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Effect of boundary-induced chirality on magnetic textures in thin films
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In the quest for miniaturizing magnetic devices, the effects of boundaries and surfaces become increasingly
important. Here we show how the recently predicted boundary-induced Dzyaloshinskii-Moriya interaction (DMI)
affects the magnetization of ferromagnetic films with a C∞v symmetry and a perpendicular magnetic anisotropy.
For an otherwise uniformly magnetized film, we find a surface twist when the magnetization in the bulk is canted
by an in-plane external field. This twist at the surfaces caused by the boundary-induced DMI differs from the
common canting caused by internal DMI observed at the edges of a chiral magnet. Furthermore, we find that
the surface twist due to the boundary-induced DMI strongly affects the width of the domain wall at the surfaces.
We also find that the skyrmion radius increases in the depth of the film, with the average size of the skyrmion
increasing with boundary-induced DMI. This increase suggests that the boundary-induced DMI contributes to
the stability of the skyrmion.
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I. INTRODUCTION

That boundary conditions (BCs) have important conse-
quences pervades many areas of physics. Well-known ex-
amples are the discrete frequencies of a vibrating string
clamped at the edges or different electrostatic solutions that
arise in either Dirichlet BCs or Neumann BCs. The effects
of boundaries are also crucial in micromagnetism and have
been addressed already more than 20 years ago, e.g., see
Ref. [1]. In more recent years, magnetic systems with broken
space inversion symmetry have attracted a lot of attention.
The broken inversion symmetry allows for the Dzyaloshinskii-
Moriya interaction (DMI) which twists magnetic textures in a
chiral way. Therefore, such systems can host novel topological
magnetic textures like chiral domain walls [2–6] and magnetic
skyrmions [7–10]. In these systems it has been shown that the
DMI induces canting of the magnetization at the edge [11,12].
This canting can have a profound effect on the confinement
of modulated magnetic textures like helices and skyrmions
[13–17].

In this paper we exploit the effect of a recently discov-
ered contribution to the boundary condition in systems with
generalized DMI [18]. It has been shown in Ref. [18], by
means of symmetry analysis, that this boundary condition with
generalized DMI requires the full tensorial structure of the
third-rank DMI tensor and not just the antisymmetric part.
Already for the case of a simple ferromagnetic thin film, a new
type of DMI-induced spin structure, i.e., a purely boundary-
driven magnetic twist state at the top and bottom surface, was
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predicted analytically. In this work we study numerically and
analytically the effect of this type of boundary-induced DMI on
the ferromagnetic state, on a domain wall, and on a magnetic
skyrmion in a ferromagnetic film with C∞v symmetry. The
paper is structured as follows. In Sec. II we describe the
system and review the idea of the boundary-induced DMI. In
Sec. III we consider the effect of such a term in an otherwise
uniform state. We do find a chiral edge canting and analyze
it thoroughly in Sec. IV. Subsequently, we study the effect
of the boundary-induced DMI on isolated domain walls and
magnetic skyrmions in Secs. V and VI, respectively. We find
that boundary-induced DMI leads to an increase/decrease of
the domain wall width at the top/bottom surface of the sample
and a depth-dependent increase of the skyrmion radius, as
shown in Fig. 1. Our results are summarized in Sec. VII.

II. MODEL AND METHODS

We model a thin magnetic film (in the xy plane) with
perpendicular magnetic anisotropy (PMA) and generalized
DMI. The free energy functional of the magnetization M(r) =
Msm(r) with a constant saturation magnetization Ms is given
by E = ∫

ε dV for which the energy density is

ε = A(∇m)2 − Km2
z +

∑
μαβ

D
μ
αβmα∂μmβ

−μ0M · Hext − 1

2
μ0M · Hdemag, (1)

with exchange stiffness A, applied field Hext, anisotropy
constant K , and 33 = 27 DMI tensor elements D

μ
αβ . The

indices α and β denote the components of the magnetization
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FIG. 1. Cross section of a skyrmion in an extended film with
boundary-induced DMI (DS �= 0) at the top and bottom surface, and
without boundary-induced DMI (DS = 0). Both systems are shown
on the same scale. The dark contours represent isomagnetizations.

direction, whereas the index μ denotes the component of the
magnetization gradient.

