hindlimb and muscles used for spine extension. Following 8 weeks of DT, an upregulation of fat oxidation and glycolysis in QF muscle was shown, while the muscle PP showed an upregulation of fat oxidation and amino acid metabolism.

Author’s declaration of interest: No competing interests have been declared. Ethical Animal Research: Ethical approval AVD262002015144. Sources of funding: No funding was provided.