Multi-Center Evaluation of Knee Kinematics during different Activities for Anatomic Total Knee Design

Conference Paper · April 2018

7 authors, including:

Matthias Verstraete
Research Foundation Flanders
74 PUBLICATIONS 257 CITATIONS

Stefaan Van Onsem
Ghent University
6 PUBLICATIONS 30 CITATIONS

Francesco Zambianchi
Università degli Studi di Modena e Reggio Emilia
47 PUBLICATIONS 179 CITATIONS

Catherine Van Der Straeten
Ghent University
59 PUBLICATIONS 626 CITATIONS

Some of the authors of this publication are also working on these related projects:

- resurfacing revisions View project
- kinematic alignment technique for total hip replacement (KA THA) View project
Multi-Center Evaluation of Knee Kinematics during different Activities for Anatomic Total Knee Design

Verstraete M, Van Onsem S, Zambianchi F, Lombari V, Van der Straeten C, Victor J, Catani F.

No Conflicts of Interests to Disclose
Introduction

First Generation Bi-Cruciate Substituting TKA (2005) - Design

- Restore native knee kinematics
- Anatomic joint line (asymmetric polyethylene insert, 3° varus)
- Inherent screw-home mechanism to favor femoral internal rotation in full extension

First Generation Bi-Cruciate Substituting TKA (2005) - Complications

- Increased incidence of ilio-tibial band (ITB) friction syndrome
- Episodes of knee dislocation
- Mechanical stress and fibrous metaplasia on the posterior capsule for excessive posterior femoral roll-back

- 8% Lateral Parapatellar Release
- 4% Antero-lateral knee pain, conservative treatment
- 1.5% Persistent pain at the ilio-tibial tract
- 3% Post-operative stiffness treated with manipulation under anesthesia
Introduction

Second Generation Bi-Cruciate Substituting TKA (2013) - Design

- Taller box walls
- Thickness of the anterior flange: reduced of 1-2 mm to decrease tension on the ITB and ITPB
- Width: 2-3 mm decreased to limit implant overhang
- Superior cam position to decrease femoral rollback, increase femoral external rotation, lower the point of tibial post contact in deep flexion
- Increased height of the post and anterior placement
Introduction

- Similar kinematic patterns from 0-30° and beyond 90° of knee flexion
- Lack of screw-home mechanism in BCS design compared to native knee (ACL resection)
- Post-cam mechanism replicates the role of the cruciates for antero-posterior displacement, but not for axial rotation
- In mid flexion (30-60° flexion) cruciates function can not be maintained

2nd World Arthroplasty Congress – Rome – April 19-21
Aim of the study

In Vivo Kinematics of the Journey II Bi-Cruciate Stabilized Knee System: InVivo Fluoroscopic Analysis during Activities of Daily Living

- **Study Design:** Multicenter, prospective, post-market study
- **Primary Objective:** evaluate the kinematic behavior of a bi-cruciate substituting total knee system

Do we need «normal knee» kinematics to get back to optimal function and pain free joint?
Materials and Methods

- Two Centers:
 - Università di Modena e Reggio-Emilia, Italy: 10 patients
 - Universiteit Gent, Belgium: 10 patients

- Journey II BCS Total Knee System implanted in all cases

- Examination time point: mean 9.3 months post-operatively (min. 3 - max. 13 months)

- Examined motions

 Università di Modena e Reggio-Emilia:
 - Open Chain Flexion-Extension (FE)
 - Closed Chain Stair Climbing (SC)
 - Closed Chain Chair Rising (CH)

 Universiteit Gent:
 - Open Chain Flexion-Extension (FE)
 - Closed Chain Squatting (SQ)
 - Closed Chain Rising and Sitting (CH)

- Iterative “shape matching” technique of 3D prosthetic CAD models overimposed on 2D video-fluoroscopy images
Materials and Methods

Kinematic Analysis

Femoral
- Center of condyles for medial and lateral flexion facets

Tibial
- ML dimension:
 - Centers defined at 1/4 and 3/4 of ML tibial implant width
- AP dimension:
 - 0 = most posterior point of tibial insert
 - 1 = most anterior point of tibial insert
 - Equal for medial and lateral compartment, regardless asymmetry in implant geometry

2nd World Arthroplasty Congress – Rome – April 19-21
Results: Open Chain – Flexion/Extension

Axial Rotation

- Progressive moderate external rotation of the femoral component relative to the tibia with flexion
- Wide Standard Deviations
- No significant differences between the two centers

AP Medial / Lateral Positioning

- Progressive posterior translation of the condyles with flexion
- Slight medial condyle anterior translation between 0-50°
- Bigger lateral condyle displacement
- No statistically significant differences between the two centers
Results: Close Chain – Chair Rising

Axial Rotation

- Significant progressive external rotation of the femoral component relative to the tibia with flexion
- No significant differences between the two centers

AP Medial / Lateral Positioning

- No significant medial condyle AP displacement with knee flexion
- Slight lateral condyle posterior displacement with knee flexion
- No statistically significant differences between the two centers
Results

Università di Modena e Reggio-Emilia

- Knee kinematics is strictly dependent on activity
- Muscle activity and external joint loading affect knee kinematics
Results

• Knee kinematics is strictly dependent on activity

• Muscle activity and external joint loading affect knee kinematics

2nd World Arthroplasty Congress – Rome – April 19-21
Results

Flexion / Extension

Post-Cam engagement at 50° of knee flexion
Results

Chair Rising

Post-Cam engagement at 80° of knee flexion
Conclusions

- 16 Journey II BCS patients compared with 16 Journey BCS patients during two close chain motions
- Similar patterns of femoral axial rotation with flexion
- Reduced absolute values of medial and lateral condyles posterior displacement in Journey II BCS
- Design changes in the recently-introduced total knee system contributed to modify its in-vivo knee kinematics

Catani F. et al J Orthop Res., 2009
Conclusions

- Consistent kinematic patterns between the two centres (Università di Modena and Universiteit Gent)

- Less «guided» knee kinematic pattern (open chain ≠ closed chain)

- Reduced posterior translation of medial and lateral side compared to the first design

- More posterior tibio-femoral position translation on the lateral side compared to medial

- Future addressings: correlation between knee kinematics and patient’s satisfaction