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ABSTRACT. This paper presents an application of hypercomplex algebras combined with dicti-
onary learning for sparse representation of multichannel images. Two main representatives of
hypercomplex algebras, Clifford algebras and algebras generated by the Cayley-Dickson proce-
dure are considered. Related works reported quaternion methods (for color images) and octo-
nion methods, which are applicable to images with up to 7 channels. We show that the current
constructions cannot be generalized to dimensions above eight.

1. INTRODUCTION

The complex (C) and quaternion (H) algebras are special cases of more general hypercomplex
algebras [18]. Rooted in Hamilton’s seminal paper about quaternions published in 1843, the
theory of hypercomplex algebras evolved, finding applications in many disciplines, ranging
from theoretical physics [6] to robotics [17] and signal processing [2, 3,7, 16]. In general,
a hypercomplex algebra is defined as unital, distributive algebra, not necessarily associative,
over the field of real or complex numbers with n generators (ey,...,e,). Usually e,% e{-1,0,1}
and different multiplication rules between the basis elements generate different algebras [18].
Basis elements are referred to as the imaginary units. We address here a recent application
of hypercomplex algebras in sparse image representation, with some new insights, regarding
applicability to general multichannel images.

Dictionary learning techniques provide the most succinct representation of signals and images.
Initiated by the classical work of Olsahusen and Field on sparse coding [22], many dictionary
learning methods emerged, K-SVD [1] being among the best known ones, especially in image
and video processing. An overview of different models for color image processing by using
dictionary learning techniques has been given in [5]. State-of-the-art methods for sparse repre-
sentation of color images typically concatenate pixel values from collocated image patches in
the three channels and treat them then by the standard K-SVD or by a variant thereof [20]. Re-
cently reported quaternion-based K-SVD known as K-QSVD [28,29], introduced quaternions
into dictionary construction, where the three color channels are assigned to the three imaginary
units.

The quaternion model demonstrated improvements compared to the classical K-SVD model,
especially in the terms of color fidelity as reported in [28,30]. A limitation of the model is that it
cannot treat more than three spectral channels. Recently, in [19] a new model was introduced,
called octonion dictionary learning (ODL), which is a generalization of the K-QSVD, in the
sense that it can handle up to 7 spectral channels. This is of interest e.g., for multispectral
imaging. To the best of our knowledge, the quaternion and the octonion algebras are the only
examples of hypercomplex algebra that have been used for multichannel image processing in
the combination with dictionary learning techniques. From a different perspective, the approach
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of [27] treated reconstruction of octonion signals from incomplete and noisy data, by solving a
convex ¢ minimization problem.

The rest of the paper is organized as follows. In Section 2 we review briefly the dictionary
learning approach and the particular techniques for solving the involved sub-problems. The
theory of hypercomplex algebras, and in particular Clifford algebras and algebras generated
by the Cayley-Dickson procedure, is reviewed in Section 3. In Section 4, we address sparse
representation of images in a hypercomplex algebra framework with two particular instances:
quaternion- and octonion-based approach. We explore further generalization in Section 5 and
we prove that the current constructions do not admit generalizations beyond C, H and O. Sec-
tion 6 concludes the paper.

2. DICTIONARY LEARNING APPROACH

2.1. Sparse Coding. The goal of sparse coding is to represent a given signal y € R” by a
linear combination of only a few elements from a redundant (overcomplete) set of basis vectors
D = {d;}, € R"™™ (m > n), which is called a dictionary and whose elements dy are unit
norm vectors known as atoms. Thus, if the dictionary D is given, the aim is to find the L—sparse
vector of coefficients x € R™, ||x||o <L, such that
m

(1) y~Dx=Y dwx

k=1
where L = const. is a prescribed number of non-zero elements, i.e. the sparsity level. The
linear expansion given in (1) is known as sparse approximation. The pseudo-norm ¢y counts
the number of non-zero elements of the given vector. The sparse coding problem

) ﬁ:argmin||y—DX||% S.t. ||X||0 <L
X

is NP-hard, and thus its approximate solutions are sought instead, typically using greedy algo-
rithms such as Matching Pursuit (MP) [21] and Orthogonal Matching Pursuit (OMP) [23]. An
alternative solution is to relax, i.e., convexify the original problem (2) by replacing the ¢ prob-
lem with the ¢; norm, which leads to the LASSO problem [26]. Its equivalent non-constrained
(Lagrangian) formulation

3) % = argmin ||y — Dx||3 + A ||x||
X

is known as Basis Pursuit Denoising (BPDN) [9] and is solved by convex optimization al-
gorithms [8]. The sparse coding problem was generalized to the quaternion [4, 28] and the
octonion [19,27] settings, where instead of working with real vectors and matrices, elements in
H and O are used.

