
Noname manuscript No.
(will be inserted by the editor)

Split buildings of type F4 in buildings of type E6

Anneleen De Schepper · Narasimha Sastry · Hendrik Van
Maldeghem

Received: date / Accepted: date
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1 Introduction

Buildings are the natural geometries of algebraic groups and certain variants of them such as groups of mixed type
and classical groups over division rings which are infinite dimensional over their centre. Galois descent and forms
translate to fixed point buildings of an automorphism group. For the fundamental, so called split buildings over an
algebraically closed field, this automorphism group is trivial. However, also these split buildings can arise as fixed
point buildings under a suitable nontrivial automorphism group (but not a Galois group, of course) of other split
buildings. There are four special examples of this phenomenon, and they beautifully fit together (other examples
exist in abundance, e.g., a central collineation in a polar space fixes a polar space of one rank less). Each of them
occurs over an arbitrary field. In each of those examples, the ambient building has a simply laced Dynkin diagram,
and the fixed point building has a double or triple bond in its Dynkin diagram. The four examples can be listed in
increasing complextiy:
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(1) A symplectic polarity (i.e., the polarity related to a nondegenerate alternating form on the underlying vector
space) of a projective space of dimension 2n− 1 (i.e., a split building of type A2n−1) fixes a symplectic polar
space (i.e., a split building of type Cn);

(2) a non-type preserving involutary automorphism of the oriflamme complex of a hyperbolic quadric (i.e., a
building of type Dn+1) which pointwise fixes a hyperplane of the ambient projective space fixes a parabolic
polar space (i.e., a split building of type Bn);

(3) a triality of type Iid (in the terminology of [23]) of the oriflamme complex of a hyperbolic quadric with Witt
index 4 (i.e., a split building of type D4) fixes a split Cayley generalised hexagon (i.e., a building of exceptional
type G2);

(4) a symplectic polarity of a building of exceptional type E6 fixes a split building of exceptional type F4.

Remarkably, all types of Dynkin diagrams are involved (though not every single one, the exceptions being A2n,
E7 and E8). A common feature of all these examples is that, for some point-line approach to these buildings, the
point-line geometry of fixed building is a geometric hyperplane of the point-line geometry of the ambient building:

(1) The lines of a symplectic polar space form a linear system of the line Grassmannian of the ambient projective
space;

(2) the parabolic quadric is a hyperplane section of the hyperbolic quadric;
(3) the points of the hexagon are the points of a parabolic quadric arising as a hyperplane section of the hyperbolic

quadric of Witt index 4;
(4) the points of the corresponding metasymplectic space (where the points are the elements of type 4, with

Bourbaki labeling [4] as in Figure 2) are in a hyperplane section of the 16-dimensional variety corresponding
to the building of type E6 (the points are the elements of type 1) in 26-dimensional projective space, cf. [8].

In fact, through the symplectic polarity of a building of type E6, we can witness all the above features: A symplectic
polarity is induced in every fixed 5-space (feature (1)); in a residue of type D5 that is mapped onto a non-incident
element, the map defined by the polarity and the projection in the sense of Corollary 4.2.013 below, is an involution
pointwise fixing a parabolic polar space of type B4 (feature (2)); finally, the principal of triality (feature (3)) will
be crucial in many of our arguments (see, for instance, Lemma 6.3.07). One could even say that buildings of type
E6 exist thanks to triality!

In this paper, we study the symplectic polarities of buildings of type E6. Our main goal is to explicitly construct a
building of type E6 from a given split building of type F4. This will be accomplished in Theorem 6.7.01. There are a
number of reasons why this is a worthwhile thing to do. Firstly, it provides an explicit geometric link between these
buildings much deeper than just knowing that the point set of the building of type F4 is a geometric hyperplane
of the point-line geometry naturally associated with a building of type E6 (Theorem 1). Secondly, it provides a
geometric proof of the fact that, up to conjugacy, every building of type E6 admits a unique symplectic polarity
(Theorem 2). Thirdly, we will use the gained geometric insight to show uniqueness of the inclusion in question of
the split building of type F4 in a building of type E6 (Theorem 3). And last but not least, it provides a wealth of
properties of the metasymplectic spaces related to split buildings of type F4, which can be used in other geometric
problems (for instance extending the results in [13] is a good candidate).

Other constructions of buildings from smaller ones comprise the construction of the ambient projective 3-space
from the embedded symplectic generalized quadrangle (see [18]), the construction of the ambient oriflamme geom-
etry of the polar space of type D4 from the embedded triality generalized hexagon (see [26]), and the construction
of the ambient metasymplectic parapolar space of type F4 from the embedded Ree-Tits generalised octagon (see
[17,27]).
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2 Preliminaries and Main Results

For undefined but basic notions of the theory of buildings (such as opposition relation, chambers, (Dynkin) dia-
gram, etc.), we refer the reader to the excellent textbook [1].

Let ∆ be a building of type E6 over the field K. The latter means that each rank 2 residue is either a generalised
digon or a projective plane over K. We label the types according to the Bourbaki conventions [4] of labeling Dynkin
diagrams and call elements of type 1,2,3,4,5,6 points, 5-spaces, lines, planes, 4-spaces and quads, respectively
(see Figure 1). This way, we in fact identify ∆ with its shadow space corresponding to the elements of type 1 (see
e.g. [25]). The opposition relation on the types preserves the types 2 and 4 and switches type 1 with type 6 and
type 3 with type 5. The corresponding point-line geometry is said to be naturally associated with ∆ .

•
1

•
3

•
4

•
5

•
6

•
2

Fig. 1 The Dynkin diagram of type E6 with Bourbaki labeling

Buildings of type E6 are naturally associated with Chevalley groups of type E6. It is well-known that each such
group contains a maximal subgroup of type F4, which is moreover pointwise fixed by an outer involutory auto-
morphism. This involution induces a nontrivial involution (in fact, the opposition relation) on the diagram of ∆

and can hence be seen as a polarity θ of ∆ . Geometrically, this maximal subgroup of type F4 stabilizes a subbuild-
ing Γ of type F4, consisting of some elements of types 1,2,3 and 4 of ∆ . This defines an embedding of Γ in ∆

with the following property: Every point, line and 5-space of ∆ incident with a plane of Γ belongs to Γ . We can
choose types in Γ such that the points, lines, planes and symplecta of Γ are points, lines, planes and 5-spaces,
respectively, of ∆ . The symplecta of Γ are then symplectic polar spaces of rank 3, induced by θ on the θ -fixed
5-spaces of ∆ . This motivates to call Γ a symplectic metasymplectic (parapolar) space (see [7]; in general, a meta-
symplectic space is the point-line geometry obtained from any building of type F4 by taking as points the objects
either of type 1, or of type 4) and the polarity θ a symplectic polarity (see Proposition 4.2.014). It is unique up to
conjugacy. Geometrically, this follows from the above property of the embedding of Γ in ∆ , as we shall show in
Theorem 6.7.02.

Now, the claims made in the previous paragraph are not easy to find in the literature. In the finite case, they follow
from the classification of large almost simple maximal subgroups of groups of type E6, see [14,15]. However,
in the general case, hardly any literature exists about “non-Galois” automorphisms of buildings, or, more or less
equivalently, of simple algebraic groups. In the present paper, we prove the above claims taking a geometric
approach, and prove a new uniqueness result concerning the inclusion of split buildings of type F4 into buildings
of type E6 (Theorem 3).

Hence we start with a split building Γ of type F4 over K. This means that, again with Bourbaki labeling (see Fig-
ure 2), the residues of type 1 are the buildings corresponding to the polar spaces of rank 3 defined by a symplectic
polarity in PG(5,K). We will define additional elements using special substructures of Γ to obtain ∆ , recover the
polarity θ (Theorem 6.7.01) and prove its uniqueness up to conjugacy (Theorem 6.7.02). More exactly, we will
prove the following theorems.
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•
4

•
3

•
2

•
1

Fig. 2 The Dynkin diagram of type F4 with Bourbaki labeling

Theorem 1 Let Γ be a symplectic metasymplectic parapolar space. Then there exist an explicitly defined geometry
(E,∗), which is the geometry naturally associated with a building of type E6, and a symplectic polarity θ of (E,∗)
with fixed point structure Γ . More exactly, the sets of absolute points and absolute lines of θ are precisely the sets
of points and lines of Γ , and the fixed planes and fixed 5-spaces of θ are the planes and symplecta, respectively, of
Γ .

Theorem 2 A building ∆ of type E6 admits, up to conjugacy, a unique symplectic polarity.

In Section 7, we let ∆ be a building of type E6 over the field K and θ a symplectic polarity. An element of ∆ of type
1,3,5 or 6 is called absolute if it is incident with its image. The absolute points, absolute lines, fixed planes and fixed
5-spaces with inherited incidence relation from E6 are the points, lines, planes and symplecta of a metasymplectic
parapolar space all of whose symplecta are symplectic polar spaces of rank 3. In other words, these four types of
objects form a split building Γ of type F4. Now we view ∆ and Γ as independent point-line geometries (hence
neglecting all objects other than the points and the lines and their mutual incidence) and say that Γ is point-line-
embedded in ∆ if the point set of Γ is a subset of the point set of ∆ , likewise for the line sets, and if incidence in
Γ is inherited from incidence in ∆ . The point-line-embedding is called full if all points of ∆ on a line of Γ are also
points of Γ . In Section 7, we prove the following theorem.

Theorem 3 Let Γ be a symplectic metasymplectic parapolar space. Let ∆ be the natural point-line geometry
associated with a building of type E6. If Γ is fully point-line-embedded in ∆ , then Γ and ∆ are defined over the
same field and Γ arises from a symplectic polarity of ∆ .

Note that the condition of the embedding being full cannot be dispensed with since one can consider a symplectic
metasymplectic parapolar space over a subfield of K. Also, there exist metasymplectic parapolar spaces fully
embedded in ∆ which are not symplectic, i.e., which arise from a non-split building Γ ′ of type F4. This happens
when K admits a Galois involution and Γ ′ is the building associated with the corresponding twisted Chevalley
group.

Notation and Terminology.