The most prominent effect of the demagnetization can be
translated into a shape anisotropy. For a laterally infinite film
with a magnetization M(z), which varies only along the depth
of the film, one can prove that the use of the effective anisotropy
describes the demagnetization exactly (see the Appendix).
Therefore, we do not calculate the demagnetization energy
explicitly. Instead, we approximate the demagnetization by
lowering the anisotropy parameterK to the effective anisotropy
parameter Ke = K − μ0M

2
s /2. For the chiral states, such as

domain walls and skyrmions, we expect this approximation
to be valid for thin films, but it becomes suboptimal for very
thick films. In this case, full-blown three-dimensional (3D)
micromagnetic simulations, which include full computation
of the magnetostatic interactions, are needed.

We study films with a thickness d larger than the typical
length scale ξ = √

A/Ke. One could expect that the effect of
the boundary-induced DMI in very thin films (d � ξ ) is even
more pronounced. However, we do not consider such thin films
in this paper, because the micromagnetic framework is not
suited to study a varying magnetization on dimensions smaller
than the typical length scale ξ . For these thin films, one should
instead resort to an atomistic description of the film, which lies
outside the scope of the present analysis.

To reduce the number of free parameters, we can eliminate
the exchange stiffness A and the effective anisotropy constant
Ke by expressing relevant quantities in units of the length scale
ξ and the critical DMI strength Dc = 4

√
AKe/π . The critical

DMI strength corresponds to the DMI strength for which
the domain wall energy Ewall = 4

√
AK − πD is exactly zero

[11]. The domain wall energy for DMI strengths below Dc is
negative which allows for the formation of isolated skyrmions.

Furthermore, we will express magnetic fields strengths in
units of the critical field hc = 2Ke/μ0Ms needed to turn the
magnetization fully in-plane. Using the demagnetization ap-
proximation and the above definitions, we obtain the following
rescaled energy density:

ε

Ke
= (ξ∇m)2 − m2

z − 2m · Hext

hc

+
∑
μαβ

4

π

D
μ
αβ

Dc
mαξ∂μmβ. (2)

In this paper we concentrate our discussion on magnetic
thin films with C∞v symmetry. In this case there are only
four independent tensor coefficients in the DMI tensor: Dx

xz =
D

y
yz, Dz

xx = Dz
yy , Dx

zx = D
y
zy , and Dz

zz. The remaining tensor
coefficients vanish because of the symmetry [18]. Note that we
do not assume symmetry between the top and bottom surface
here. In the case of an additional mirror symmetry between the
up and down surface, all DMI tensor elements would be zero
and hence there would be no DMI. One way to introduce an
asymmetry between the surfaces which affects the DMI tensor,
is to couple one of the surfaces to a nonmagnetic layer with a
strong spin-orbit coupling [19].

The DMI energy density terms given in Eq. (1) can be re-
arranged in terms which are symmetric and antisymmetric for
a permutation of the magnetization components (α ↔ β). Ac-
cording to this rearrangement, we redefine the four independent
tensor coefficients by three symmetric DMI parameters D

(1)
S ,

D
(2)
S , D(3)

S , and an asymmetric DMI parameter DA, as follows:

Dx
xz = Dy

yz ≡ D
(1)
S + DA, (3a)

Dx
zx = Dy

zy ≡ D
(1)
S − DA, (3b)

Dz
xx = Dz

yy ≡ D
(2)
S , (3c)

Dz
zz ≡ D

(3)
S . (3d)

Because the magnetization m is normalized, the symmetric
DMI parameters D

(2)
S and D

(3)
S can be combined using

DS ≡ D
(2)
S − D

(3)
S (4)

in the free energy, without losing generality. Thus, only three
relevant DMI parameters remain: DA, DS, and D

(1)
S .