2.2. Dictionary Learning. For a set of training samples Y = {y,},_, € R"*?, where each
yi 1s a signal vector, the dictionary learning problem consists of finding the dictionary D =
{di}7, € R™ (m > n), which best adapts to the given training set Y, and the sparse code
X = {xk}iz1 € R™*P such that Y ~ DX. Formally, the dictionary learning problem can be
expressed as the following minimization problem

{D,X} = argmin{||Y — DX||7}
DX

4) st ||xkllo <L, k=1,...,p

where F denotes the Frobenius norm. The dictionary learning algorithms typically alternate
between two steps: sparse coding step (fix D and find a sparse code X) and dictionary update
step. Different dictionary learning algorithms differ mostly in this second, dictionary update
step, the most notable ones being Maximum Likelihood Method [22], Method of Optimal Di-
rections (MOD) [15], K-SVD [1] and Approximate K-SVD [25]. Since the quaternion algebra
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is well suited for color image processing, several recent works, including [28, 30] addressed
the dictionary learning problem in the quaternion framework. The existing quaternion model is
limited to color images with three channels. A generalization in the octonion setting which can
handle up to seven channels was reported in [19].

3. HYPERCOMPLEX ALGEBRAS

Here we review two main representatives of the hypercomplex algebras, viz. Clifford algebras
and algebras generated by the Cayley-Dickson procedure, that we shall later discuss in the
framework of dictionary learning.

3.1. Clifford Algebras. By virtue of its rich structure that includes both geometrical and al-
gebraic properties of Euclidean space, Clifford algebras found their application in computer
graphics, robotics, signal and image processing [3, 11, 14,24].

The real Clifford algebra with generators (ey,...,e,) is a real associative algebra with identity
1, containing R and R” as subspaces, where the generators satisfy the conditions

5) €,‘€j—|—€j€i:—25,‘j, i,j=1,...n,

with &; ; being Kronecker delta function which takes value 1 if i = j, and 0 otherwise. A basis
for the real Clifford algebra R, := Algg(ey,...,e,) is given by the elements

ea=¢eq ...eq, A=(04,...,04),
(6) I<o<---<og<n, k<n andeyp:=1.

Hence the Clifford algebra R,, is 2"-dimensional.

Examples

(1) The complex algebra is a special case of a Clifford algebra. Namely, the Clifford algebra
R; generated by (e;) with the basis (1,e;) is isomorphic with the algebra of complex
numbers C, where we identify e; = i.

(2) The Clifford algebra R, has the basis (1,e1,e3,e12) and is isomorphic with the algebra
of quaternions, i.e. H = R,, where we make the identification e; =i, e; = j, e;p = k.

(3) It can be shown that Rz = 2R, = R, ® R, (see [10]), so we can conclude that R; &
H ¢ H. This is an 8-dimensional associative algebra.

3.2. Cayley-Dickson Algebras. Complex numbers and quaternions are also special cases of
the Cayley-Dickson algebra. Higher-dimensional algebras in the Cayley-Dickson process are
obtained by doubling a smaller algebra and adding an additional imaginary unit [12]. More
precisely, starting with the real numbers R, higher dimensional Cayley-Dickson algebras are
constructed as:

C=R@iR,
H=Caq|C,
0 =Ha H,

where i, j, ¢ are imaginary units. Note that although C and H are special cases of both the
Clifford algebras and the Cayley-Dickson algebras, already the 8-dimensional representatives
are different (see Example (3) in Subsection 3.1). Although all Clifford algebras are associative,
with Cayley-Dickson algebras already the octonion algebra O is non-associative. Since every
higher-dimensional Cayley-Dickson algebra is obtained by doubling a smaller algebra, this
means that also all the algebras of the dimension higher than 8 are not associative.

Remark Note that in every step Cayley-Dickson algebras loose some “nice” properties. For ex-
ample, the quaternions are not commutative and the octonions are neither commutative nor as-
sociative. For the sedenions and higher dimensional algebras, the property |ab| = |a||b| doesn’t
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FIGURE 1. RGB color channels (left) represented in the standard concatenated
model (middle) and in the quaternion model (right).

hold, which means that they are not composition algebras. Moreover, the Hurwitz theorem tells
us that R,C,H and O are the only real composition algebras with positive-definite norm and
thus without zero divisors [12].