– We will use the following convention to refer to certain buildings. With “type” of a building, we will always
mean the relative and absolute Dynkin type (hence all buildings we consider are split) in the sense of algebraic
groups, except when we explicitly mention that we only mean relative type. Hence,

– a building of type Bn is the simplical complex defined by a parabolic quadric (which is a nondegenerate
quadric of Witt index n in a projective space of dimension 2n),

– a building of type Cn is the simplicial complex defined by a symplectic polarity in a projective space of
dimension 2n−1, and

– a building of type Dn is the oriflamme complex (see Section 7.12 of [24]) of a (2n− 2)-dimensional hy-
perbolic quadric, i.e., a nondegenerate quadric of maximal Witt index n in a projective space of dimension
2n−1.
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– We will recognise buildings via their standard point-line representations, which we will identify with the build-
ings themselves. This comprises:
– parabolic quadrics or polar spaces of type Bn to mean that the given point-line geometry conforms to a

building of type Bn where points and lines are the elements of type 1 and 2, respectively;
– symplectic polar spaces, or polar spaces of type Cn, which conform to buildings of type Cn;
– quadrics of type Dn are hyperbolic quadrics whose oriflamme complexes are buildings of type Dn;
– finally, a metasymplectic space is a point-line geometry (a so-called parapolar space, see [20]) associated

with a (thick) building of type F4.
– A subspace of a point-line geometry is a subset of points with the property that every line intersecting the set

in at least two points is entirely contained in it.
– A subspace is called singular if every pair of points is collinear.
– A subspace is called a (geometric) hyperplanegeometric hyperplane if every line intersects it in at least one

point.
– A geometric hyperplane is called singular if it consists of the set of all points not at maximal distance (in

the point graph) from a certain point x (for polar spaces, this just means the set of points collinear with or
equal to x).

Hence there is some ambiguity when talking about a hyperplane to be singular: it can be singular as a sub-
space, or it can be singular as a hyperplane. We make the convention that when we write “singular (geometric)
hyperplane”, we always mean singular as a hyperplane, and when we write “singular subspace”, then we mean
that every pair of points is collinear, even if the subspace happens to be a geometric hyperplane.

Remark 2.0.01 Let G be the lineair algebraic group of type E6 over the field K. Let G(θ) be the centralizer of the
standard symplectic polarity θ (in the terminology of [19], a graph automorphism). Then G(θ) is a linear algebraic
group of split type F4 and a maximal closed connected subgroup of G. Theorem 15.1 of [19] asserts that, if K is
algebraically closed, all maximal closed connected subgroups of G of exceptional type are conjugate. This could
be the base for an algebraic proof of Theorem 2.

3 Outline of the paper

We now explain the structure of the paper, in particular of the proofs of Theorems 1, 2 and 3.

The proofs of Theorems 1 and 2 comprise the first part of the paper, the proof of Theorem 3 will be referred to as
the second part. We note that,

(I) in the first part, we start with an arbitrary symplectic metasymplectic parapolar space Γ and
(a) construct a canonical building ∆ of type E6 in which Γ is embedded, and
(b) show that Γ is the fixed point structure of a symplectic polarity of ∆ ;

(II) in the second part, we start with a pair (∆ ,Γ ) consisting of a building ∆ of type E6 and a split building Γ

of type F4, whose associated symplectic metasymplectic parapolar space is point-line-embedded in ∆ and we
again show that Γ is the fixed point structure of a symplectic polarity of ∆ .

For Parts (I)(b) and (II), we need some background on buildings of type E6, in particular how to recognise sym-
plectic polarities. This is provided in Section 4. Hence, strictly speaking, we do not need that section for Part (I)(a).
However, we prove slightly more than strictly needed in Section 4 for the benefit of the reader. Indeed, we also
point out the relations between some subspaces of a building of type E6 and a symplectic polarity, or its fixed point
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set. These relations can be kept in the back of the reader’s mind as a distant guide when going through Section 6.
In particular, it hints at how certain subspaces of ∆ will be recovered from Γ .

Of course, for Part (I)(a) we need (basic) properties of symplectic metasymplectic parapolar spaces, and these are
gathered in Subsection 5.1. The rest of Section 5 is devoted to preparing the (re)construction of the elements of
the building ∆ of type E6. The bulk of that is to get the quads of ∆ . We will recognise these by their intersections
with Γ . One type of intersection is a substructure of Γ which we shall call “extended equator geometry”, and we
define it in Subsection 5.2. We study some properties which shall enable us later to identify these with the intended
intersections.

Now, we also have to construct a symplectic polarity once we defined ∆ . Such a polarity maps points to quads
and vice versa. So, if we consider a point p of ∆ , then we can look at the intersection Ê of its image with Γ ,
or we can also look at the set T̂ of points of Γ collinear with p. It turns out that there is a very neat relation
between Ê and T̂ , and the latter can be constructed only knowing Ê. We show how to do this, and we call T̂ the
“tropical circle geometry”, hinting at the fact that it lies “in the neighbourhood of” and “surrounds” the (extended)
equator geometry. Together, Ê and T̂ and the points on a line joining them, define a geometric hyperplane of Γ ,
and we also prove this (see Subsection 5.4). At that point we can already define the point-line geometry related to
∆ (Subsection 6.1). The rest of Section 6 is devoted to the construction of all elements of ∆ and the symplectic
polarity: the quads (Subsection 6.3), the 4-spaces (Subsection 6.4), the 5-spaces and the planes (Subsection 6.5),
and the symplectic polarity (Subsection 6.6). In Subsection 6.7 we put all pieces together to prove Theorems 1
and 2.

Finally, in Section 7, we prove Theorem 3. We are given a point-line-embedding of the symplectic metasymplectic
parapolar space geometry related to a split building Γ of type F4 in the natural point-line geometry related to
a building ∆ of type E6. The first problem to solve is how the symplecta of Γ are embedded in ∆ . It turns out
that there are just two possibilities: either as a fully embedded symplectic polar space in a 5-space of ∆ , or as a
subquadric of a quad (only possible in characteristic 2). We rule out that second possibility in Subsection 7.1. In
Subsection 7.2, we analyse the relation between Γ and a quad of ∆ via the intersection of the latter with the former,
and we use this in Subsection 7.3 to finally construct the associated symplectic polarity. Much of the argumentation
should look somehow predictable by the gained insight into the structural properties of the standard inclusion of Γ

in ∆ thanks to our analysis in the previous sections.

4 Some basic properties of buildings of type E6

4.1 Generalities, types, apartments

We gather some facts about buildings ∆ of type E6. Throughout, we number the diagram as in Figure 1 and 2, and
choose to name the elements of type 1 points. We identify all other elements with the set of points incident with
them. The elements of type 3 will be called lines, those of type 4 planes, those of type 5 will be called 4-spaces,
those of type 6 quads and the elements of type 2 will be called 5-spaces. Note that 4-spaces are projective spaces
of dimension 4 over K, likewise 5-spaces are projective 5-spaces over K, and quads are subspaces isomorphic to
hyperbolic quadrics of type D5 defined in some projective 9-space over K, i.e., quadrics of maximal Witt-index 5
in such a space. A 4′-space is a hyperplane of a 5-space, but it does not conform to a (single) type in ∆ (it can be
considered as a flag of type {2,6}). Also, a 3-space is some 3-space in a 5-space, or, equivalently, in a 4-space (it
conforms to a flag of type {2,5,6}). So we obtain a point-line geometry, which we will call the natural point-line
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geometry associated with ∆ . The elements of types 2,4,5,6 conform to subspaces of this point-line geometry, and
their names mentioned above are chosen such that they reveal the structure of the subspace in question (e.g., planes
are really projective planes, etc.).

If we choose the elements of type 6 to be the points, then we obtain an isomorphic geometry where the elements
of type 5 are the lines, those of type 4 are the planes, those of type 3 are the 4-spaces, those of type 1 are the quads
and the elements of type 2 are the 5-spaces. This is the principle of duality in buildings of type E6. It follows from
the uniqueness of the building of type E6 over the field K, see [24].

Given the natural point-line geometry associated with ∆ , we can go back to the incidence geometry or, equivalently,
the numbered simplicial complex defined by ∆ as follows. The elements of the geometry or the vertices of the
simplicial complex are the points, lines, planes, 4-space, 5-spaces and quads, and the incidence or adjacency is
given by the following rules. An object is incident with another object if, and only if, one of them is contained in
the other, except when one object is a 5-space V , and the other is either a 4-space W or a quad Σ . Then V is incident
with W if, and only if, V ∩W is a 3-dimensional subspace of both V and W ; V is incident with Σ if, and only if,
V ∩Σ is a 4-dimensional (singular) subspace of both V and Σ , in which case it is a 4′-space. The two families
of maximal singular subspaces of Σ , characterised by the property that subspaces from the same family meet
each other in even-dimensional subspaces, and members of different families meet each other in odd-dimensional
subspaces, are the family of 4-spaces and the family of 4′-spaces contained in Σ .

4.2 Some geometric properties of the point-line geometry ∆

In this subsection, we assume that ∆ is the natural point-line geometry associated with a (thick) building of type E6

defined over some field K. Collinearity, from now on, refers to distinct points incident with (or, with our convention,
contained in) ap least one line of ∆ . Opposite elements are elements which are opposite in some apartment. A flag
is a set of pairwise incident elements of different types, so a chamber in ∆ is a flag consisting of 6 elements of ∆ .

Everything below is well-known, and we give precise references for most facts. Many things are contained in
[22], but we also include references to [9], as the latter is easily accessible and provides an excellent source of
information on buildings of type E6. Let us also remark that some of the properties are stated, without proof, in [16],
where they are seen as results of “reading” the diagram. We were unable to find Facts 4.2.07, 4.2.010 and 4.2.011
explicitly in the literature, but these (and also the others) can be verified by the reader himself by including two
appropriate flags (mostly just two elements) in an apartment. The assertion then becomes an assertion in a thin
building of type E6. Such a thin building A is provided by the following easy construction (see Paragraph 10.3.4
in [3]): the 27 points of A are the 27 points of the generalized quadrangle Q of order (2,4) (arising from a
nondegenerate bilinear form of Witt index 2 in a 5-dimensional projective space over the field of 2 elements).
The lines of A are the non-collinear pairs of points of Q. The planes of A are the triads of Q (i.e., the triples of
non-collinear points). The 4-spaces are the intersections p⊥∩q⊥, where p and q are two non-collinear points and
x⊥ denotes the set of elements collinear or equal to the point x in Q. The 5-spaces through a point p are obtained
by taking some point q not collinear with p in Q, and then the points in q⊥ \ (p⊥ ∪{q}) together with p form a
5-space. A quad simply is p⊥ \{p} for some point p of Q. Opposition is also easily defined in A . Indeed, a point
p is opposite the quad p⊥ \ {p}; a line {p,q} is opposite the 4-space p⊥ ∩ q⊥; the plane {x,y,z} is opposite the
plane x⊥∩ y⊥∩ z⊥ and the 5-space {p}∪ (q⊥ \ (p⊥∪{q})) is opposite the 5-space {q}∪ (p⊥ \ (q⊥∪{p})).

Fact 4.2.01 (Lemma 18.7.1 of [9], Statement 3.7 of [22]) Any pair of collinear points of ∆ is contained in a
unique line. Any pair of non-collinear points of ∆ is contained in a unique quad.
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By duality, we have the following.

Fact 4.2.02 Two distinct quads of ∆ either intersect in a unique 4-space, or in a unique point.

Fact 4.2.03 (Proposition 18.7.2(vii) of [9], Statements 3.5.4 and 3.9 of [22]) Given a point x and a quad Σ , then
either x ∈ Σ , or x is opposite Σ , which is equivalent to “no point of Σ is collinear with x”, or there is a unique
5-space V incident with both x and Σ . In the latter case, the intersection of V with Σ is precisely the set of points
of Σ collinear with x.

