Residential landscape as a predictor of psychosocial stress in the life course from childhood to adolescence

Carola J.C. Van Aartb,c, Nathalie Michelsa, Isabelle Sioena,b, Annelies De Deckerb, Esme M. Bijnensc, Bram G. Janssenc, Stefaan De Henauwa,d, Tim S. Nawrotc,e

a Department of Public Health, Ghent University, Corneel Heymanslaan 10 4K3, 9000 Ghent, Belgium
b Department of Food Safety and Food Quality, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
c Centre for Environmental Sciences, Hasselt University, Martelarenlaan 43, 3500 Hasselt, Belgium
d Department of Health Sciences, Vesalius, University College Ghent, Keramiekstraat 80, 9000 Ghent, Belgium
e Department of Public Health and Primary Care, Leuven University, Kapucijnenvoer 35 blok d, 3000 Leuven, Belgium

\textbf{A B S T R A C T}

\textbf{Background:} The effects of residential landscape, i.e., land use and traffic, on psychosocial stress in children are unknown, even though childhood stress might negatively affect normal development. In a longitudinal study, we investigate whether the residential landscape predicts childhood psychosocial stress and whether associations are independent of noise and air pollution.

\textbf{Methods:} Belgian children aged 6.7–12.2 (N = 172, 50.9% boys) were followed for three years (2012–2015). Information on stress was obtained using standardized behavioral and emotional questionnaires and by a measure of hair cortisol. Residential landscape, including natural, agricultural, industrial, residential areas, and traffic, in a 100-m to 5-km radius around each child's home was characterized. Cross-sectional and longitudinal associations between psychosocial stress and the residential landscape were studied using linear regression and mixed models, while adjusting for age, sex, and parental socioeconomic status.

\textbf{Results:} Natural landscapes were positively associated with better emotional status (increased happiness and lower sadness, anxiousness, and total negative emotions, $\beta = 0.14–0.17$, 95% CI = 0.01–0.30). Similarly, we observed an inverse association between residential and traffic density with hyperactivity problems ($\beta = 0.13–0.18$, 95% CI = 0.01–0.34). In longitudinal analyses, industrial area was a predictor of increases in negative emotions, while a natural landscape was for increases in happiness. Only the effect of natural landscape was partly explained by residential noise.

\textbf{Conclusion:} Residential greenness in proximity to a child's residence might result in a better childhood emotional status, whereas poorer emotional status and behavioral problems (hyperactivity problems) were seen with residential and industrial areas and increased traffic density in proximity to a child's home.

\section{1. Introduction}

Exposure to nature has beneficial effects on human health, whereas decreased exposure to nature may result in poorer health. The literature shows that a lack of green environment might increase weight, type 2 diabetes, cardiovascular disease, anxiety disorders, and depression (Lachowycz and Jones, 2011; James et al., 2015; Bodicoat et al., 2014; Maas et al., 2009; McEachan et al., 2016; Beyer et al., 2014). Similar associations are also seen with urban environments, e.g., traffic and industrial areas, which could increase depressive symptoms and lower general psychological health (Orban et al., 2016; Marques and Lima, 2011). An explanation for these findings might be supported by the Biophilia hypothesis of Wilson (1984) which suggests that humans have evolved to focus on life and lifelike processes (e.g., nature and plants). Ulrich's psycho-evolutionary theory elaborates further on this, that exposure to nature might reduce stress (Ulrich et al., 1991).

Thus, land use might have an influence on an individual's psychological state and psychosocial stress level. Psychosocial stress refers to a chronic state of psychological and/or social stressor load, which leads to prolonged activation of three highly integrated systems, i.e., the immune, nervous, and endocrine systems, with detrimental physiological consequences, such as cardiovascular and neurodegenerative

* Corresponding author at: Department of Public Health, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10 4K3, 9000 Ghent, Belgium.

\textit{E-mail address:} Carola.vanAart@ugent.be (C.J.C. Van Aart).

\url{https://doi.org/10.1016/j.envint.2018.08.028}

Received 15 March 2018; Received in revised form 9 August 2018; Accepted 10 August 2018

0160-4120/ © 2018 Elsevier Ltd. All rights reserved.
disorders (McEwen, 2007; Danese and McEwen, 2012). The literature on adults shows, in correspondence with the psycho-evolutionary theory, that green space could reduce stress (Roe et al., 2013; Thompson et al., 2012; Nielsen and Hansen, 2007; Lee and Maheswaran, 2011; Grahn and Stigsdotter, 2003).