We will refer to the antisymmetric DMI terms as the internal
DMI because these DMI terms contribute to the energy density
within the bulk of the film. For the considered symmetry
group (C∞v), the internal DMI corresponds to the common
interfacially induced DMI which is caused by the asymmetry
between the surfaces [19]. In contrast, the symmetric DMI
terms lead to an energy contribution which depends only on
the surface magnetization. To demonstrate this, we integrate
the energy density terms related to D

μ
αβ and D

μ
βα over μ:∫ c

a

[
D

μ
αβmα∂μmβ + D

μ
βαmβ∂μmα

]
dμ

= D
μ
αβ − D

μ
βα

2

∫ c

a

[mα∂μmβ − mβ∂μmα] dμ

+ D
μ
αβ + D

μ
βα

2
mαmβ

∣∣μ=c

μ=a
. (5)
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Note that the symmetric part depends only on the magnetiza-
tion at the surfaces μ = a and μ = c. Therefore, we will refer
to the symmetric DMI terms as the boundary-induced DMI.
In our system, this means that the energy term related to DS

depends only on the magnetization at the top t and bottom b

surface of the film. The energy term related to D
(1)
S depends

only on the magnetization at the edges (lateral surfaces) of a
finite film and is irrelevant in case of a laterally infinite film.

In the following we will scrutinize the effect of the
boundary-induced DMI at the top and the bottom surface
on selected magnetic textures including chiral domain walls
and skyrmions. As a general procedure for all examples
studied, we will first simplify the energy density of Eq. (1)
by taking into account the symmetry of the specific system. If
possible, we minimize the energy functional analytically using
variational calculus. Complementary, we resort to a numerical
minimization of the energy. To this end, we discretize the
simplified expression for the free energy and calculate its
gradient with respect to the magnetization at each grid point.
The used grid size is 0.02ξ in the z direction and 0.1ξ in the xy

plane unless otherwise mentioned. Using the Barzilai-Borwein
gradient method, we minimize the energy starting from an
initial guess of the equilibrium state [20].

III. QUASIUNIFORM STATE

In this section we study the surface twist of an otherwise
uniformly magnetized film, which is described by the model
of Eq. (1) with an external in-plane magnetic field Hext. The
anisotropy constant Ke is assumed to be positive, Ke > 0, so
that the magnetization is collinear with the z axis in absence of
Hext. As we consider a laterally infinite film, the equilibrium
state close to the uniform state will not vary along the x or
y direction, but a surface twist in the z direction is to be
expected due to the boundary-induced DMI [18]. Under these
considerations the use of an effective anisotropy captures the
effects of the demagnetization exactly (see the Appendix).
We rotate the coordinate system so that the x axis is aligned
with the applied field, i.e., Hext = hêx with h > 0. Now the
in-plane field cants the magnetization in the x direction away
from the film normal (z direction). Hence, the equilibrium
magnetization is fully described by the angle ψ (z), which
describes the tilting away from the x axis:

m(z) = [cos ψ (z), 0, sin ψ (z)]. (6)

The above model contains only three relevant free pa-
rameters: the applied field h, the symmetric DMI parameter
DS, and the film thickness d. Note that the value of the
antisymmetric DMI parameter DA is irrelevant in this case
since the magnetization does not vary in the x and y direction
[see upper indices in Eqs. (3a) and (3b)]. Furthermore, we will
assume that DS is positive without losing generality: when
switching the sign of DS, the role of the top and bottom surface
simply interchange. Combining the energy density with the
magnetization ansatz of Eq. (6) leads to

ε = A(∂zψ )2 − 2DS sin ψ cos ψ ∂zψ

−Ke sin2 ψ − Msh cos ψ. (7)

Minimizing the free energy per surface area
∫

ε dz yields an
expression for the magnetization profile. We first calculate the
case without boundary-induced DMI (DS = 0) being identical
to the bulk value ψB of a thick film with boundary-induced
DMI. For this case, we obtain

cos ψB = h

hc
for h < hc = 2Ke

μ0Ms
. (8)

For an in-plane field with strength h larger than the critical field
strength hc the magnetization is fully in-plane, i.e., ψB = 0. In
the absence of an external in-plane field, the magnetization in
the bulk is oriented out-of-plane, either up or down, so ψB =
±π/2.