In the last case, namely when there is a unique 5-space incident with both a point x and a quad Σ 63 x, we say that
Σ neighbors x (and x neighbors Σ ). This notion is standard in the theory of Hjelmslev planes and is inspired by the
fact that ∆ can be described as a Hjelmslev-Moufang plane over split octonions, see [21].

The previous fact has the following consequence.

Corollary 4.2.04 A quad Σ is convex.

Proof Let x,y be two points of Σ . If they are collinear, then clearly, the line joining them is contained in the
subspace Σ . If they are not collinear then let z be a point collinear with x and y and suppose z /∈ Σ . By Fact 4.2.03,
z,x and y are contained in a unique 5-space, which is a contradiction. Hence z ∈ Σ . ut

Fact 4.2.05 below is an immediate consequence of the fact that one can put any 4-space and any point in a common
apartment, in which there are exactly two quads incident with the 4-space, and that in the apartment, each point is
opposite only one quad.

Fact 4.2.05 At least one quad through a given 4-space is not opposite a given point.

Fact 4.2.06 (Proposition 18.7.2(v) of [9], Statement 3.5.3 of [22]) Two 5-spaces are either disjoint, intersect in
a point, or intersect in a plane. The latter case is equivalent to the 5-spaces being incident with a common plane
(namely, their intersection). In particular, every 3-space is contained in a unique 5-space.

Fact 4.2.07 Two disjoint 5-spaces are either opposite or there exists a 5-space intersecting them in disjoint planes.

Fact 4.2.08 (Proposition 18.7.2(v) of [9], Statement 3.2 of [22]) Every 3-space is contained in a unique 4-space.

Fact 4.2.09 (Statement 3.2 of [22]) Every 4′-space is contained in a unique quad and in a unique 5-space.

Fact 4.2.010 Given a point x and a 5-space V , either x and V are incident, or x is collinear with exactly one point
of V , or x is collinear with all points of a unique 3-space of V . In the latter case, the space spanned by x and x⊥∩V
(i.e., the union of all lines through x meeting V ) is a 4-space.

Fact 4.2.011 A point, line or plane is opposite a quad, 4-space, or plane, respectively, if, and only if, the collinear-
ity relation between the two elements is empty. A 5-space is opposite another 5-space if, and only if, each point
of the first is collinear with a unique point of the second 5-space if, and only if, each point of either of them is
collinear with a unique point of the other.
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Now let F and F ′ be opposite flags in ∆ , i.e., each element of F is opposite a unique element of F ′ and vice versa.
For every chamber C containing F , there is a unique chamber C′ containing F ′ at minimal distance from C (where
the distance of chambers is measured in the chamber graph, i.e., the graph with vertices the chambers, and two
chambers are adjacent if they share 5 elements). We denote the map C 7→ C′ by ρF,F ′ . The residue of F consists
of all chambers containing F and carries the structure of a spherical building. It is well-known that ρF,F ′ can be
naturally extended to all flags containing F , see Theorem 3.28 in [24]. In the following proposition and corollary,
∆ denotes any spherical building. We will apply these statements to buildings of types D4, F4 and E6.

Proposition 4.2.012 (Theorem 3.28 and Proposition 3.29 of [24]) Let F and F ′ be opposite flags of ∆ . Then
ρF,F ′ is an isomorphism from the residue of F to the residue of F ′ and the type of the image of an element of
type i is the opposite in the residue of F ′ of the opposite type of i in ∆ . Also, chambers C ⊇ F and C′ ⊇ F ′ are
opposite in ∆ if, and only if, C′ and ρF,F ′(C) are opposite in the residue of F ′.

There is a useful corollary.

Corollary 4.2.013 Let ϕ be an automorphism of ∆ . Let F and Fϕ be opposite flags of ∆ , and let σF,ϕ be the
automorphism of the residue of F mapping a chamber C ⊇ F onto ρFϕ ,F(Cϕ). If ϕ induces the natural opposition
relation on the types of ∆ , then so does σF,ϕ for the residue of F. ut

We end this section with three results proved in [29].

Proposition 4.2.014 Let θ be a duality of a building of type E6. The following are equivalent.

• θ is a symplectic polarity;
• θ maps no point to a neighboring quad and at least one point is absolute;
• θ maps no chamber to an opposite chamber;
• θ maps no line (or plane or 4-space or 5-space, respectively) to an opposite one.

Proposition 4.2.015 Let ∆ be a building of type E6 and let θ be a symplectic polarity of ∆ . Let Γ be the building
of type F4 consisting of the absolute points, absolute lines, fixed planes and fixed 5-spaces for θ . Then a line L of ∆

containing at least two points of Γ is entirely contained in Γ and either L is an absolute line, or L is a hyperbolic
line in some fixed 5-space V (hyperbolic with respect to the symplectic polarity in V induced by θ by relating a
point x ∈V to the intersection V ∩ xθ ) in the sense of subsection 5.1.

Proposition 4.2.016 Let ∆ be a building of type E6 and let θ be a symplectic polarity of ∆ . Let V be a 5-space of
∆ . Then every point of V is absolute for θ if, and only if, V is fixed under θ .

4.3 Properties of symplectic polarities of buildings of type E6

We now prove some additional properties of symplectic polarities. The goal is to gain some insight to enable us
to recognise and define the elements of the building of type E6 out of the elements of a building of type F4 when
knowing that the latter is the fixed point set in the former of a symplectic polarity.

Throughout, let ∆ be a building of type E6, with labeling and names of objects as above. In particular, we iden-
tify ∆ with its natural point-line geometry, which is a partial linear space consisting of a set of points, endowed
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with certain subsets called lines, planes, 3-spaces, 4-spaces, 4′-spaces, 5-spaces and quads. Let θ be a symplectic
polarity of ∆ . We denote by H the set of its absolute points.

The first lemma holds for arbitrary polarities in E6.

Lemma 4.3.01 Every polarity ρ of ∆ admits at least one non-absolute point.

Proof Suppose for a contradiction that all points of ∆ are absolute. Let x be a point of ∆ . By our assumption,
x ∈ xρ . Let y be a point in xρ not collinear with x. As y ∈ xρ , the quad yρ contains x. By our assumption it also
contains y and hence, by Fact 4.2.01, xρ = yρ , a contradiction. ut

The following is well-known, but we provide a proof for completeness. Note that a geometric hyperplane of a
point-line geometry is called proper if it does not coincide with the full point set.

Lemma 4.3.02 The set H is a proper geometric hyperplane of ∆ .

Proof If a line L has at least two points in common with H, then all points of L belong to H by Proposi-
tion 4.2.015. So we are left to show that no line is disjoint from H.

Let L be any line of ∆ . By Proposition 4.2.014, Lθ is not opposite L. This means, in view of Fact 4.2.011, that
some point x ∈ L is collinear with some point y ∈ Lθ . Since x ∈ L, we have Lθ ⊆ xθ , and so x is collinear with a
point of its image. Proposition 4.2.014 together with Fact 4.2.03 imply that x is absolute.

The properness of H follows from Lemma 4.3.01. ut

The next lemma tells us which lines are absolute and is a more detailed version of Proposition 4.2.015.

Lemma 4.3.03 Let L be a line of ∆ . Then, L is absolute if, and only if, it contains a point x such that L ⊆ xθ .
Moreover, every absolute line is contained in H.

Proof Suppose first that L contains a point x with L⊆ xθ . Consider a second point y∈ L\{x}. Then, since y∈ xθ ,
we have x ∈ yθ and Fact 4.2.03 and Proposition 4.2.014 imply that y ∈ yθ . It follows that L⊆ xθ ∩yθ = Lθ . Hence
L is absolute.

If L is absolute and x ∈ L, then x ∈ L⊆ Lθ ⊆ xθ and hence L⊆ H. ut

We now take a look at the relation of H with a quad. Henceforth, the symbol “⊥” refers to collinearity in ∆ and x⊥

is the set of points equal to or collinear with the point x.

Lemma 4.3.04 Let Σ be a quad of ∆ . Then, Σ is absolute if, and only if, Σ ∩H is a singular hyperplane of Σ , i.e.,
there exists a point x ∈ Σ such that Σ ∩H = x⊥ ∩Σ . In this case, x = Σ θ . If Σ is not absolute, then Σ ∩H is a
parabolic quadric of type B4 (a geometric hyperplane of Σ which is not singular).

Proof If Σ is absolute, then Σ θ = x is an absolute point in Σ ∩H, and every line in Σ through x is absolute by
Lemma 4.3.03. The same lemma also implies that every such line is contained in H, and hence x⊥∩Σ ⊆H ∩Σ . If
a point z ∈ Σ not collinear with x were absolute, then zθ would contain z (as z is absolute) and x (as z is contained
in xθ ), and so zθ = Σ by Fact 4.2.01, a contradiction. Consequently Σ ∩H = x⊥∩Σ .

Now suppose that Σ ∩H = x⊥ ∩Σ for some x ∈ Σ . It suffices to show that Σ is absolute. Assume, by way of
contradiction, that it is not. By Fact 4.2.03 and Proposition 4.2.014, Σ θ is not collinear with any point of Σ . So,
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by Fact 4.2.02, Σ ∩ pθ is a point, for every p ∈ Σ . Further, by Corollary 4.2.013, the map sending a point p ∈ Σ

to the intersection pθ ∩Σ is an involution σ of Σ with x⊥ ∩Σ as the set of its fixed points. Let z be a point in Σ

not collinear with x. Since x⊥∩ z⊥ is a polar space of type D4, we can find two disjoint 3-spaces U,U ′ in x⊥∩ z⊥,
and each of them is contained in exactly two 4-spaces of Σ (here we do not distinguish between the 4-spaces and
4′-spaces of ∆ ), namely 〈z,U〉 and 〈x,U〉, and 〈z,U ′〉 and 〈x,U ′〉, respectively. But the 4-spaces 〈x,U〉 and 〈x,U ′〉
and the 3-spaces U and U ′ are fixed by σ , hence the 4-spaces 〈z,U〉 and 〈z,U ′〉 are also fixed, as is their intersection
〈z,U〉∩ 〈z,U ′〉= {z}. So, z ∈ x⊥∩Σ , a contradiction. Hence, Σ is absolute.

Hence, the first assertion is proved. The second assertion follows from the fact that Σ ∩H is a proper geometric
hyperplane of Σ (the properness follows from the proof of Lemma 4.3.01) and Σ has only two types of those,
singular ones (and then the first assertion applies) and polar subspaces of type B4, as can easily be checked. ut

In particular, we have the following statement.

Corollary 4.3.05 If x ∈ H, then xθ ∩H = xθ ∩ x⊥. ut

Next, we study the relation of H with 4-spaces.

Lemma 4.3.06 Let V be a 4-space of ∆ . Then, V is absolute if, and only if, V ⊆ H.