Despite the current knowledge that land use might influence psychosocial stress in adults, empirical evidence of this effect during childhood and adolescence is lacking, even though psychosocial stress at this age might be harmful for future health conditions. Therefore, we evaluated an affluent and densely populated society to determine whether different types of residential landscape, described by land use (semi-natural and forested areas, agricultural areas, industrial areas, and residential areas) and traffic (residential traffic density and proximity to major roads) impact psychological stress during the development of a human from child to (young) adolescent. We collected data over a three-year follow-up period from childhood to adolescence and measured both subjective and objective stress levels to address this association. To shed light on a possible pathway by which the residential landscape might affect psychosocial stress, we additionally investigated whether associations between the residential landscape and stress are independent of noise and air pollution. After all, the effect of residential landscape on psychosocial stress might be (1) directly by natural (green) elements creating visual/psychological stimulations and physical activity possibilities which can be reflected by land use but (2) also indirectly by noise and air pollution as a result of the land use and traffic.

2. Methods

2.1. Study population

In 2015, 242 Belgian children and adolescents aged 9 to 15 years from the municipality of Aalter and its surroundings participated in the sixth wave of a large longitudinal study. The baseline survey was conducted in spring 2008, with follow-up surveys in spring 2010, 2011, 2012, 2013, and 2015, as part of different study projects (Ahrens et al., 2011; Michels et al., 2012). For the current article, we used data from 2012 onward because of incomplete stress questionnaires and address information before 2012. Children were included based on the availability of stress data, residential landscape, and parental socioeconomic data (parent with the highest achieved education based on the International Standard Classification of Education (2010)) in 2015, as can be seen in the flow-chart in Fig. 1. For the longitudinal analysis, we included children who did not move between 2012 and 2015. Children without stress data (N = 7) and socioeconomic status (N = 11) were excluded, which resulted in 224 subjects in 2015. The number of children with hair cortisol data (N = 153) is limited because this was an optional part of the survey, and sometimes the hair was not long enough for analyses. No differences in age, residential landscape, and stress were seen between children with and without hair cortisol data; however, included children were more often female and had a lower hyperactivity score. All children were Caucasian, except one of African origin. The study was conducted according to guidelines laid down in the Declaration of Helsinki, and the project protocol was approved by the Ethics Committee of the Ghent University Hospital. A written informed consent was obtained from the parents and a verbal assent from the children. In 2015, children older than 12 years also signed a written informed consent.

2.2. Geographical area

Study participants were from the municipality of Aalter and its surroundings, located approximately 20 km west of Ghent, Belgium, with a population density of 240.7 inhabitants per km² in 2011 (Municipality characteristics (Uw gemeente in cijfers), 2011). Location of study participants and the distribution of land-use indicators in this geographical area are shown in Supplemental Fig. S1. Directly south of the city is a major motorway and to the north are primarily food processing industries (milk, meat), which are mainly small to middle sized. Most of the hinterland consists of agricultural areas with a majority of grassland and maize area. Approximately 10 km north of Aalter is a small airport used by ultra-light aircrafts during the weekends.

2.3. Psychosocial stress parameters

Stress arises when the demands of a situation exceed an individual’s ability to cope and resolve the problem, resulting in emotional and behavioral disturbances (McCance et al., 2006). Three stress-related tests were used to assess different aspects of a child’s stress in 2012 and 2015. First, children were questioned about recent feelings of happiness, sadness, anger, and anxiousness using a 0–10 Likert scale, with 0 as the lowest score and 10 as the highest score. Total negative emotions were obtained by adding up the negative emotions: sadness, anger, and anxiousness. Second, parents filled in the Strength and Difficulties Questionnaire (SDQ) to assess behavioral problems during the past six months (reliability: ICC = 0.80; concurrent validity: r = 0.70) (Goodman, 1997). The SDQ consists of 25 questions that can be divided into five subscales (each having five items): conduct problems, hyperactivity problems, emotional problems, peer relationship problems, and prosocial behavior (Goodman, 1997). In addition, a general total difficulty score was calculated by adding up all subscales except the prosocial behavior scale (since this is a strength). Finally, hair cortisol was used as an objective stress biomarker (higher cortisol representing higher stress); however, it was only used in 2015 (Wester and van Rossum, 2015). A hair strand with a diameter of 3–5 mm was cut close from the back of the scalp. Only the proximal 3 cm of the strand was analyzed, as this would reflect stress exposure during the last three months. Extraction and liquid chromatography coupled with tandem mass spectrometry was performed at the Laboratory for Hormonology, Ghent University Hospital, Belgium. For analysis on 15 mg of hair, inter-assay CV for cortisol is 10.8% with an LOQ of 1.6 pg/mg hair. Detailed laboratory analyses are described elsewhere (Michels et al., 2017). None of the participants took systematic corticosteroids.