Let us now consider the case with a nonvanishing boundary-
induced DMI. As we will show below, an external in-plane field
and a nonzero symmetric DMI strengthDS are the prerequisites
for the occurrence of surface twists in the quasiuniform state
in films. The minimization of the energy leads to the following
second order differential equation for ψ (z):

ξ 2∂2
z ψ + cos ψ sin ψ − h

hc
sin ψ = 0, (9)

in combination with the Neumann BC [18]

ξ∂zψ |t,b = 2DS

πDc
sin(2ψt,b ). (10)

Note that this boundary condition for the top and bottom
surface due to the boundary-induced DMI is structurally
different than the usual considered Neumann BC for the
lateral surfaces, which reads as ξ∂nψ = 2DA/πDc with n
being the normal of the lateral surface [11]. Consequently,
the surface twists studied here differ fundamentally from the
common edge canting at the lateral edges. In what follows, we
will study the surface twists in the thick film limit analytically
and resort to a numerical minimization of the free energy for
films with a finite thickness.

A. Thick film limit (d → ∞)

To study this case, we consider a ferromagnet which takes
up half the space. We fill the upper half of the space (z > 0)
to study the bottom surface of the thick film, and the bottom
half (z < 0) for the respective consideration as the top surface.
We need to handle both cases explicitly because the surface
DMI term removes the symmetry between the magnetization
profiles at the top and bottom surface. To exploit the effects
of the BC, we integrate Eq. (9) over ψ , starting from the
magnetization in the bulk ψ (z = ±∞) = ψB and obtain an
equation that is valid for a surface at the z = 0 surface in both
cases:

(ξ∂zψ )2 = cos2 ψ − cos2 ψB − 2
h

hc
(cos ψ − cos ψB). (11)

Here we assumed that the magnetization is uniform in the bulk,
and thus ∂zψ |±∞ = 0. Filling in the BC [Eq. (10)] in the l.h.s. of
Eq. (11) yields an equation for the surface magnetization angle
at ψ (z = 0), which has four solutions ±ψt,b in total. Here we
use the bottom indices t and b to indicate the solution at the top
and bottom surface, respectively. The positive values are the
solutions for ψB � 0 and the negative solutions for ψB � 0.
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FIG. 2. (a) Out-of-plane magnetization mz at the top surface
(blue), the bottom surface (red), and in the bulk (black) of a very thick
film as a function of an external in-plane field hêx for symmetric DMI
parameter DS = 0.5Dc (solid line) and DS = 0.2Dc (dashed line).
(b) The magnetization profile mz(z) near the top and near the bottom
surface of a thick film for an external in-plane field h = 0.6hc. The
surface is positioned at z = 0 in both cases. The same coloring and
line style is used as in (a). The dots in two panels denote the same top
and bottom surface magnetization.

Assuming ψ (z) is monotonic, we can derive the inequalities

0 � |ψb| � |ψB| � |ψt | � π

2
(12)

from the BC, which can then be used to distinguish the different
solutions.

Figure 2(a) shows the out-of-plane magnetization at the
surfaces mz = ± sin ψt,b as a function of the applied field. Note
that the magnitudes of the surface twist at the top and bottom
surface are in general different from each other: |ψt − ψB| �=
|ψb − ψB|. Remember from Sec. II that the boundary-induced
DMI can only exist if there is an asymmetry between the
surfaces, which asserts the found asymmetry between the
top and bottom surface twist. However, in Ref. [18] Hals
et al. studied an equivalent problem to first order in the DMI
parameter DS. In this limiting case they found a symmetric
estimation of the surface twist at the top and bottom surface.

In this model there are two critical field strengths. First,
there is the critical field strength hc already defined in Eq. (8),
which turns the bulk magnetization fully in-plane. One can
deduce from the BC in Eq. (10) that if the bulk magnetization
is in-plane then also the magnetization at the bottom surface
is fully in-plane. The second critical field strength h′

c can be
defined as the minimal field strength needed to turn the mag-
netization at the top surface fully in-plane. This corresponds
to a solution that has an in-plane magnetization everywhere

in the film, i.e., ψ (z) = 0. Filling in the BC and an infinitely
small magnetization angle in Eq. (11) yields an expression for
the second critical field:

h′
c = min

ψ (z)=π/2
h = hc

[
1 +

(
4DS

πDc

)2
]
. (13)

The increase of the critical field strength h′
c with the boundary-

induced DMI strength DS can be intuitively understood by
noting that a stronger boundary-induced DMI leads to a larger
surface twist, and consequently, a larger in-plane field is
needed to turn the top surface magnetization fully in-plane.
For in-plane field strengths between the two critical values,
the magnetization in the bulk and at the bottom surface is
in-plane while the magnetization at the top surface has an
out-of-plane component. In this case, the surface twist at the top
is degenerate in the sense that the out-of-plane component can
either be positive or negative while having the same minimal
energy.