4. HYPERCOMPLEX MODELS FOR MULTICHANNEL IMAGES

For monochrome (single-channel) images, the training samples Y are represented as vectors
obtained by stacking the pixel values within a small (typically square) window in some raster-
scanning fashion. For n-channel images (including color images), the traditional dictionary
learning methods are again stacking the pixel values from collocated windows in the n-channels
into one long vector. In this approach the learning process is restricted to relatively low-
dimensional signals, i.e., after concatenation the length of the obtained vectors should not ex-
ceed 1000 pixel values. An attempt to go beyond this limit, introduces certain problems [13], so
we will rather keep the number of channels n small as well as the size of collocated windows.
A recently introduced quaternion-based dictionary learning approach [28, 30] for color images
assigns the three color channels to three imaginary units. Figure 1 highlights the differences
between the traditional stacking and the quaternion-based approach for dictionary learning on
color images.

Here, we explain first the main concepts of quaternion-based dictionary learning, and then we
address extensions to higher dimensions, with a more in-depth analysis in the following section.
A quaternion vector x € H" is defined as

X = X + X1i+ X2 j + X3k, where x; € R";
and a quaternion matrix M € H"™*" equivalently as
M = My +M;i+M,j+ M3k, where M; € R™*".

A color image can be seen as a quaternion matrix M with the scalar part My equal to zero
matrix and each of M;, i € {1,2,3} corresponding to one of the three color channels. Since we
are dealing with patch based image processing, an extracted color image patch y with its three
color components y,, y, and y, can be represented as a pure quaternion vector

y=0+yi+yqj+Yysk.
A quaternion-based sparse representation codes a quaternion image patch y sparsely as
(7) y~Dx st |x|lo<L
where D is a quaternion dictionary given in the general form of a quaternion matrix

D =D, +D,i+D,j+Dyk.
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FIGURE 2. Color image denoising. Noisy images with Gaussian noise with
standard deviation ¢ in (a) and (e) reconstructed by K-SVD (in (b) and (f)),
Q-KSVD (in (¢) and (g)) and ODL (in (d) and (h)) method. PSNR values are
below the images.

The expression y = Dx can be written in the expanded form as

(8) 0 = Dyxp—D;x; —Dgxr —Dpx3
9 Yr = DXy +D;xg+Dgx3 —Dpx;
(10) Yo = Dyxo —D,x3+Dyxo+ DX
(11D Yo = Dyx3+D,x0 —Dgxq + DpXo.

In this way, the linear correlation given in the equation (8) as well as the orthogonality property
between the column vectors of the coefficients remains valid, which can be seen in (8)-(11).
This has shown to be useful in the preservation of spectral fidelity in the reconstructed im-
age [28]. The same property holds also for larger number of channels, which can be seen
in [19], where the quaternion model K-QSVD was generalized to the octonion setting, and a
new ODL model was introduced. The idea in the approach of the ODL model was initiated
by the promising results obtained by the K-SVD model, although certain problems occured.
Indeed, since the eigenvalue problem in the octonion setting is not solved for the general di-
mension of the octonion matrix, straightforward generalization of the K-SVD model from the
complex and the quaternion case was not possible. These difficulties were overcome by using
the approximate model for dictionary learning introduced in [25]. Detailed explanations with
a more in depth analysis of the ODL model can be found in [19]. In Figure 2 we compare the
previously mentioned models for color image denoising with different levels of Gaussian ad-
ditive white noise. As it was stressed in [19], K-QSVD and ODL models outperform classical
K-SVD model for lower levels of noise. For higher levels of noise, ODL and K-QSVD are
showing more or less similar results.

Apart from the application in color image processing, the ODL model can be applied for pro-
cessing of multispectral images with up to 7 spectral channels. Landsat 7 satellite images are
a notable example of image data with 7 spectral bands (three visible and four infrared bands).
Figure 3 shows examples of image reconstruction from incomplete data with traditional K-
SVD and ODL. A more extensive evaluation of ODL is in [19]. In particular the method was
validated in image denoising of additive white Gaussian noise with standard deviation ©.

5. HIGHERDIMENSIONAL GENERALIZATION

Motivated by the encouraging results of quaternion- and octonion-based dictionary learning
[19,28,30], we want to explore whether the same idea can be generalized to a hypercomplex
algebra of arbitrary dimension.

Consider a multichannel image Y with £ € N channels. Let ./ be an algebra of dimension
2" with n € N being the first natural number such that 2" > k (see Subsection 3.1). We know
that this algebra has 2" — 1 imaginary units, let us denote them by eq,...,e;»_1. The idea is to
assign k spectral channels to k out of 2" — 1 imaginary units, ey,. .., e, of a given hypercomplex



HYPERCOMPLEX ALGEBRAS FOR DICTIONARY LEARNING

... ; . | 7. -. .
} 3 \ Goa ol

(a) 28.10 dB (b) 28.11 dB (c) 28.13dB (d) 28.12dB (e) 28.11 dB (f) 28.16 dB (g) 28.11 dB (h) 28.14 dB