2.4. Land use and residential proximity to traffic

Residential addresses of the participating children and adolescents were geocoded. Semi-natural, forested, and agricultural areas
(greenness) and residential and industrial areas in a 5000, 4000, 3000, 2000, 1000, 500, 300 and 100 m buffer from the residential address were estimated based on the European Coordination of Information on the Environment (CORINE database) land cover 2000 (European Environment Agency). The land-cover data is based on satellite data and is divided in 44 classes. It is presented as a cartographic product at a scale of 1:100,000. We first ran an analysis within one selected buffer based on the variation in our population (no zeros in lowest quartile to increase variability) for each of the environmental factors separately. In further analyses, we tested the robustness by including the other buffers.

Distances to the nearest major road with traffic counts available and traffic density were determined using GIS functions. All GIS analyses were carried out using ArcGIS 10 software. We collected information on two traffic indicators at the children’s and adolescents’ residences, i.e., distance to major road and traffic density. A major road was defined as a highway, national road, or large local road (Nawrot et al., 2011). Traffic density within a 200 m radius (buffer) from the residence was equal to the length of each road in this buffer multiplied with the traffic count at each specific road. This was calculated for a 200 m buffer in steps of 10 m. Traffic counts of 2010 were obtained from the Traffic Centre Flanders, Department of Mobility and Public Works. Streets with low traffic-carrying capacity codes without traffic measurements were assigned a default traffic count of 543 vehicles per 24 h. Traffic densities within a buffer were multiplied by a weight decreasing with distance, following a Gaussian curve. Finally the sum was made for the distance-weighted traffic densities (DWTD) in all buffers within 200 m. This was also repeated for 50, 100, 200 and 300 m buffers.

2.5. Noise and air pollution exposure estimates

For the child’s residence, we used a spatial temporal interpolation method to model the daily residential exposure levels (μg/m³) of particulate matter (PM) for black carbon and particles with a diameter less than or equal to 2.5 μm (PM₂.₅). This method considers land-cover data obtained from satellite images of the CORINE land-cover data set and pollution data of fixed monitoring stations in combination with a dispersion model. The model calculates the daily interpolated exposure concentrations in a high resolution receptor grid based on information from the Belgian telemetric air-quality networks, point sources, and line sources. Overall model performance was evaluated by leave-one-out cross-validation and was based on 34 monitoring points for PM₂.₅ and 14 for black carbon. Validation statistics of the interpolation tool gave a spatial temporal explained variance of > 0.80 for PM₂.₅ and 0.74 for black carbon. We used the annual averages of 2015 as representative spatial contrasts.

A GIS-based noise model including the Flemish street and railway networks was used to estimate traffic noise levels in 5 dB(A)-intervals according to the European Noise Directive (2002/49/EC). The modeling of road noise level included road-traffic intensity, vehicle-type-specific traffic density, type of street surface, small-scale topography of the area, and the presence or dimensions of buildings and reflecting objects. Railway-noise modeling included the number of passing trains, type of trains, speed, small-scale topography of the area, and the presence or dimensions of buildings and reflecting objects. Weighted equivalent noise levels in dB(A) for traffic during the daytime (based on the weighted yearly 2011 average noise level between 7 a.m. and 7 p.m. and 7 p.m. to 11 p.m.) and at night (yearly average noise level between 11 p.m. and 7 a.m.) were modeled.