Integration of Eq. (11), starting from the magnetization at
the open surface, yields an implicit equation for the magneti-
zation profile ψ (z):

z =
∫ ψ (z)

±ψt,b

dψ ′√
cos2 ψ ′ − cos2 ψB − 2 h

hc
(cos ψ ′ − cos ψB)

.

(14)

The profile of the surface twist near the top and bottom surface
is shown in Fig. 2(b). The gradient is positive at the bottom and
the top surface, as is expected for a positive boundary-induced
DMI. The figure also shows the asymmetry in the solutions for
the bottom and the top surface.

B. Finite thickness

Calculating the magnetization profile of the quasiuniform
state in a film with a finite thickness d > 0 is challenging to
approach analytically. That is why we resort to a numerical
minimization of the free energy given in Eq. (7). The obtained
magnetization angle profiles ψ (z) are shown in Fig. 3(b)
for films of different thicknesses d. Also here, we see the
asymmetry in the twist at the top and bottom surface of thick
films. Figure 3(c) shows the twists at the top surface ψt and the
bottom surface ψb as a function of the thickness d. For thick
films, the twists at the surfaces converges to the analytical result
of the thick film limit, derived in Sec. III A.

IV. EDGE CANTING

From the Neumann BC given in Eq. (10), one can deduce
that a surface twist in the ferromagnetic ground state of a
laterally infinite film only occurs when the magnetization is
canted away from the easy axis. In the previous section we
showed that such canting can be achieved by applying an
in-plane field. In films with limited lateral size, this canting
away from the easy axis occurs at the edges without applied
field due to the internal DMI [11,12]. Consequently, one could
expect that even without an applied field, surface twists also
can occur close to the sample edges.

When we minimize the energy analytically without
boundary-induced DMI, we find that the canting of the
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FIG. 3. (a) The magnetization profile mz(z) = sin ψ (z) in films
of different thickness d , for symmetric DMI parameter DS = 0.5Dc,
and in-plane field h = 0.6hc, obtained after a numerical minimization
of the free energy. The inset shows a sketch of the magnetization
exhibiting surface twists in a film with finite thickness d . (b) The
magnetization at the top (bottom) surface as a function of the film
thickness d . Dashed lines represent the asymptotic values for d → ∞,
which were calculated analytically.

magnetization along the x direction close to the right edge
(x = a) of a finite size film is given by

ψ (x) = 2 arctan

[
e−(x−a)/ξ tan

(
ψ0

2
+ π

4

)]
− π

2
(15)

for x < a. Here ψ0 = arccos(2DA/πDc) is the canting angle
at the edge. From this we conclude that if the internal DMI
strength DA is large, then a strong canting away from the
easy axis is to be expected close to the edge. If we add a
nonzero boundary-induced DMI at the top and bottom surface
(DS �= 0), then the magnetization will gain an additional twist
in the z direction close to the edge where the magnetization
is canted away from the easy axis. For the sake of clarity, we
assume that there is no boundary-induced DMI at the lateral
surface (D(1)

S = 0). To relax the magnetization in the vicinity
the edge of a film we use again the steepest gradient method.
The obtained equilibrium magnetization at the edge is shown
in Fig. 4(b). Note how the relaxed magnetization twists along
the x as well as the z direction close to the edge. When we
compare the surface twist which occurs near the edge of a
sample with the surface twists in a laterally infinite film induced
by an in-plane applied field [shown in Fig. 4(a)], we see that
the magnitudes of the surface twists are comparable where the
bulk magnetization has the same canting angle.

