Accounting for soil quality effects of agricultural land management in LCA

Lieselot Boone¹, Rodrigo A.F. Alvarenga¹, Veerle Van Linden², Isabel Roldán-Ruiz² and Jo Dewulf¹

¹Research Group EnVOC, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
²Institute for Agricultural, Fisheries and Food Research (ILVO), Burgemeester Van Gansberghelaan 92, 9820 Merelbeke, Belgium
E-mail contact: lieselot.boone@ugent.be

The growing demand for food and feed has put a pressure on the agricultural sector, which resulted in agricultural intensification. This entails many adverse environmental impacts and takes a huge toll on land resources; which can result in land degradation. Especially farm management can affect soil quality (e.g. soil organic carbon, SOC) by e.g. the choice of crop rotations. The agricultural sector is therefore forced into a more sustainable approach. To assess the environmental sustainability, life cycle analysis (LCA) is a powerful tool. As soil quality is an inherent aspect of agricultural sustainability, life cycle impact assessment (LCIA) methods should account for the effect of agricultural land management on soil quality.

Despite a lot of efforts that have already been made, there are still several research needs on the integration of soil quality effects in LCIA methods. Ideally, inventory data are translated into the effect on the environment by indicators moving along the cause-effect chain from mid- to endpoint towards an area of protection (AoP). Although soil quality changes are often related to the AoP ecosystem health, we focus on the AoP natural resources as we refer to the impact of land management on soil by the long-term ability to produce biomass. To improve the usefulness in the agricultural sector, different land use intensities should be distinguished.

We therefore introduce three interdependent LCIA indicators. At early midpoint, SOC changes (SOC², indicator 1) are used to indicate the long-term effect of agricultural land use on soil. This can result in biomass productivity losses (BPL, indicator 2). At endpoint, we propose additional land requirements (ALR, indicator 3) as indicator, which corresponds to the area needed to produce the yield that has been lost. To calculate characterization factors (CFs), we chose as reference situation the highest achievable SOC stock and yield, which are calculated for each initial soil quality stock. The models RothC and EU-Rotate_N are used to quantify SOC stocks and yields, respectively.

CFs are developed for several rotation systems in Flanders. Though, the elaborated framework is generally applicable and allows the calculation of CFs for other regions. Thanks to the use of an achievable reference situation and a distinction between land management strategies (good, bad and standard practices), the indicators can be a useful tool to strive for a more sustainable agriculture.