2.6. Statistical analyses

Statistical analyses were performed using statistical software package SAS version 9.4 (SAS Institute Inc., Cary, NC, USA), and all p values < 0.05 were considered significant. Stress parameters (sadness, anxiousness, total negative emotions, conduct problems, emotional problems, peer relationship problems, and hair cortisol) were converted to natural logarithm due to the non-normal distribution. All traffic-related parameters were also log-transformed because of skewed distributions and because traffic-related pollutants decay exponentially with increasing distance from roads (Zhu et al., 2002). An independent t-test was conducted to assess sex differences in stress and residential landscape. Correlation coefficients between residential landscape, stress, traffic, and air pollution in 2015 were estimated with Spearman correlation coefficients. Additionally, partial correlation coefficients correcting for socioeconomic status were calculated, as shown in Supplemental Table S1. Cross-sectional associations were estimated using linear regression models, with the residential landscape as the predictor and stress as the outcome. Adjustment was performed for age, sex, and socioeconomic status, and all assumptions of linear regression were met. Models with hair cortisol were in a second step additionally adjusted for date of hair cortisol analysis and hair color. Linear mixed-effect regression models were used to assess the longitudinal association between continuous residential landscape and changes in stress parameters between 2012 and 2015. Several correlation structures, including compound symmetry, unstructured, first-order autoregressive, and Toeplitz matrices were assessed for each model, and the best fitted structure was selected using Akaike’s information criterion. These models were also adjusted for age, sex, and socioeconomic status. Purely for visualization of significant associations in the previously mentioned longitudinal mixed models, the residential landscape parameters were categorized into two groups (≥median and < median). The effect of noise and air pollution on the relationship between residential landscape and stress was assessed for significant cross-sectional and longitudinal associations by adding them separately into the linear regression models, and identifying changes in the relationship between residential landscape and stress. This is because the effect of residential landscape on psychosocial stress might be directly or indirectly by noise and air pollution. Last, mediation models were conducted, with noise and air pollution as mediator, using the Process-macro of Hayes (2018).

3. Results

3.1. Subject characteristics

The characteristics of the study population are described in Table 1. Boys and girls differed for the SDQ subscales of emotional problems (girls more emotional problems, mean difference 0.23, p < 0.01) and hyperactivity problems (boys more hyperactivity problems, mean difference 0.72, p = 0.01) and for the emotions of anxiouslyness (girls experienced increased anxiouslyness, mean difference 0.17, p = 0.01), sadness (girls experienced increased sadness, mean difference 0.23, p < 0.01), and total negative emotions (girls reported more negative emotions, mean difference 0.20, p = 0.01). Table 2 describes the distribution of the residential-landscape indicators, air pollution and noise. The median land use in percentiles in a 5000 m buffer were 8% semi-natural and forested areas (interquartile range (IQR) = 4–10), 73% agricultural area (IQR = 70–77), 2% industrial area (IQR = 1–2), and 16% residential area (IQR = 13–17).

3.2. Cross-sectional association between residential landscape and stress

In unadjusted analyses, we found a positive correlation between a child’s hyperactivity problems and residential areas within 100 m (r = 0.18; p < 0.01), whereas an inverse correlation was observed with agricultural areas within 300 m (r = −0.19; p < 0.01). Residential proximity to nature within 2000 m was negatively correlated with conduct problems (r = −0.14; p = 0.04) and anxiouslyness (r = −0.15; p = 0.03). Anger, sadness, and the sum of negative emotions correlated with industrial areas within 4000 m (r = 0.14–0.19; p < 0.01–0.03).

C.J.C. Van Aart et al.

Environment International 120 (2018) 456–463
Higher residential traffic density was only associated with hyperactivity problems. A doubling in residential distance weighted traffic density within a 300 m radius was associated with an increase in hyperactivity score of 0.09 (β = 0.15, p = 0.046). A similar trend was seen in the 50, 100, and 200 m buffers. We did not find any associations between hair cortisol and residential landscape.

3.3. Longitudinal association between residential landscape and stress

Of the 224 children, 172 were tracked over time. Significant longitudinal associations between residential landscape and change in stress score (2012–2015) were seen for industrial and semi-natural and forested areas, as shown in Fig. 2. A significant time interaction coefficient was noted for industrial areas within 4000 m and anger (p = 0.028, Pseudo-R² = 1.83% of the variation in the anger score change was explained by industry at baseline and follow-up). This positive coefficient indicates that industrial areas within 4000 m tended to increase anger scores over time. A similar association was seen with total negative emotions as outcome (p = 0.013, Pseudo-R² = 3.80% of the variation in negative emotion score change was explained by industry at baseline and follow-up). A positive time interaction was also noted for semi-natural and forested areas within 2000 m and happiness (p = 0.049, Pseudo-R² = 3.31% of the variation in negative emotion score change was explained by industry at baseline and follow-up). In addition, a borderline significant negative time interaction was found for agricultural areas within 300 m and prosocial behavior.