V. ISOLATED DOMAIN WALL

In this section we discuss the surface twist in a straight
isolated domain wall in a laterally extended film in presence of
boundary-induced DMI. As done previously, we consider an
infinite film with thickness d. This time however, we assume
that the magnetization m(x, z) is constant along the y direction,
but is allowed to vary in the x and z directions. Furthermore,

z
/
ξ

x/ξ

z
/
ξ

W(z)

(a) (b)

(c)

FIG. 4. Exemplary cross sections of the magnetization in a thin
film, for the three different cases in which surface twists occur.
(a) Quasiuniform state in a laterally infinite film with an applied field
Hext = 0.5hcêx . (b) Canting at a sample edge without applied field.
(c) Domain wall in a laterally infinite film without applied field. In all
cases, the film has a thickness d = 5ξ , a symmetric DMI parameter
DS = 0.6Dc, and an asymmetric DMI parameter DA = 0.9Dc. The
color represents the angular difference �ψ with the magnetization
in absence of the boundary-induced DMI (DS = 0). The distance
between the indicated lines in (c) is the domain wall width W (z)
for DS = 0.6Dc (solid line) and for DS = 0 (dotted line).

we consider a nonzero internal DMI strength |DA| > 0, which
causes the domain wall to be of the Néel type with a chirality
fixed by the sign of DA. Because we only concern ourselves
with statics, the actual magnitude of the internal DMI has
no influence on the profile of the domain wall. Under these
assumptions, the system under study is two dimensional and
has only two free parameters: the symmetric DMI parameter
DS and the thickness of the film d. The magnetization can
be described by m = (cos ψ, 0, sin ψ ) with the out-of-plane
angle ψ (x, z) being a function of x and z. To determine the
equilibrium state, we numerically minimize the free energy
while taking into account the symmetry of the problem and
the above assumptions.

Figure 4(c) shows an example of a resulting cross section
of a domain wall. As can be deduced from the BC given
in Eq. (10), the surface twist is only present in regions
where the magnetization is neither parallel, nor orthogonal
to the interface. Thus, the surface twist occurs at the left and
at the right of the domain wall, but not at its center. Due to
the surface twist, the domain wall width varies along the z

direction. In order to quantify this dependence, we use the
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FIG. 5. The average domain wall width 〈W〉 and the domain wall
width at the topWt and bottomWb of a thin film with symmetric DMI
strength DS = 0.5Dc (solid line) and DS = 0.6Dc (dashed line), as a
function of its thickness d .

following definition of the domain wall width:

W (z) =
∫ √

1 − m2
z (x, z) dx =

∫
|cos ψ (x, z)| dx. (16)

For very thick films (d → ∞), one can assume that the
shape of the domain wall in the bulk is not affected by
the boundary-induced DMI. In that case, the domain wall
profile [21] is given by the Gudermannian function ψ (x) =
gd(x) = 2 arctan[exp(x/ξ )] − π/2. Using the definition given
in Eq. (16), we obtain the domain wall width in the bulk
WB = πξ . If we add the boundary-induced DMI, the domain
wall width will differ from πξ and will vary along the z

direction. The average domain wall width and the domain wall
widths at the top and bottom surface are shown in Fig. 5 as
a function of the film thickness d and the boundary-induced
DMI strength.

In case of a positive boundary-induced DMI DS > 0, Néel
domain walls are wider at the bottom and thinner at the top
surface, independently of the chirality of the domain wall. The
opposite is true if the boundary-induced DMI is negative. For
increasing film thicknesses, the difference between the domain
wall width at the top and bottom surface increases until the
domain wall width eventually converges to a fixed width which
is proportional to the DMI strength DS. The broadening of the
domain wall at the bottom surface has a stronger extent than
the narrowing at the top surface. Consequently, the average
domain wall width in films of finite thickness will be larger
than the domain wall width in absence of a boundary-induced
DMI: 〈W〉 > WB . This effect is more pronounced in thin films
(d < 5ξ ).

VI. ISOLATED SKYRMION

In this section we analyze the influence of the boundary-
induced DMI on the profile of an isolated skyrmion. To
this end, we suppose that the magnetization has a circular
symmetry and has a purely Néel character. This is a reasonable
assumption because in C∞v systems a Bloch-like twist leads to
an increase of the free magnetic energy. Using this assumption,

z
/
ξ

z
/
ξ R0(z)

r/ξ

z
/
ξ

mz

(a)

(b)

(c)

FIG. 6. Skyrmion profile in a film with DMI strength DA =
0.8Dc and thickness d = 2ξ (a) without boundary-induced DMI, and
(b) with boundary-induced DMI DS = 0.5Dc, and (c) DS = −0.5Dc.
A 3D representation of the deformed skyrmion is readily shown in
Fig. 1.