Proof First suppose that V is contained in H, and put L =V θ . By Lemma 4.3.02, there exists a point x ∈ L∩H.
It follows that xθ contains V , and hence V ⊆ H ∩ xθ . By Corollary 4.3.05, V ⊆ x⊥ ∩ xθ . All 4-spaces of xθ in x⊥

contain x. So, x ∈V . Consequently, L =V θ is contained in xθ and contains x. By Lemma 4.3.03, L is absolute, and
hence, so is V .

Now suppose that V is absolute. Then L =V θ ⊂V . For any x ∈V we have that L ⊂ xθ , and as x is collinear with
L, Proposition 4.2.014 and Fact 4.2.03 imply x ∈ xθ . Hence, V ⊆ H. ut

The relation of H with a 5-space was the content of Proposition 4.2.016. Although we will not need a similar result
for planes, we mention it for completeness.

Lemma 4.3.07 Let π be a plane of ∆ . Then, π is fixed by θ if, and only if, it contains two distinct points x,y such
that π ⊆ xθ ∩ yθ . Moreover, every fixed plane is contained in H.

Proof Suppose x,y are distinct points of π with π ⊆ xθ ∩ yθ . Let z be a point of π \ xy. As z ∈ xθ ∩ yθ , we have
that x and y belong to zθ , and therefore also z ∈ zθ by Fact 4.2.03 and Proposition 4.2.014. This implies that π ,
which is generated by x,y and z, is contained in zθ . It follows that π = xθ ∩ yθ ∩ zθ = πθ and hence π is fixed.

If π is fixed and x ∈ π , then x ∈ π = πθ ⊆ xθ and hence π ⊆ H. ut

Lemma 4.3.08 Let x be any point of ∆ \H and let p be a point in x⊥∩H. Then, the set of points of xθ ∩H collinear
with p forms a 3-space U which is entirely contained in pθ . In particular, every line through p intersecting U is
absolute.

Proof Since p is collinear with x, and the line px is not absolute by Lemma 4.3.03, the quads pθ and xθ intersect
in a non-absolute 4-space V = (xp)θ . Put U =V ∩H. Then, by Lemmas 4.3.02 and 4.3.06, U is 3-dimensional. By
Lemma 4.3.03, every line in pθ through p is absolute, and hence is contained in H. Since p is collinear with every
point of a 3-space of V inside the polar space pθ , we see that p is collinear with U and with no point of V \U . ut
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Remark 4.3.09 The previous results imply that every absolute singular subspace of ∆ (including the fixed ones)
related to some node in the diagram (namely, nodes 2,3,4 and 5) is contained in H. This is also true for the 4′-spaces,
which are in fact flags of type {2,6}, as the unique 5-space containing an absolute 4′-space must be absolute (by
definition of an absolute flag, which is a flag F such that F ∪Fθ is also a flag) and hence belongs to H.

We can now start preparing for the construction of a building of type E6 starting from a split building of type F4.

5 Some special substructures of split buildings of type F4

5.1 Properties of symplectic metasymplectic parapolar spaces

In this subsection we list basic properties of symplectic metasymplectic parapolar spaces. Most of them are just all
possibilities of mutual position between two elements.

Let Γ be a split building of type F4 over K. We view Γ as a symplectic metasymplectic parapolar space. This
means that we have a set of points (and this set is precisely the set of elements of type 4 of the building Γ , see
Figure 2), a set of lines (elements of type 3), a set of planes (elements of type 2) and a set of symplecta (elements
of type 1) and these are such that each line, each plane and each symplecton is a proper convex subset of the set
of points. In particular, Γ is a partial linear space. The planes are projective planes when endowed with the lines
of Γ they contain; the lines and planes contained in a symplecton render it a symplectic polar space of rank 3. The
opposition relation in Γ ([24], Chapter 7) acts on the types as the identity. The basic properties of Γ are stated
below, as facts. As noted on page 80 of [28], these can be proved using the diagram of type F4; they also follow
from [7]. Facts 5.1.03, 5.1.04 and 5.1.05 are valid in any metasymplectic space, in particular in the dual of Γ (the
set of points of the dual is the set of symplecta of the original, lines of the dual correspond to planes of the original).

Fact 5.1.01 The symplecta, planes and lines of Γ through a given point p, endowed with the natural incidence
relation, form a polar space R(p) of type B3 over K, where the points of that polar space are the symplecta through
p, the lines are the planes through p, and the planes are the lines through p.

In particular, it follows that the isomorphism class of the geometry R(p) does not depend on p. It is usually called
the point residue geometry of Γ . Another consequence is the following.

Corollary 5.1.02 Every singular subspace of Γ is contained in some symplecton, and hence is either a point, a
line or a projective plane. ut

Fact 5.1.03 Let x and y be two points of Γ . Then, precisely one of the following situations occurs.

(0) x = y;
(1) there is a unique line incident with both x and y. In this case, we call x and y collinear. We denote the unique

line joining them by xy and write x⊥ y;
(2) there is a unique symplecton incident with both x and y. In this case, there is no line incident with both x and

y, and we call x and y symplectic, or say that {x,y} is a symplectic pair, or say that x is symplectic to y. We
denote the unique symplecton by x♦y and write x⊥⊥ y;
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(3) there is a unique point z collinear with both x and y. In this case, we call x and y special, or say that {x,y} is
a special pair, or say that x is special to y. We denote z by x on y. For every pair {x,z} of collinear points, there
is a point y such that x on y = z;

(4) there is no point collinear with both x and y. In this case, we call x and y opposite. For every point x there is
at least one point y opposite x.

Moreover, each of these possibilities occurs.

Fact 5.1.04 The intersection of two symplecta is either empty, or a point, or a plane and each of these occurs.
Also, the graph with vertices the symplecta, where two symplecta are adjacent if they meet in a plane, is connected.

Fact 5.1.05 Let x be a point and S a symplecton of Γ . Then precisely one of the following situations occurs.

(0) x ∈ S;
(1) the set of points of S collinear with x is a line L. Every point y of S \L which is collinear with each point of L

is symplectic to x and x♦y contains L. Every other point z of S (i.e., every point z of S collinear with a unique
point z′ of L) is special to x and x on z = z′ ∈ L. We say that x and S are close;

(2) there is a unique point u of S symplectic to x and S∩ (x♦u) = {u}. All points v of S collinear with u are special
to x and x on v /∈ S. All points of S not collinear with u are opposite x. We say that x and S are far).

Moreover, each of these possibilities occurs.

The previous facts are fundamental and will sometimes be used without referring to them.

For a point x, we denote by x⊥ and x⊥⊥ the sets of points collinear or equal to x and symplectic or equal to x,
respectively; likewise, for a set A of points we denote by A⊥ the set

⋂
a∈A a⊥. We say that a point x is collinear

with a set A if A⊆ x⊥. For a symplectic pair {x,y} of points of Γ , the set of points h(x,y) = (x⊥∩ y⊥)⊥ ⊆ x♦y is
called a hyperbolic line. It has the property that for each point z in x♦y, the set z⊥ ∩ h(x,y) is either a singleton,
or the whole set h(x,y). Note that this implies that there are no planes in x♦y that consist of hyperbolic lines
only, see Definition 5.2.013. Also, since Γ is defined over K, it is thick, meaning that all lines, and hence also
all hyperbolic lines, have at least three points. Finally, for arbitrary distinct x′,y′ ∈ h(x,y), we have x♦y = x′♦y′.
Putting h = h(x,y), we set S(h) = x♦y.

In the next two lemmas, we establish the possible mutual positions of a point and a hyperbolic line, and of a point
and a line.

Lemma 5.1.06 Let h be a hyperbolic line in Γ and x a point. Then, exactly one of the following holds.

(i) x ∈ h;
(ii) x is collinear with every point of h;
(iii) x is collinear with exactly one point of h and symplectic to the other points of h;
(iv) x is collinear with exactly one point of h and special to the other points of h;
(v) x is symplectic to every point of h;
(vi) x is symplectic to exactly one point of h and special to the other points of h;
(vii) x is special to all points of h;
(viii) x is symplectic to exactly one point of h and opposite all other points of h;
(ix) x is special to exactly one point of h and opposite all other points of h.
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Also, x ∈ S(h) in cases (i),(ii),(iii); x is close to S(h) in cases (iv),(v),(vi),(vii), and x is far from S(h) in
cases (viii) and (ix).

Proof This follows directly from Fact 5.1.05 and the fact that a hyperbolic line in a symplectic polar space is a
so-called geometric line of it. We recall that a geometric line in a point-line geometry is a set g of points such that
for each point y, exactly one point of g is not at maximum distance (in the corresponding collinearity graph) from
y, or no point of g is at maximum distance from y. So for a hyperbolic line h of Γ , if x is any point of S(h), then
either all points of h are collinear with x, or exactly one point of h is collinear or equal to x. ut

Lemma 5.1.07 Let L be a line in Γ and x a point. Then, exactly one of the following holds.

(i) x ∈ L;
(ii) x is collinear with every point of L;
(iii) x is collinear with exactly one point of L and symplectic to the other points of L;
(iv) x is collinear with exactly one point of L and special to the other points of L;
(v) x is symplectic to exactly one point of L and special to the other points of L;
(vi) x is special to all points of L;
(vii) x is special to exactly one point of L and opposite all other points of L.

In particular, if two points x and y are opposite, and L is a line through x, then y is special to a unique point of L
and opposite all other points of L.

Proof The proof follows by including L into a symplecton and then consider all possible point-symplecton
relations given in Fact 5.1.05. This way, one can also verify that all listed possibilities indeed occur. As an example,
the last statement can be seen as follows. Let x and y be two opposite points and let L be a line through x. Take
any symplecton S containing L. By Fact 5.1.05, y is far from S. Moreover, the unique point u of S symplectic to
y is also symplectic to x. Hence, there is a unique point z of L which is collinear with u, and this point is special
to y. All other points of L are opposite y. In particular, it follows that a point can never be opposite all points of a
line. ut

5.2 The equator and extended equator geometries

In this subsection, we define the equator geometry, see also [13], Proposition 6.26. The structure of an equator
geometry is a polar space of type B3 (when endowed with the hyperbolic lines contained in it). It will turn out that
each equator geometry is contained in the intersection of Γ with a non-absolute quad of the geometry ∆ of type E6

to be defined in Section 6. The complete intersection, however, will have the structure of a polar space of type B4.
For this reason, we extend the equator geometry to the “extended equator geometry”, which is indeed a polar space
of type B4, as we will show in Proposition 5.2.011. We further show that projective subspaces of Γ all of whose
lines are hyperbolic lines and which are at most 3-dimensional, are contained in an extended equator geometry
(Lemma 5.2.014). Only much later, when our construction of the intended geometry of type E6 is complete, we
will see that there are no such 4-spaces. We will not need to see this earlier.