3.4. Role of noise and air pollution

We found strong correlations between residential industrial density and PM2.5 (r = 0.76, p < 0.001), industrial areas and black carbon (r = 0.61, p < 0.001) and between distance to a major road and black carbon (r = −0.70, p < 0.001), as shown in Supplemental material Table S3. Whereas, only weak correlations were seen between psychosocial stress and noise and air pollution, presented in Supplemental material Table S4. The role of noise and air pollution in the association between residential landscape and stress was assessed for the aforementioned significant cross-sectional findings. Fig. 3 (and Supplemental material Table S5) shows the robustness of our findings after multiple adjustments for noise, black carbon, and PM2.5. Considering residential exposure to black carbon, PM2.5, or noise, this did not change the cross-sectional estimates between residential landscape and psychosocial stress much. Further, aforementioned longitudinal associations did not change after adjustments for noise, black carbon, and PM2.5. In mediation models, there was a significant indirect effect of nature within
<table>
<thead>
<tr>
<th>Land-use indicators</th>
<th>Conduct problems</th>
<th>Hyperactivity problems</th>
<th>Emotional problems</th>
<th>Peer problems</th>
<th>Prosocial behavior</th>
<th>Total difficulties score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semi-natural and forested area, 2000 m buffer</td>
<td>-0.092</td>
<td>-0.225; 0.040</td>
<td>0.029</td>
<td>-0.102; 0.160</td>
<td>0.065</td>
<td>-0.192; 0.064</td>
</tr>
<tr>
<td>Agricultural area, 300 m buffer</td>
<td>0.167</td>
<td>0.036; 0.303</td>
<td>-0.157</td>
<td>-0.290; -0.031</td>
<td>-0.140</td>
<td>-0.269; -0.010</td>
</tr>
<tr>
<td>Distance weighted traffic density in a 50 m buffer</td>
<td>0.068</td>
<td>0.069; 0.219</td>
<td>0.181</td>
<td>0.056; 0.336</td>
<td>-0.069</td>
<td>-0.214; 0.063</td>
</tr>
<tr>
<td>Distance weighted traffic density in a 100 m buffer</td>
<td>0.003</td>
<td>-0.154; 0.149</td>
<td>0.145</td>
<td>0.017; 0.313</td>
<td>-0.033</td>
<td>-0.189; 0.104</td>
</tr>
<tr>
<td>Residential area, 100 m buffer</td>
<td>0.054</td>
<td>-0.079; 0.186</td>
<td>0.131</td>
<td>0.002; 0.262</td>
<td>0.023</td>
<td>-0.105; 0.151</td>
</tr>
<tr>
<td>Distance weighted traffic density in a 200 m buffer</td>
<td>0.059</td>
<td>-0.074; 0.191</td>
<td>0.132</td>
<td>0.002; 0.263</td>
<td>0.026</td>
<td>-0.103; 0.154</td>
</tr>
</tbody>
</table>

Emotions

<table>
<thead>
<tr>
<th>Happy</th>
<th>Sad</th>
<th>Anxious</th>
<th>Angry</th>
<th>Total negative emotions</th>
<th>Hair cortisol</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.105</td>
<td>0.005</td>
<td>0.312</td>
<td>0.105</td>
<td>0.005</td>
<td>0.312</td>
</tr>
</tbody>
</table>

Cortisol

<table>
<thead>
<tr>
<th>Happy</th>
<th>Sad</th>
<th>Anxious</th>
<th>Angry</th>
<th>Total negative emotions</th>
<th>Hair cortisol</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.105</td>
<td>0.005</td>
<td>0.312</td>
<td>0.105</td>
<td>0.005</td>
<td>0.312</td>
</tr>
</tbody>
</table>

Bold values indicate $p < 0.05$.

Abbreviations: β, standardized regression coefficient; 95% CI, 95% confidence interval.

Linear regression models adjusted for age, sex and parental socioeconomic status.

* < 0.05.

** < 0.01.

a Buffers were chosen for each land-use indicator separately (no zeros in lowest quartile to increase variability).
2000 m on sadness through noise pollution (indirect effect $b = -0.002$; bootstrapCI -0.005 to -0.001), and a significant effect of nature within 2000 m on negative emotions through noise pollution (indirect effect $b = -0.002$; bootstrapCI -0.005 to -0.004). The ratio of indirect effect to the total effect was 0.18 and 0.16 respectively.