the magnetization can be described by

m = [cos φ cos ψ (r, z), sin φ cos ψ (r, z), sin ψ (r, z)] (17)

in the polar coordinate system (r, φ, z). Due to the circular
symmetry constraint, the magnetization is fully determined by
the angle ψ (r, z). The total energy of the system is given by

E[ψ] = 2π

∫ R

0

∫ d

0
ε(r, z)r dr dz, (18)

with the magnetic free energy density

ε = A

(
(∂rψ )2 + (∂zψ )2 + cos2 ψ

r2

)
+ Ke cos2 ψ

+DA

(
∂rψ − cos ψ sin ψ

r

)
− 2DS sin ψ cos ψ∂zψ.

(19)

Note that, also here, the term with the symmetric DMI parame-
ter DS can be integrated over the z direction analytically, which
reduces this term to a top and a bottom surface energy term.
Finally, we minimize the energy functional E[ψ] numerically.

Figure 6 shows a typical profile of a relaxed skyrmion. As
we assume a radial profile, we only plot the magnetization
texture of the skyrmion from its center to its boundary, i.e., half
of the front of Fig. 1. Similar to the straight isolated domain
wall, we observe narrowing/broadening of the domain wall at
the top/bottom surface due to the boundary-induced DMI. The
asymmetry of the deformation at the top and bottom surface
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Ds/D

R
0
/
ξ

d = 1ξ

Ds/D

d = 2ξ

Ds/D

d = 4ξ

D /D =

FIG. 7. The radius R0(z) of an isolated skyrmion in a film with
thickness d increases monotonically from the top (solid line) to
the bottom surface (dashed line). The skyrmion size at the top and
the bottom surface are shown as function of the boundary-induced
DMI DS (horizontal axis) and the bulk DMI DA (color). The dotted
reference line is the skyrmion size in absence of boundary-induced
DMI (DS = 0).

causes an increase in the skyrmion size and a 3D deformation
of the skyrmion profile. This 3D deformation of the skyrmion
profile differs from the one reported in Ref. [22]. In this paper
Rybakov et al. studied numerically the 3D structure of Bloch
skyrmions in chiral magnets where the DMI is induced by
the noncentrosymmetric lattice. They found that, in absence
of boundary-induced DMI, the magnetization in the outlining
domain wall makes a small rotation in the xy plane, whereby
the skyrmion loses its pure Bloch character. In our case, the
magnetization orientation of the domain wall does not vary
along the z direction, but it is the domain wall position and
width which changes near the surfaces due to the boundary-
induced DMI. We performed a parameter study in order to
check how these deviations depend on the thickness of the
film and on the DMI strengths DS and DA. The results of this
study are shown in Fig. 7.

The skyrmion size in very thin films is virtually constant
along the z direction [see Fig. 7(a)], whereas it varies strongly
along the z direction in thick films [see Figs. 7(b) and 7(c)],
which leads to a skewed skyrmion domain wall which is clearly
visible in Fig. 6. More interestingly, the average skyrmion
size depends strongly on both the inner DMI strength DA

and the boundary-induced DMI strength DS. It is already
known that the skyrmion size increases for an increasing
internal DMI strength DA < Dc, and that for an internal DMI
strength larger than the critical value Dc, a skyrmion in an
extended film will expand and/or deform in order to maximize
its circumference. Due to this unwieldy behavior for a strong
internal DMI, we limited our parameter study to internal DMI
strengths below the critical value (DA < Dc). For a given
internal DMI strength DA, the average skyrmion size increases

for an increasing boundary-induced DMI strength DS. This
dependence is especially notable for internal DMI strengths
just below the critical value (see black lines in Fig. 7). If we
look closely at Figs. 7(a) and 7(b), the results seem to suggest
that in thin films the skyrmion size diverges when the internal
DMI as well as the boundary-induced DMI are strong, but still
lower than the critical DMI strength Dc.