... | . 7‘ w. A .
2z 3 * > ’
e Bl L

(1) 36.25dB (j) 38.45dB (k) 36.51 dB (1) 36.78 dB (m) 37.49 dB (n) 34.24 dB (o) 40.68 (p) 36.48 dB

FIGURE 3. Landsat 7 image denoising. First row noisy image channels, second
row image reconstructed by the ODL model - PSNR values are shown below.

algebra .o7. The sample y € .<7*! is then represented as

k
y= Z Yiek
i=1

where we set yo =0 andy; =0, fori € {k+1,...,2" — 1}. The goal is to find a sparse code
x € o/P*! and a dictionary D € .&#"*P such that (7) holds. The main motivation is the preser-
vation of spectral fidelity (i.e., inter-channel dependencies) as a generalization of the color
fidelity to k—channel images. This implies ensuring the orthogonality between the column
vectors of the coefficient matrix, and linear correlation among the spectral channels. Indeed, in
the expanded form of multiplication for quaternion and octonion signals we have that the or-
thogonality property of the coefficient matrix, as well as linear correlation among the spectral
channels hold [19, 28].

Keeping the same notation as in [19], we want to define operators v, x, ¥ that act on elements
from o7 as well as on vectors and matrices with values in .7, transforming (7) into a real matrix
problem. The operator V is a vectorization operator and transforms elements from .o/ as well as
vectors with values in .27 into real vectors. The operators )y and y are acting on elements from
o/, and can be extended to matrices with values in <7, transforming them into real vectors and
real matrices, such that the following relations

v(y) = v(Dx) = x(D)v(x)
hold (for more detailed explanations see [19,30]).

In the expanded form (e.g., in the quaternion case we have (8)-(11)) we can extract all the co-
efficients in a matrix form, which gives us the real coefficient matrix equal to x(x) (or y(x)).
This is just a special case, when instead of a matrix D € .&#/™*P, the map X (or y) acts on a
coefficient vector x € .&7P*!. The obtained coefficient matrix should have the orthogonality
property, i.e., the columns of the obtained matrix should be mutually orthogonal real vectors
(like the column coefficient vectors from the coefficient matrix extracted from (8)-(11)). De-
pending on our preference we can work interchangeably with the right (y(x)) or left (x(x))
representation map.

It turns out that this orthogonality property does not hold in higher dimensional Clifford alge-
bras as we show next. For two vectors a,b with values in <7, we define

(12) (a,b) =% (Za—b) = %R(a"b),
i=1

with -* being the conjugate transpose operator and R being the real part of the expression. Since
the operator v assigns real vectors v(a), v(b) to a and b, it can be shown that the standard real
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inner product (v(a), v(b)) equals the one defined in (12). For a vector x = [x;]7_, € &/P*1, we
can show that the obtained coefficient matrix ) (x) is not orthogonal in general, because

(x(x)v(a),x(x)v(b)) = (v(xa),v(xb)) = (xa,xb)

= R(a'x"xb) =R

-

a;ixixib; | #x"x(a,b) =x"x(v(a),v(b))

i=1

since X;x; is not necessarily a real number. Indeed, for an element x = e, + ¢34 € &7, we have
that

xXx = —2eq234+2

which is not a real number, so the matrix ¥ (x), in general, is not orthogonal. Here we decided to
present the previous proof, although we could also have shown by tedious calculations that R3
does not have the orthogonality property. This then implies that all the algebras of dimension
larger than 8 do not retain this property as well, since they contain algebras of smaller dimension
as subalgebras.

Similarly, in Cayley-Dickson algebras we do not have the desired orthogonality property either
for dimensions greater than eight. This follows from the fact that we do not have the associa-
tivity property, so we cannot use that

n n
R Y @x)(xibi) | =R )@ (xixi) by
i=1 i=1

Although the octonion algebra is not associative, it retains the orthogonality property as pre-
sented in [19]. Unfortunately, already sedenions do not satisfy this property, which follows
from direct calculations but also the fact that in general Clifford and Cayley-Dickson algebras
possess zero divisors, could be used to argue the presented results.

The analysis above shows that the only examples of Clifford and Cayley-Dickson algebras with
the orthogonality property of the coefficient matrix are C, H and Q.

6. CONCLUSION

In this paper we gave an overview of quaternion and octonion-based methods in dictionary
learning and we studied their possible extensions with hypercomplex algebras of arbitrary di-
mension. Such generalizations would be of much interest for processing general multichannel
images, such as arbitrary multispectral and hyperspectral images. Our analysis shows that the
current approaches to dictionary learning with Clifford and Cayley-Dickson algebras do not
admit generalizations to dimensions higher than eight because the orthogonality property of
the coefficient matrix is not retained.
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