4. Discussion

This longitudinal study in a semi-urban densely populated area provides new insights into the association between residential landscape and stress-related parameters. The basic linear regression model is adjusted for age, sex, and socioeconomic status; the other models are additionally adjusted for noise, black carbon, or particulate matter (PM$_{2.5}$).

2000 m on sadnes through noise pollution (indirect effec $b = -0.002$; bootstrapCI -0.005 to -0.001), and a significant effect of nature within 2000 m on negative emotions through noise pollution (indirect effect $b = -0.002$; bootstrapCI -0.005 to -0.004). The ratio of indirect effect to the total effect was 0.18 and 0.16 respectively.

4.1. Greenness

Greenness (semi-natural and forested areas and agricultural areas) might have a beneficial effect on stress levels in children and adolescents. Both cross-sectional and longitudinal analyses showed that a higher percentage of semi-natural and forested areas was associated with better emotional status. Concerning behavioral problems, only one aspect of the SDQ was associated with greenness, namely, hyperactivity problems.

Studies in adults have shown similar results, where increased areas with green space reduced stress (Roe et al., 2013; Thompson et al., 2012; Nielsen and Hansen, 2007; Grahn and Stigsdotter, 2003; Mehta et al., 2015). Emotional childhood status has not been investigated in relation to greenness; however, studies have found similar negative associations with the SDQ subscale hyperactivity problems (Markevych et al., 2014; Balseviciene et al., 2014). Other childhood studies have additionally found negative associations with the SDQ subscales of peer problems, conduct problems, and the total difficulties score (Markevych et al., 2014; Balseviciene et al., 2014; Amoly et al., 2014; Flouri et al., 2014). Besides the proximity of greenness, it might also be the use of the green space that has an effect on stress reduction. A study in Barcelona schoolchildren noted associations with green-space playing time and lower SDQ total difficulties scores, emotional problems, and peer relationship problems (Amoly et al., 2014).

The possible mechanism explaining the relationship between greenness and reduced stress level is not fully understood. However, it has been hypothesized that the beneficial effects of green spaces are through the reduction of air pollution and an increase in the amount of the time people spend outdoors and are physically active (Tzoulas et al., 2007). However, our results on residential landscape were not fully explained by residential noise and air pollution. Another theory suggested that greenness could provide a buffer against the negative health impact of stressful life events (van den Berg et al., 2010). Van den Berg et al. showed that participants with a large amount of green space in a 3 km radius were less affected when experiencing a stressful life event than respondents with a small amount of green space in that radius (van den Berg et al., 2010). In addition, experiments have shown that viewing slides or videos of natural environments leads to a faster and more complete stress recovery (Berto, 2014; van den Berg et al., 2003). This might be explained by the stress recovery theory of Ulrich et al. (1991), which focuses on the evolutionary aspects of human evolvement over a long period in natural environments, which might have made them better adapted to a more natural environment,
as opposed to an urban environment.

4.2. Industrial and residential areas and traffic

In accordance with the beneficial effects of greenness, our results on industrial areas and residential traffic exposure showed detrimental associations (more negative emotions and hyperactivity problems). These results might suggest that a lack of open space and increased traffic-related air pollution negatively impact children's and adolescents' stress levels, potentially by activation of the hypothalamic-pituitary-adrenal axis due to air pollution, which increases cortisol levels (Millers et al., 2016; Thomson, 2013). Higher perceived stress in adults is indeed associated with increased air pollution (Mehta et al., 2015). However, in this childhood study, the role of noise and air pollution was rather small. Further, noise and air pollution were clearly associated with residential landscape, but there was only a weak correlation between noise and/or air pollution and stress parameters. Mediation models showed that a relatively small part of the association between nature within 2000 m and negative emotions, i.e. sadness and total negative emotions, was due to an indirect effect of noise, not air pollution. Nor was there mediation by noise and air pollution for the other associations. A part of the association between residential landscape and stress might thus be explained by noise, however this is relatively small. It might thus be that this relation is mostly due to the direct effects of greenness, by creating visual/psychological stimulations and activities outdoors, as mentioned before.