Definition 5.2.01 (Equator Geometry) Let p,q be two opposite points of Γ . Let Sp denote the family of sym-
plecta containing p. Then, by Fact 5.1.05, each member of Sp contains a unique point which is symplectic to
q. The set of all such points is called the equator geometry of the pair {p,q} and is denoted by E(p,q). Using
Fact 5.1.05(2), it is easy to see that this definition is symmetric in p,q.
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The following was proved in Proposition 6.26 of [13].

Proposition 5.2.02 Let p,q be two opposite points of Γ . Then, for any symplectic pair {u,v} of points of E(p,q),
the hyperbolic line h(u,v) is contained in E(p,q). The geometry of points and hyperbolic lines of E(p,q) is the
point-line geometry of a polar space, which we also denote by E(p,q), of type B3 over the field K, isomorphic to
the point residue geometry of Γ . A natural isomorphism from E(p,q) to R(p) is induced by the map ϕp,q that sends
a point x ∈ E(p,q) to the symplecton x♦p. ut

We will need the following property of polar spaces of type B3 (which holds for any polar space of rank at least 3).

Lemma 5.2.03 Any geometric hyperplane G′ of any geometric hyperplane G of a polar space Π of rank at least
3 contains two non-collinear points.

Proof A geometric hyperplane G′ of a geometric hyperplane G clearly has the property that each singular plane
of Π intersects G′ nontrivially. If each pair of points of G′ is collinear, then it is contained in a maximal singular
subspace U . Let U ′ be a maximal singular subspace disjoint from U (U ′ exists by [10]). Any plane π ′ in U ′ is
disjoint from G′, a contradiction. ut
The next result determines the mutual relations between any two points of E(p,q).

Lemma 5.2.04 Let p,q be opposite points, and x,y ∈ E(p,q). Then either x = y, or {x,y} is a symplectic pair, or
x is opposite y. All cases occur.

Proof First suppose that x⊥ y 6= x. Then x is collinear with the point y of the symplecton p♦y and is symplectic
to the point p, which is not collinear with y, in contradiction to Fact 5.1.05.

Now suppose that {x,y} is a special pair. Then, x and y are not collinear in E(p,q). By Fact 5.1.04 and since ϕp,q
is an isomorphism, the symplecta x♦p and y♦p intersect in just p. Put z = x on y. Then z is close to both x♦p and
y♦p. By Fact 5.1.05(1), z is collinear with a line Lx through x in x♦p, and to a line Ly through in y♦p. Since p is
not collinear with x ∈ Lx, there is a unique point px on Lx \{x} collinear with p; likewise there is a unique point py
on Ly \{y} collinear with p. Now, since p is not collinear with Lx, it is special to z by Fact 5.1.05. But both px and
py, which are distinct, are contained in p⊥∩ z⊥, a contradiction. ut
We are now ready to define the extended equator geometry for opposite points p,q.

Definition 5.2.05 (Extended Equator Geometry) Let p,q be two opposite points of Γ . Then define the point set

Ê(p,q) =
⋃
{E(x,y) : x,y ∈ E(p,q),x opposite y}.

Note that, by Proposition 5.2.02 and Lemma 5.2.04, E(p,q) contains pairs of opposite points. So, Ê(p,q) is
nonempty. The set Ê(p,q), endowed with all the hyperbolic lines in it, is called the extended equator geometry for
p,q. Further, p,q and E(p,q) are contained in Ê(p,q). The latter follows from Proposition 5.2.02 and the trivial
fact that every point of a polar space of rank 3 is collinear to two non-collinear points.

Standing hypothesis. From now on until Section 6.5 (included), we fix a pair of opposite points p,q and write
Ê := Ê(p,q).

We now prove that Ê does not contain collinear or special pairs of points, that it is closed under taking hyperbolic
lines through symplectic pairs of its points, and that the geometry of its points and hyperbolic lines is the point-line
geometry of a polar space of type B4.
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Lemma 5.2.06 No point x ∈ Ê is collinear with any point of E(p,q).

Proof Suppose, for a contradiction, that x⊥ y ∈ E(p,q). Then, x /∈ E(p,q) by Lemma 5.2.04 and x /∈ {p,q} by
the definition of E(p,q). Let x∈ E(a,b), with a,b∈ E(p,q) and a opposite b. Since y 6= x and (a♦x)∩(b♦x) = {x},
we may assume that y does not belong to a♦x. As y⊥ x, y is close to a♦x by Fact 5.1.05. Then a cannot be opposite
y by Fact 5.1.05(1), so a is symplectic to y, which implies that a⊥ x by the same reference, a contradiction. ut

Lemma 5.2.07 No point x ∈ Ê is special to any point of E(p,q).

Proof Suppose that x ∈ Ê is special to the point y ∈ E(p,q). Then x /∈ E(p,q)∪{p,q}. Let a,b ∈ E(p,q) be
opposite points such that x ∈ E(a,b). Then, a 6= y 6= b. We first show that y is opposite both a and b. Indeed,
suppose that y is symplectic to a. Since x is symplectic to a and special to y, it follows from Lemma 5.1.06 that
all points of h(a,y) \ {a} are special to x. Lemma 5.1.06 implies that not all points of h(a,y) can be opposite b
and Lemma 5.2.04 then tells us that there is a point of h(a,y)\{a} symplectic to b, and we can rename this point
y. So we may assume that y is symplectic to both a and b. Then, x,y ∈ E(a,b) and the assertion follows from
Lemma 5.2.04.

Hence we know that y is opposite both a and b. Moreover, the above argument implies that no point in E(p,q)
symplectic to a or b is special to x. Hence, by Lemmas 5.1.06 and 5.2.04, the set of points Hx,a = a⊥⊥ ∩ x⊥⊥ ∩
E(p,q) is a geometric hyperplane of a⊥⊥ ∩E(p,q). The latter is a geometric hyperplane of E(p,q) and hence, by
Lemma 5.2.03, Hx,a contains two opposite points a′,b′. If y is symplectic to both of these, then the first part of
the proof applies with a′,b′ in the roles of a,b, respectively. Hence we may assume that y and a′ are opposite. By
Proposition 5.2.02, there is a point a′′ ∈ h(a,a′) symplectic to y. Since b is opposite a and b⊥⊥ a′, we know from
Lemma 5.1.06 that a′′ is opposite b. Recalling that a′′ ∈ Hx,a and as such x ∈ E(a′′,b), the first part of the proof
implies that y is opposite a′′, contradicting the choice of a′′. ut

There is an interesting corollary to the previous three lemmas.

Corollary 5.2.08 Let x ∈ Ê. Then the set of points of E(p,q) symplectic to or equal to x is a geometric hyperplane
of E(p,q), viewed as a polar space, or coincides with it.

Proof Let h be a line of the polar space E(p,q) (so h is a hyperbolic line contained in E(p,q)). Then, by
Lemma 5.1.06, either exactly one, or all points of h are not opposite x. By Lemmas 5.2.06 and 5.2.07, x can neither
be collinear nor special to a point of h ⊆ E(p,q). So either exactly one, or all points of h are equal or symplectic
to x. This completes the proof of the corollary. ut

Remark 5.2.09 It will follow from Proposition 5.2.011 that, if the characteristic of K is not equal to 2, then the
only points of Ê(p,q) which are symplectic to all points of E(p,q) are p and q. Indeed, in this case, Ê(p,q) is a
polar space of type B4 arising from an orthogonal polarity ρ in PG(8,K). The set of points of Ê(p,q) symplectic
to all points of E(p,q) is the image under ρ of the codimension 2 space A of PG(8,K) generated by the points of
E(p,q). This is the line of PG(8,K) through p and q, which intersects Ê(p,q) in just {p,q}. If the characteristic
of K is 2, then the associated polarity ρ is symplectic in PG(7,K) and the image of A , similarly defined as above,
is a line of PG(7,K) all of whose points are contained in Ê(p,q). Hence it contains at least three points of Ê(p,q).

Lemma 5.2.010 Let x,y ∈ Ê, x 6= y. Then either {x,y} is a symplectic pair, or x is opposite y. If, moreover, {x,y}
is a symplectic pair, then h(x,y) is contained in Ê.
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Proof By Lemma 5.2.03 and Corollary 5.2.08, we can find two opposite points a,b ∈ E(p,q) symplectic to
both x and y. Hence x,y ∈ E(a,b) and so the first assertion follows from Lemma 5.2.04. If, moreover, x and y are
symplectic, then h(x,y)⊆ E(a,b)⊆ Ê, by Proposition 5.2.02 and the definition of Ê. ut

We now have the following interesting proposition.

Proposition 5.2.011 The extended equator geometry Ê(p,q) is a polar space of type B4 over the field K.

Proof We check the Buekenhout-Shult axioms of a polar space as given in [6]. We repeat these axioms for the
convenience of the reader.

(1) Every (hyperbolic) line contains at least 3 points. This holds by Lemma 5.2.010 and the fact that a hyperbolic
line contains at least 3 points.

(2) There is no point collinear with every other point. By definition of Ê(p,q), any point x ∈ Ê(p,q) is contained
in an equator geometry, which is, by Proposition 5.2.02, a polar space of type B3, in which x has an opposite
point.

(3) One-or-all axiom, i.e., either exactly one or all points of a given line are collinear with a given point. This
follows from Lemmas 5.2.010 and 5.1.06.

(4) Finite rank, i.e., every nested family of singular subspaces is finite. Again by Proposition 5.2.02, the residue in
the point p is isomorphic to the polar space induced on the set of points of Ê(p,q) symplectic to both p and q.
Since in the whole of Γ , this is E(p,q), it is also E(p,q) in Ê. Hence the residue at p is a polar space of type
B3 and as such has rank 3. We conclude that the rank of Ê(p,q) is 4 and hence finite.

The argument above implies that Ê(p,q) is a polar space of type B4, as the residue in at least one point has type
B3. The proposition is proved. ut

The following is a straightforward consequence.

Corollary 5.2.012 A maximal singular subspace of Ê(p,q) is a projective 3-space. ut

Definition 5.2.013 A set of points of Γ which is a projective space of dimension i, i = 1,2,3, when endowed with
the hyperbolic lines it contains shall be called a hyperbolic i-space or hyperbolic line (if i = 1), hyperbolic plane
(if i = 2), or hyperbolic solid (if i = 3) of Γ .

In view of the previous definition, we shall speak of singular hyperbolic subspaces of an extended equator geome-
try, and the meaning is clear.

Lemma 5.2.014 (i) Every hyperbolic line of Γ is contained in a hyperbolic plane of Γ .
(ii) Every hyperbolic plane of Γ is contained in a hyperbolic solid of Γ .
(iii) Every hyperbolic solid of Γ is contained in an extended equator geometry of Γ .

Proof We first provide an outline of the proof. Let h be a hyperbolic line.

STEP 1. We construct a point x symplectic to all points of h.
STEP 2. Given a hyperbolic plane α containing h, we show that each point of π \h is as in the construction in the

proof of Step 1.
STEP 3. For x constructed in Step 1, we construct a point p symplectic to each point of π(x,h) := {y ∈ h(x,z) :

z ∈ h}. Note that, if x and h are contained in a common hyperbolic plane π , then π(x,h) = π .
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STEP 4. Given a hyperbolic solid S containing π(x,h), we show that each point of S\π(x,h) is as in the construc-
tion in the proof of Step 3.