One may expect that the boundary-induced DMI has an
influence on the stability of a skyrmion. Atomistic simulations
of skyrmions have shown that a skyrmion can collapse into the
ferromagnetic ground state [23–28]. In the case of a weak inter-
nal DMI or a perpendicular applied field in the opposite direc-
tion as the center magnetization of the skyrmion, the skyrmion
is small and prone to collapse into the ferromagnetic ground
state. Vice versa for an increasing internal DMI strength or an
increasing perpendicular applied field in the same direction as
the center magnetization, the skyrmion size increases together
with the skyrmion stability. In the results of our parameter study
of the 3D deformed skyrmions, we see that the skyrmion size
increases with both the internal DMI as well as the boundary-
induced DMI. This suggests that not only the internal DMI or
a perpendicular applied field, but also the boundary-induced
DMI, counteracts the collapse of skyrmions in thin films.

Finally, one could also expect that the boundary-induced
DMI has an effect on skyrmion dynamics. The change in the
skyrmion and domain wall profile will most likely influence
the eigenmodes and the motion under an applied spin-polarized
current, which might be of importance for the development of,
e.g., racetrack memory [29–32].

VII. CONCLUSIONS

To summarize, in this paper we have analyzed the influence
of the recently predicted boundary-induced Dzyaloshinskii-
Moriya interaction (DMI) on the magnetization in a uniform
state, a domain wall or a skyrmion, or in vicinity of an edge, in
ferromagnetic films with a C∞v symmetry and a perpendicular
magnetic anisotropy. We have rendered pronounced effects that
lead to novel and peculiar profile changes along the thickness of
the film for all considered magnetic textures. Among the most
notable effects is the deformation of the domain wall between
the surfaces of the film, as well as the increase of the average
skyrmion size, which suggests that the boundary-induced DMI
can positively contribute to the skyrmion stability.

In this paper we solely focused on the effects of the
boundary-induced DMI at the top and bottom surface of thin
films with a C∞v symmetry. In such systems, the internal
DMI favors rotation of the magnetization in the x and y

direction but does not induce a change in the z direction.
Hence, all variations of the magnetization in the z direction
can be attributed to the presence of the boundary-induced
DMI, which makes these systems an ideal first study case.
However, one can expect to find similar phenomena owing to
boundary-induced DMI in other systems as well. For instance,
it is worth to investigate the case in which the internal DMI of
a film already leads to a variation in the z direction and where
the boundary-induced DMI results in an additional twist. Also
in heterochiral magnets, a boundary-induced DMI can occur
at interfaces where the internal DMI strength changes [27,33],
which could lead to an additional twist to the already predicted
spin canting at the interface.
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One could also expect that the variation of the magnetization
along the film’s normal can lead to nontrivial excitations in
this direction and a peculiar dynamics when applying a per-
pendicular spin-polarized current. Studying the magnetization
dynamics would not only be interesting for the design of
spintronic devices, but might also provide an indirect way to
measure the boundary-induced DMI strength.
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APPENDIX: DEMAGNETIZATION OF QUASIUNIFORM
MAGNETIZED FILM

In this Appendix we prove that the demagnetization of an
infinite film can be exactly described by a shape anisotropy if
one assumes that the magnetization M(z) varies only along the
z direction.

The demagnetization field is given by

Hdemag = H� + H∂�, (A1)

with a contribution from volume charges:

H�(r) = − 1

4π

∫
�

∇ · M(r′)
r − r′

|r − r′|3 d3r′, (A2)

and a contribution from the surface charges:

H∂�(r) = 1

4π

∫
δ�

n(r′) · M(r′)
r − r′

|r − r′|3 d2r′. (A3)

When considering a magnetization which varies only along the
z direction, then the integration over x and y in the volume and
surface integrals can be carried out as follows:

∫ +∞

−∞

∫ +∞

−∞

r − r′

|r − r′|3 dx dy = 2π
z − z′

|z − z′| êz. (A4)

For the volume integral we still need to integrate over the depth
of the film. This yields

H�(z) =
[
Mt

z + Mb
z

2
− Mz(z)

]
êz, (A5)

where the upper indices t and b denote the magnetization at the
top and bottom of the film, respectively. The surface integral
reduces to

H∂�(z) = −Mt
z + Mb

z

2
êz. (A6)

Finally, we obtain the demagnetization energy density

εdemag = −μ0

2
M · Hdemag = μ0M

2
s

2
m2

z, (A7)

which is equivalent to the energy density of a film with uniaxial
anisotropy with an hard axis perpendicular to the film and
anisotropy constant −μ0M

2
s /2.
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