4.3. Clinical importance

This study might indicate an association between the residential landscape and psychosocial stress. On average, a 10% change in stress score was seen per IQR increase of land use. The effect of land use on stress might thus be more important from a preventive point of view, rather than a clinical point of view. As mentioned before, chronic stress could eventually lead to multiple diseases due to a potential overload of the immune, nervous, and endocrine systems (McEwen, 2007; Danese and McEwen, 2012). Obesity, metabolic syndrome, cardiovascular problems, and depression have all been linked to stress (Dallman et al., 2003; Chandola et al., 2006; Dimsdale, 2008; Hammen, 2005). In addition, chronic childhood stress might even have harmful effects on health in adulthood (Danese and McEwen, 2012). This detrimental pathway might be facilitated by telomeres, e.g., the end caps of chromosomes, which could shorten (a sign of accelerated aging) due to stress (Mathur et al., 2016). Our data might also suggest a specific vulnerable period to residential-landscape factors between childhood and adolescence since associations of industry with emotional status only appeared in the longitudinal analyses.

4.4. Strength and limitations

To our knowledge, this is one of the first longitudinal studies assessing the direct association between residential landscape and psychosocial stress from childhood to adolescence. Major assets are the longitudinal stress data over three years, the use of both subjective and objective stress measurements, and the inclusion of noise and air pollution in the association between the residential landscape and stress.

Some limitations of the study still need to be addressed. First, the longitudinal analysis included only a relatively small population of children who did not move between 2012 and 2015. Unfortunately, we have no knowledge on how long these children already lived at this residence (and thus were exposed to the landscape). Second, we only investigated the residential landscape in a 100 m to 5 km radius from the participants' homes, although children spend a considerable portion of their time at school. Consequently, effects of residential landscape might be underestimated in the current manuscript and might become clearer when considering also the school's residential landscape. Third, all participants were from the community of Aalter, a small city surrounded by agriculture and near a highway. It also remains to be tested whether the results of this study are also applicable to children living in larger cities or in the countryside without major motorways. Fourth, socioeconomic status was only assessed using highest achieved parental education; no financial information was available. Fifth, in this study, we were not able to detect any relationship with the objective stress biomarker hair cortisol. This may be due to the collection method, as hair cortisol levels provide an average stress level during the last three months without detecting fluctuating daily changes, or due to potential selection bias in hair cortisol samples, as hair cortisol was measured more in girls as compared to boys, due to the length of hair needed for analysis. Sixth, there was a slight difference in detected significant associations when comparing the SDQ subscale emotional problems and the emotion questionnaire with greenness in our study. This might be because of a different focus (SDQ is more behavioral focused) or a potential bias by the person filling in the questionnaires (SDQ was filled in by the parents, while the emotion questionnaire was filled in by the children). Seventh, we tried to increase variability and unity in the buffer selection of the residential-landscape predictors by selecting the buffer with no zeros in the lowest quartile. However, variability might still be small; therefore, we additionally performed the analysis with the other buffers as predictors, as shown in Supplemental material Table S2. Here, similar results were obtained as with the buffers mentioned in the manuscript Results section. Eighth, distance to major roads was used as a crude measure; however, proxies of exposure, such as residential proximity to major roads, have recently been shown to be associated with internal exposure to nanosized particles, reflecting exposure to black carbon (Saenen et al., 2017). Finally, our noise and air pollution data were based on high-resolution models, which combine measures with land use data, resulting in some interrelations.

4.5. Conclusion

Greenness in proximity to a home, e.g., semi-natural and forested areas and agricultural areas, was associated with a better childhood emotional status (increased feelings of happiness and decreased feelings of sadness, anxiousness, and total negative emotions). Whereas, an opposite relationship was seen with hyperactivity problems for residential areas and traffic density. Longitudinal analysis of children tracked over a three-year time period between childhood and adolescence showed that residential industrial areas were associated with increased feelings of anger and total negative emotions. When designing or renovating residential areas, urban designers and local, regional, and national policies might consider integrating adequate levels of green environment to prevent the potential detrimental health effects of stress in both children and teenagers.

Declarations of interest

None.