STEP 5. For p constructed in Step 3, we construct an extended equator geometry that contains S(p,x,h) := {y ∈
h(p,z) : z ∈ π(h,x)}. Note that, if x, p and h are contained in a common solid S, then S(p,x,h) = S.

It then follows from Proposition 5.2.011 that π(x,h) is a hyperbolic plane (showing (i)), and that S(p,x,h) is a
hyperbolic solid. In view of Steps 2 and 4, the Steps 3 and 5 apply to each hyperbolic plane (showing (ii)) and to
each hyperbolic solid (showing (iii)).

Now we embark on the proof.

STEP 1. Let h be a hyperbolic line of Γ . Since S(h) is convex by the definition of parapolar space, h⊥ ⊆ S(h).
Since S(h) is a polar space of rank 3, we can select a line L in S(h) contained in h⊥. By Fact 5.1.01, we can select
a plane π of Γ containing L but not contained in S(h). Let x be any point of π \L. Then Fact 5.1.05 implies that x
is symplectic to every point u of h, and L⊆ x♦u.

STEP 2. Given a hyperbolic plane α and a hyperbolic line h in it, each point x of α not in h is also not in S(h) and,
by Fact 5.1.05, is close to S(h). Hence, x⊥∩S(h) is a line L contained in h⊥.

STEP 3. Next, given h and x as in Step 1 above, we construct a point p symplectic to each element of π(x,h) = {y∈
h(x,z) : z ∈ h}. Let u1,u2 ∈ h, u1 6= u2. With L and π as in the proof of Step 3 (L and π are uniquely determined
by h and x) and i ∈ {1,2}, we have that x⊥ L⊥ ui, so x♦u1 and x♦u2 intersect in the plane π . By Fact 5.1.01, we
can select a symplecton S1 containing x and intersecting π in a line M1. Since x /∈ L, the lines L and M1 intersect
in a point y1 distinct from x. Since ui /∈ S1 (otherwise S1 = x♦ui contains π , a contradiction) and ui is collinear
with y1 ∈ L, ui is close to S1. Let Li be the line in S1 collinear with ui. Then, all points of Li are collinear with
x, as x ⊥⊥ ui. Let πi be the plane of Γ spanned by x and Li. Then, π1 6= π2, as otherwise πi ⊆ x♦ui implies that
π1 = π2 ⊆ x♦u1 ∩ x♦u2 = π , contradicting the fact that S1 intersects π in a line. Let p be any point of S1 not
collinear with x but collinear with all points of both L1 and L2 (such a point exists as L⊥1 ∩ L⊥2 is a plane α in
the projective 5-space underlying S1 containing x, consisting of hyperbolic lines not containing y1 and ordinary
lines containing y1. Hence L⊥1 ∩L⊥2 ∩ x⊥ = xy1 and p can be chosen in α \ xy1 arbitrarily). Then, p is symplectic
to x,u1,u2. Note that x♦p does not intersect h because otherwise x♦p would have to contain L. Consequently, by
Lemma 5.1.06, p is symplectic to each point of π(x,h).

STEP 4. If p is a point of a hyperbolic solid containing π(x,h), with p /∈ π(x,h), then x♦p is disjoint from h.
Indeed, otherwise (x♦p)∩π(x,h) would contain a point collinear with p, a contradiction. Let π and L be defined
as in the proof of Step 2 (with π(x,h) playing the role of α). Assume, for a contradiction, that x♦p contains π . In
particular, x♦p contains L. However, every symplecton S 6= S(h) through L intersects S(h) in a plane by Fact 5.1.04
and this plane intersects h, since L⊥ is 3-dimensional in the 5-space underlying S(h), and h ⊆ L⊥. Hence x♦p
would intersect h, a contradiction. Thus, π , and so L, is not contained in x♦p. Consequently, as x♦p is convex,
the point p is not collinear with L. Now suppose that no point of L is collinear with p. Then the line N in S(h)
collinear with p does not intersect L (p is indeed close to S(h) as it is symplectic to each point of h). Also, every
point w ∈ L is special to p, as w cannot be collinear with N because h⊥ does not contain planes (and it would
contain w and N). The point w on p then belongs to N and hence is collinear with all points of h. Let u1 and u2 be
two distinct points of h. Then, likewise, w on p belongs to the line Ni in x♦ui collinear with p, i = 1,2. It follows
that w on p belongs to x♦u1∩x♦u2∩S(h) = π ∩S(h) = L. We conclude that p is collinear with a unique point of L
after all, and we denote this point as y1, emphasising the similarity with the construction in Step 3. It follows that
x♦p intersects π = (x♦u1)∩ (x♦u2) in the line xy1 = M1. With x♦p playing the role of S1 above, we have shown
that p is constructed as in Step 3.
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STEP 5. To find an extended equator geometry containing S(p,x,h), we select a symplecton S2 containing x and
intersecting π in a line M2 6=M1. Set {y2}= L∩M2. The same argument as above provides a point q∈ S2 symplectic
to each of x,u1,u2. We claim that p is far from S2. Indeed, if not, then p is collinear with all points of a line L′ of
S2. Since p⊥⊥ x, the line L′ is contained in x⊥∩ p⊥ and hence in S1. Hence S1∩S2 = 〈x,L′〉. Since y1 is collinear
with a line of S2 (containing y2), and also, in the polar space S1, with a line of 〈x,L′〉, these two lines coincide
and so y2 ∈ S1, a contradiction. Hence the claim follows. But then, since p ⊥⊥ x ⊥⊥ q, we see that p is opposite
q. By construction, x,u1,u2 ∈ E(p,q) and so x,u1,u2, p ∈ Ê(p,q), and the latter is the promised extended equator
geometry. ut

Next we show that Ê(p,q) is independent of the choice of the pair {p,q} of opposite points in it. This and
Lemma 5.2.010 imply that Ê(p,q) is a convex subspace of Γ relative to the hyperbolic lines of Γ (see also Propo-
sition 5.2.011).

Proposition 5.2.015 Let a,b ∈ Ê(p,q) be two opposite points. Then, Ê(p,q) = Ê(a,b).

Proof We start by showing that E(a,b)⊆ Ê(p,q). Let Y be the set of points of Ê(p,q) symplectic to both a and
b. By Proposition 5.2.011, Y , endowed with all hyperbolic lines it contains, is a polar space of type B3, naturally
contained in E(a,b), which is also a polar space of type B3. Take two opposite points x,y ∈ Y . Then x⊥⊥∩ y⊥⊥∩Y
is a polar space of type B2 naturally contained in the polar space x⊥⊥ ∩ y⊥⊥ ∩E(a,b); in fact this containment is
“full”, in the sense that common “lines” of both polar spaces (which are hyperbolic lines in Γ ) have the same point
sets. Consequently it follows from Proposition 5.9.4 of [28] that x⊥⊥∩ y⊥⊥∩Y = x⊥⊥∩ y⊥⊥∩E(a,b), which readily
implies Y = E(a,b) by varying x,y. Hence E(a,b)⊆ Ê(p,q).

Now an arbitrary point of Ê(a,b) is contained in E(x,y) for some opposite points x,y ∈ E(a,b). By the previous
paragraph applied to x,y instead of a,b, we know that E(x,y) ⊆ Ê(p,q). Hence we have shown that Ê(a,b) ⊆
Ê(p,q).

Now note that E(a,b)∩E(p,q) is the geometric hyperplane H := a⊥⊥∩b⊥⊥∩E(p,q) of the geometric hyperplane
b⊥⊥∩E(p,q) of E(p,q), which is a polar space of type B3. By Lemma 5.2.03, H contains two opposite points x,y.
But then p,q ∈ E(x,y)⊆ Ê(a,b). Hence, by the previous paragraph, switching the roles of a,b and p,q, we obtain
Ê(p,q)⊆ Ê(a,b). ut

Corollary 5.2.016 Let S be an arbitrary symplecton. Then, either S is disjoint from Ê(p,q) or S∩ Ê(p,q) is a
hyperbolic line. Hence, every symplecton that has a point x in common with Ê(p,q) intersects it in a hyperbolic
line through x. In particular, any hyperbolic line in Ê appears as the intersection of Ê and a unique symplecton.

Proof By Propositions 5.2.011 and 5.2.015, we may assume that p ∈ S∩ Ê(p,q). By the definition of equator
geometry, there is a unique point a∈ S in E(p,q). But then, by Lemma 5.2.010, h(p,a)⊆ Ê(p,q)∩S. No other point
of Ê(p,q) is contained in S as that point would then be collinear with at least one point of h(p,a), contradicting
Lemma 5.2.010. As a hyperbolic line defines a unique symplecton containing it, the rest of the corollary follows.

ut

5.3 The tropic circle geometries

A tropic circle geometry is related to an extended equator geometry. In the building of type E6 we aim to construct,
the first one is the set of points of Γ collinear to a “new point”, while the latter is the intersection of Γ with the
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quad which is the image under the symplectic polarity of the said “new point”. The intrinsic geometric connection
between these two geometries is the fact that they are dual to each other, see Theorem 5.3.010.

The notion of tropic circle geometry is based on the following property of extended equator geometries. We con-
tinue with our notation Ê = Ê(p,q) for two fixed opposite points p,q in Γ .

Proposition 5.3.01 Let x be a point of Γ which is collinear with at least two points of Ê. Then x⊥ ∩ Ê is a
hyperbolic solid.

Proof By Proposition 5.2.011 and 5.2.015, we may assume that p ⊥ x. Let a be a second point of Ê collinear
with x. By Lemma 5.2.010, p ⊥⊥ a. Hence, by Propositions 5.2.011 and 5.2.015, we can choose q opposite p and
symplectic to a. Hence a ∈ E(p,q). Then, by Fact 5.1.05, x ∈ p♦a. By the canonical isomorphism ϕp,q, the set
of intersections with E(p,q) of the symplecta through p and x is a hyperbolic plane π of E(p,q). Let b ∈ π and
suppose b 6= a. Since a is collinear with x and x ∈ p � b, the point a is close to p♦b. Since b ∈ a⊥⊥, Fact 5.1.05
implies that x⊥ b.

Hence all points u of π are collinear with x. But x belongs to u♦p, and in the latter symplectic polar space, u and
p belong to x⊥; hence, by the definition of the hyperbolic line h(u, p), all points of h(u, p) are collinear with x,
implying that all points of the maximal singular hyperbolic subspace of Ê(p,q) spanned by π and p are collinear
with x. Since Lemma 5.2.010 implies that the set of points of Ê collinear with x is contained in a maximal singular
subspace of Ê, there are no other points of Ê collinear with x. The assertion is proved. ut

Definition 5.3.02 (Tropic Circle Geometry) The point set

T̂ (p,q) = {x ∈ Γ : |x⊥∩ Ê(p,q)| ≥ 2},

endowed with all lines inside it, is called the tropic circle geometry for {p,q}.

Note that Ê(p,q)∩ T̂ (p,q) = /0. In particular, p,q /∈ T̂ (p,q). We write T̂ instead of T̂ (p,q) if {p,q} is understood.

Definition 5.3.03 For x ∈ T̂ , we denote by β (x) the hyperbolic solid x⊥∩ Ê.

Corollary 5.3.04 No point of T̂ (p,q) is opposite any point of Ê(p,q).

Proof Let x ∈ T̂ (p,q), and let y ∈ Ê(p,q) be arbitrary. Then y is symplectic to at least one point z ∈ β (x). The
last assertion of Lemma 5.1.07 now implies that x ad y are not opposite. ut

In Proposition 5.3.09 below, we show that there is a neat connection between the dimension of the intersection of
two maximal singular subspaces of Ê(p,q) and the mutual position in Γ of the corresponding points of T̂ (p,q).
This will imply that the map taking x ∈ T̂ (p,q) to the hyperbolic solid β (x) of Ê(p,q) is an isomorphism from
T̂ (p,q) to the dual polar space structure associated with Ê(p,q).

Lemma 5.3.05 Let x,y ∈ T̂ . If β (x) = β (y), then x = y.

Proof We may again suppose that p belongs to β (x). Then, β (x) intersects E(p,q) in a hyperbolic plane π . The
intersection of all symplecta S such that ϕ−1

p,q(S) ∈ π is, by the fact that ϕp,q is an isomorphism of geometries (see
Proposition 5.2.02), a line L through p. Now, both x and y must be contained in all these symplecta, hence both are
on L. Let z ∈ π be arbitrary. Then in z♦p, the point z is collinear with exactly one point of L. Thus x = y. ut
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Lemma 5.3.06 Let U be a hyperbolic solid of Ê. Then there is a unique point x ∈ T̂ with β (x) =U. Moreover, this
is the only point of Γ collinear with U.

Proof By Lemma 5.3.05, we only need to prove the existence of x. We may suppose that p∈U . Then U∩E(p,q)
is a hyperbolic plane π . As in the previous proof, there is a unique line L through p contained in all symplecta
defined by p and a point of π . Let a,b ∈ π be arbitrary but distinct. Then, b is not contained in a♦p and hence is
close to it. So b is collinear with a line M ⊆ a♦p and Fact 5.1.05 implies that a and p are also collinear with M.
Clearly, L is contained in the plane generated by p and M, and so {x}= L∩M is collinear with both a and b. Since
x is the unique point of L collinear with a, we see, by varying b ∈ π , that x is collinear with all points of π . Since
x ⊥ p, the first assertion follows. As any other point in Γ that is collinear with U would belong to T̂ , the second
assertion also follows. ut

The previous lemma shows that β is bijective. We denote its inverse again by β . There is also an interesting
corollary.

Corollary 5.3.07 For any hyperbolic solid U in Γ , there is a unique point of Γ collinear with U.

Proof By Lemma 5.2.014, there is an extended equator geometry containing U . By Lemma 5.3.06, there is a
unique point in Γ collinear with U . ut

Definition 5.3.08 For any hyperbolic solid U, the unique point collinear with U is denoted by β (U).

We now relate the mutual position of two hyperbolic solids of Ê to the mutual position of their images under β .

Proposition 5.3.09 Let U and V be hyperbolic solids in Ê. Then

(i) U and V intersect in a hyperbolic plane π if, and only if, β (U) and β (V ) are collinear in Γ . In this case, every
point of the line of Γ joining β (U) and β (V ) belongs to T̂ and is collinear with all points of π . Also, if some
point is collinear with all points of π , then it belongs to the line joining β (U) and β (V ). Consequently, T̂ is a
subspace of Γ .

(ii) U ∩V is a hyperbolic line if, and only if, β (U) and β (V ) are symplectic in Γ . In this case, every point of
h(β (U),β (V )) belongs to T̂ and is collinear with all points of U ∩V .

(iii) U ∩V is a singleton {z} if, and only if, a = β (U) and b = β (V ) are special in Γ . In this case, z = a on b.
(iv) U ∩V = /0 if, and only if, a = β (U) and b = β (V ) are opposite in Γ .

Proof

(i) Put a = β (U), b = β (V ), and suppose first that a ⊥ b (so a 6= b). Since U 6= V by Lemma 5.3.05, the union
U ∪V contains a pair of opposite points. Hence by Lemma 5.2.011 we may assume p ∈U \V and q ∈ V \U .
Thus we have p ⊥ a ⊥ b ⊥ q, with p opposite q. The last assertion of Lemma 5.1.07 implies that {p,b} and
{q,a} are special pairs. Let S be any symplecton through q and b, and let {x} = E(p,q)∩ S. Then {p,x} is
symplectic and p and S are far. Since p is special to b, Fact 5.1.05 implies b⊥ x.
Now consider T = p♦x. Since b ⊥ x, b is close to T . Hence there is a line L in T containing x such that L
is collinear with b. Moreover, b on p is contained in L (see Fact 5.1.05). Since b on p = a, we see that a ⊥ x.
Varying S over all symplecta containing q and b and using the isomorphism ϕq,p, the point x varies over a plane
of E(p,q), which must coincide with U ∩V since x⊥ a and x⊥ b.
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By Lemma 5.1.07, no point of the line ab is symplectic to or opposite p. Lemma 5.2.04 then implies that the
line ab has empty intersection with Ê.
Let z be any point of U ∩V . Then a⊥ z⊥ b, and so every point of the line ab is collinear with z and hence with
all points of π .
Now assume that U and V intersect in a plane π . Then we can assume that p ∈U \π and q ∈V \π; p and q are
opposite. Hence π ⊆ E(p,q). Consider two points x,y ∈ π . Then both a and b are collinear with both x,y and
hence both are contained in x♦y. It follows that a,b are either symplectic or collinear. If they were symplectic,
then a♦b would contain π , a contradiction.
From the first part of the proof, we already know that every point of the line ab is collinear with all points
of π . Now suppose some point c is collinear with all points of π . Then c ∈ T̂ and we have just shown that
a⊥ c⊥ b. Suppose c does not belong to the line ab, then take two points u,v ∈ π . It follows that a,b,c ∈ u♦v,
contradicting the fact that u♦v is a polar space of rank 3 and hence no plane can be contained in the intersection
of perps u⊥∩ v⊥.

(ii) Again put a = β (U) and b = β (V ). Assume first that U and V intersect in a hyperbolic line h. We can again
assume that p ∈U \ h and q ∈ V \ h. Then, h ⊆ E(p,q). Consider two points x,y ∈ h. Then both a and b are
collinear with both x,y and hence contained in x♦y. It follows that a,b are either symplectic or collinear. But
they are not collinear by (i).
Now assume that {a,b} is a symplectic pair. Then by Lemma 5.3.05 and (i), we know that U ∩V contains
at most a hyperbolic line. Hence we may again assume that p ∈U \V and q ∈ V \U . Then both p and q are
close to a♦b. Hence p is collinear with the points of a line L⊆ a♦b, and q is collinear with the points of a line
M ⊆ a♦b. If some point u of L was collinear with all points of M, then {u,q} would be a symplectic pair with
p close to u♦q, contradicting Fact 5.1.05 and the fact that p and q are opposite. Hence L and M are, viewed as
lines of the symplectic polar space a♦b, opposite lines. This implies that a♦b contains a unique hyperbolic line
h all of whose points are collinear with L and M, i.e., h = L⊥ ∩M⊥. In particular, h is contained in a⊥ ∩ b⊥.
By Fact 5.1.05, all points of h are symplectic to both p and q, hence h ⊆ E(p,q). So h ⊆ U ∩V , implying
h =U ∩V .

(iii) Suppose first that U and V intersect in a point. Then a and b are collinear with a common point and hence
cannot be opposite. Moreover, they are neither symplectic nor collinear by (i) and (ii). Consequently, they are
special.
Now suppose that a and b are special. We show that z = a on b belongs to Ê, which will complete the proof of
(iii).
Suppose z /∈ Ê. Then U ∩V = /0. Let h be a hyperbolic line in U ∪V . Let S be the unique symplecton containing
h. By convexity, S contains either a (if h⊆U) or b (if h⊆V ). In any case, since z⊥ a,b, we see that z is either
close to S or contained in S. Suppose first that z is close to S. Then z is collinear with all points of a line L⊆ S.
Note that a or b is on L. Let c be a point of L distinct from a and b. Since h⊆ a⊥ (if a ∈ L) or h⊆ b⊥ (if b ∈ L),
we have that L⊥∩h = c⊥∩h is either a singleton or h. It follows from Fact 5.1.05 that either one or all points
of h are symplectic to z.
Now suppose z ∈ S. If all points of h are collinear with z, then z ∈ T̂ , which is impossible since β (z)∩β (a)
and β (z)∩β (b) are hyperbolic planes in β (z) by (i), contradicting β (a)∩β (b) = /0. Hence, by Lemma 5.1.06,
z is collinear with a unique point of h and symplectic to the other points of h. Now notice that, if z would
be contained in a symplecton defined by any other hyperbolic line h′ in U ∪V disjoint from h, then the same
argument implies that z is collinear with a point of h′, but then again z ∈ T̂ , a contradiction.
Since x is collinear to at most one point of U ∪V , we may hence assume that x is collinear to no point of U .
So, the previous arguments imply that z⊥⊥∩U contains a hyperbolic plane H and z⊥⊥∩V contains at least two
points u,v. It is easy to see that H contains a point x not symplectic to one of u,v, say u, as otherwise H and
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h(u,v) would be contained in a singular hyperbolic subspace of Ê with dimension at least 4, a contradiction.
But then, x and u are opposite by Lemma 5.2.010 and z ∈ E(x,u)⊆ Ê(p,q).

(iv) This follows by elimination and the previous cases.

ut

Recall that the dual polar space associated with a polar space Ω of type B4 is naturally embedded in the half spin
geometry associated to a polar space Ω ′ of type D5 as each 3-space M of Ω is contained in a unique member M′

of one of the families of maximal singular subspaces of Ω ′. Two maximal singular subspaces M′1 and M′2 of Ω ′

intersecting in a singular 3-space of Ω ′ correspond to distinct members M1 and M2 of Ω that intersect each other
in at least a line. The previous lemmas now readily imply the following geometric connection between Ê(p,q) and
T̂ (p,q).

Theorem 5.3.010 (i) The set T̂ (p,q) endowed with the lines of Γ contained in it is isomorphic to the dual polar
space of type B4 over the field K.