Acknowledgments

The authors would like to thank all the children and parents for their voluntary participation in this study. This work was supported by the Research Foundation Flanders, Belgium (project number G073315N), and the geographical information system was supported by the EU Program “Ideas” (ERC-2012-StG 310898). Bram Janssen is a postdoctoral fellow of the Research Foundation Flanders, Belgium (FWO).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.envint.2018.08.028.
References

Ahrens, W., Bamann, K., Siani, A., et al., 2011. The IDEFGS cohort: design, charac-
teristics and participation in the baseline survey. Int. J. Obs. 35, S3–S15.
development in Barcelona schoolchildren: the BREATHE project. Environ. Health Perspect.
122, 1351–1356.
greenness on preschool children’s emotional and behavioral problems. Int. J. Environ.
Berto, R., 2014. The role of nature in coping with psycho-physiological stress: a literature
Exposure to neighborhood green space and mental health: evidence from the survey
neighbourhood green space and type 2 diabetes in a large cross-sectional study. BMJ
Open 4.
Chandola, T., Brunner, E., Marmot, M., 2006. Chronic stress at work and the metabolic
Danese, A., McEwen, B.S., 2012. Adverse childhood experiences, allostasis, allostatic
Cardiol. 51, 1237–1246.
relating to the assessment and management of environmental noise. 2002. (Accessed
01-07-2016, athttp://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=
CELEX:32002L0049&from=EN.)
Flouri, E., Midouhas, E., Joshi, H., 2014. The role of urban neighbourhood green space in
Green. 2, 1–18.
Municipality characteristics (Uw gemeente in cijfers). Accessed 26 September 2017, at.
http://statbel.fgov.be/nl/statistiek/chilcommn/,
Lachowycz, K., Jones, A.P., 2011. Greenspace and obesity: a systematic review of the
evidence. Obes. Rev. 12, e183–e189.
Lee, A.C.K., Maheshwaran, R., 2011. The health benefits of urban green spaces: a review of the
evidence. J. Public Health (Oxf.) 33, 212–222.
Maa, J., Verheij, R.A., de Vries, S., Speereuwenga, P., Schellevis, F.G., Groenwegen,
Community Health 63, 967–973.
Markvych, I., Tiesler, C.M.T., Fuertes, E., et al., 2014. Access to urban green spaces and
behavioural problems in children: results from the GINplus and LiSAPhys studies.
Environ. Int. 71, 29–35.
systematic review, meta-analysis, and methodologic considerations for advancing the
Biologic Basis for Disease in Adults and Children, 5 ed. Mosby, St Louis.
McEanach, R.R.C., Prudy, S.L., Smith, G., et al., 2016. The association between green
space and depressive symptoms in pregnant women: moderating roles of socio-
and perceived stress: the Veterans Administration Normative Aging Study. Environ.
Health 14.
Michels, N., Vanaelst, B., Vyncke, K., et al., 2012. Children’s body composition and stress -
the ChiBS study: aims, design, methods, population and participation characteristics.
Arch. Public Health 70, 17.
Michels, N., Van de Wiele, T., De Henauw, S., 2017. Chronic psychosocial stress and gut
stress hormones and lipid metabolites in humans. Am. J. Respir. Crit. Care Med. 193,
1382–1391.
Navrot, T.S., Vor, R., Jacobs, L., et al., 2011. The impact of traffic air pollution on
bronchiolitis obliterans syndrome and mortality after lung transplantation. Thorax
66, 748–754.
Nielsen, T.S., Hansen, K.B., 2007. Do green areas affect health? Results from a Danish
survey on the use of green areas and health indicators. Health Place 13, 839–850.
Orban, E., McDonald, K., Szulc, E., et al., 2016. Residential road traffic noise and high
depressive symptoms after five years of follow-up: results from the Heinz Nixdorf
from cortisol measures in deprived urban communities. Int. J. Environ. Res. Public
Health 10, 4086–4103.
load. A novel marker reflecting residential ambient air pollution exposure? Am. J.
space is linked to less stress in deprived communities: evidence from salivary cortisol
Endocr. Disruptors 1, e27489.
Tzoulas, K., Korpela, K., Venn, S., et al., 2007. Promoting ecosystem and human health in
urban areas using green infrastructure: a literature review. Landec. Urban Plann. 81,
167–179.
recovery during exposure to natural and urban environments. J. Environ. Psychol. 11,
201–220.
van den Berg, A.E., Koole, S.L., van der Wulp, N.Y., 2016. Residential road traffic:
possible health effects? Results from a Danish survey on the use of green areas and
health indicators. Health Place 39, 61–68.
Zhu, Y., Hinds, W.C., Kim, S., Sioutas, C., 2002. Concentration and size distribution of
ultrine particles near a major highway. J. Air Waste Manage. Assoc. 52, 1032–1042.