(ii) The set T̂ (p,q) endowed with the lines and hyperbolic lines of Γ contained in it is isomorphic to the half
spin geometry of type D5 over the field K. ut

By definition, T̂ (p,q) is, as a set of points, uniquely determined by Ê(p,q). By Proposition 5.3.09(iii), the set
of points {a on b | a,b ∈ T̂ (p,q) and a special to b} coincides with Ê(p,q). Thus, Ê(p,q) is also determined by
T̂ (p,q) as a set of points. Note that the structure of Ê(p,q) as a polar space of type B4 and the structure T̂ (p,q),
both as a dual polar space of type B4 and as a half spin geometry of type D5, are inherited from Γ . For T̂ (p,q),
this follows from Theorem 5.3.010.

Definition 5.3.011 (Imaginary completion of Ê(p,q)) The geometry of type D5 corresponding to the half spin
geometry T̂ (p,q) will be denoted by Θ(T̂ (p,q)). By Theorem 5.3.010 we can assume that it contains Ê(p,q) as
a geometric hyperplane. We call it the imaginary completion of Ê(p,q), and the points of Θ(T̂ (p,q))\ Ê(p,q) are
called the imaginary points of Ê(p,q). We will provide an interpretation of these imaginary points of Ê(p,q) in
Corollary 6.3.06.

Corollary 5.3.012 If p′,q′ are two opposite points of Γ and T̂ (p′,q′) = T̂ (p,q), then p′,q′ ∈ Ê(p,q). In other
words, Ê(p′,q′) = Ê(p,q).

Proof Let x ∈ Ê(p,q). We can find two hyperbolic solids U1,U2 of Ê(p,q) such that U1 ∩U2 = {x}. Then
by Proposition 5.3.09(iii), we know that a1 = β (U1) and a2 = β (U2) are special and x = a1 on a2. Again, by
Proposition 5.3.09(iii), and the fact that a1,a2 ∈ T̂ (p′,q′), we also know that a1 on a2 ∈ Ê(p′,q′). Hence Ê(p,q)⊆
Ê(p′,q′), implying equality. ut

5.4 The hyperplane Ĥ(p,q) of Γ

We denote by Ĥ(p,q) the set of points of Γ collinear or equal to at least one point of Ê(p,q). The notation Ĥ(p,q)
comes from “hyperplane”. We indeed intend to prove that Ĥ(p,q) is a geometric hyperplane of Γ and that each
member of Ê(p,q)∪ T̂ (p,q) is a deep point of it (a deep point of a geometric hyperplane H is a point x for which
x⊥ is contained in H). But first we need another lemma.

Let x be any point of Γ and let Nx denote the set of lines of Γ through x.
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Lemma 5.4.01 Let x be any point of Γ . Furnished with the planar point pencils, Nx has the structure of a dual
polar space of type B3 over K. If we furnish it further with all subsets of Nx consisting of all lines intersecting
some hyperbolic line contained in x⊥, then Nx has the structure of a polar space of type D4 over K.

Proof The first assertion follows immediately from the diagram of Γ since the geometry under consideration is
just a point-line truncation of the residue at x. The second assertion follows from the fact that we obtain a half spin
D4-geometry from a dual polar space of type B3 if we add the “hyperbolic lines” of all “quads” (using the language
of dual polar spaces and near polygons). These “quads” are symplectic quadrangles, and they correspond precisely
to the residual geometries at x of the symplecta through x. The “hyperbolic lines” are then the sets of lines through
x in the symplecta meeting a common hyperbolic line not containing x but contained in a symplecton through x.
Hence the lemma follows. ut

We denote the point-line geometry of type D4 on Nx by D4(Nx).

Lemma 5.4.02 (i) Ĥ(p,q) is the union of all lines containing a point of Ê(p,q) and a point of T̂ (p,q).
(ii) Ĥ(p,q) is the union of all symplecta containing a point of Ê(p,q).
(iii) Ĥ(p,q) is the union of all lines containing a point of T̂ (p,q).
(iv) Ĥ(p,q) is a proper geometric hyperplane of Γ and its set of deep points coincides with Ê(p,q)∪ T̂ (p,q).

Proof Let H = Ĥ(p,q), let H− be the union of all lines containing a point of both Ê(p,q) and T̂ (p,q), and let
H+ be the union of all symplecta containing a point of Ê(p,q). Then, obviously, H− ⊆H and by Corollary 5.1.02,
we also have H ⊆ H+. In order to show (i) and (ii), it suffices to prove that H+ ⊆ H−. So let x ∈ H+, and let S be
a symplecton containing x and a point of Ê(p,q), which we can choose to be p. By Corollary 5.2.016, S contains a
hyperbolic line h contained in Ê(p,q). We may assume that x /∈ h. Then x is collinear with at least one point y ∈ h.
Consider a second point y′ ∈ h\{y}. Then y′ is collinear with exactly one point z ∈ xy and so z ∈ T̂ (p,q), whereas
y ∈ Ê(p,q) and x ∈ yz, showing x ∈ H−.

Now let H∗ be the set of all points collinear in Γ with at least one point of T̂ (p,q). Clearly, by (i), H ⊆ H∗.
Hence, in order to show (iii), it suffices to prove H∗ ⊆ H. So let x ∈ H∗ and let a ∈ T̂ (p,q) be collinear with x.
Considering Na, Lemma 5.4.01 yields a symplecton containing ax and a point of β (a). Consequently, x is collinear
or symplectic to at least one point of Ê(p,q)⊇ β (a). By (ii), this suffices to conclude x ∈ H and (iii) follows.

We now show that H is a proper geometric hyperplane of Γ . First we prove that it is a subspace. Let x1,x2 ∈ H be
collinear points. If one of x1,x2 belongs to Ê(p,q)∪ T̂ (p,q), the definition of H and (iii) imply that the line x1x2
belongs to H. So we may assume that neither of x1,x2 belongs to Ê(p,q)∪ T̂ (p,q). But by (i), xi, i = 1,2, belongs
to a line Li intersecting Ê(p,q) in some point yi and intersecting T̂ (p,q) in some point zi. If β (z1)∩β (z2) = /0, then,
by Proposition 5.3.09(iv), z1 and z2 are opposite. Since z1 is not opposite x2, it is opposite y2 by Lemma 5.1.07.
This contradicts Corollary 5.3.04.

Hence we may assume that β (z1)∩β (z2) contains some point b. Let i ∈ {1,2}. Since b is collinear with zi and
also either equal to or symplectic to yi, the pair {b,xi} is either a collinear pair or a symplectic pair, respectively,
and vice versa. Note that, if b 6= yi, then both zi and xi belong to b♦yi. First suppose that {b,x1} is symplectic. If
x2 belongs to b♦x1, then by (ii), all points of x1x2 belong to H. So we may assume that x2 is close to b♦x1. This
implies that x2 is collinear with all points of a line M2 ⊆ b♦x1. Since {b,x2} is a collinear or symplectic pair, b is
either on M2 or collinear with all points of M2. In any case b is collinear with x1, a contradiction. Similarly, b⊥⊥ x2
leads to a contradiction. So we may assume that both x1 and x2 are collinear with b. In this case, L1 meets L2 in
b = y1 = y2 and every point of the line x1x2 is collinear with b, which proves that x1x2 ⊆H. Thus, H is a subspace
of Γ .
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By the foregoing, all members of Ê(p,q)∪ T̂ (p,q) are deep points. Now we show that no point of Ĥ(p,q) \
(Ê(p,q)∪ T̂ (p,q)) is deep. This will also imply that H is proper.

Let x1 be any point of Ĥ(p,q) \ (Ê(p,q)∪ T̂ (p,q)). By (i), x1 belongs to a line L1 intersecting Ê(p,q) in some
point y1 and intersecting T̂ (p,q) in some point z1. Let x2 be any point collinear with x1 such that {x2,y1} is a
special pair (such a point exists by Fact 5.1.03). Then Lemma 5.1.07 implies that {x2,z1} is also a special pair. By
Lemma 5.2.010, x2 /∈ Ê(p,q), and by Proposition 5.3.09(iii), x2 /∈ T̂ (p,q) since z1 on x2 = x1 /∈ Ê(p,q). Assume,
for a contradiction, that x2 ∈H. Then x2 belongs to a line L2 intersecting Ê(p,q) in some point y2 and intersecting
T̂ (p,q) in some point z2. Note that y1 and y2 are not opposite since this would imply by Lemma 5.1.07 that y1
and z2 are opposite (taking into account that y1 and x2 are not opposite), contradicting Corollary 5.3.04. Hence
y1 ⊥⊥ y2. Since x2 ⊥ y2 and x2 is special to y1, we have y1 6= y2 and the point x2 is close to y1♦y2. By Fact 5.1.05,
x2 on y1 ∈ y1♦y2, and so, since x2 is collinear with a line of y1♦y2, the points x2 on y1 = x1 and y2 are collinear. By
Lemma 5.1.07, also x1 and z2 are collinear. Also, since y1 ⊥⊥ y2 and y1 is special to x2, the same lemma implies
that y1 is special to z2. Again the same lemma then implies that z2 and z1 are special (since z2 is special to y1 and
collinear with x1). But then z1 on z2 = x1 /∈ Ê(p,q), contradicting Proposition 5.3.09(iii). Hence x2 /∈ H and so x1
is not a deep point of H.

We now show that H is a geometric hyperplane of Γ . Since we have already proven that H is a subspace, it suffices
to show that every line M of Γ not inside H intersects H in a point. Let r ∈M be a point not belonging to H. Since
H = H+, any point of Ê(p,q) is either special to or opposite r. Let Hr be the set of points of Ê(p,q) which are
special to r. We prove a number of claims (and forget the notation for points already used in the current proof).

– Hr is a subspace of Ê(p,q), viewed as a polar space. Indeed, let {a,b} be a symplectic pair in Hr. There
are two possibilities. The first possibility is that r is far from a♦b. Let s be the unique point of a♦b that is
symplectic to r. Then both a and b are collinear with s, and, by Lemma 5.1.06, so is every point of h(a,b).
Hence, h(a,b)⊆ Hr by Fact 5.1.05 and Lemma 5.2.010. The second possibility is that r is close to a♦b. Then
no point of h(a,b) can be opposite r; so they are all special to r and again h(a,b)⊆ Hr.

– Hr is either a geometric hyperplane of Ê(p,q), viewed as a polar space, or coincides with it. Suppose Hr does
not coincide with Ê(p,q), and let h be a hyperbolic line in Ê(p,q) containing at least one point opposite r.
Then, Lemma 5.1.06 implies that a unique point x of h is not opposite r, and hence it is special to r since
r /∈ Ĥ(p,q).

To every point x of Hr, we associate the line Lx through r containing r on x. As before, we denote the set of lines of
Γ through r by Nr, and this mapping by λ : Hr→Nr : x 7→ λ (x) = Lx.

– The map λ just defined is injective. Indeed, suppose λ (x1) = λ (x2), for two distinct points x1,x2 ∈ Hr. If
r on x1 6= r on x2, then, noting both belong to H, the line joining r on x1 and r on x2 belongs to H as H is a
subspace. Consequently r ∈ H, a contradiction. Hence we may assume that y = r on x1 = r on x2. But then
y ∈ T̂ (p,q) and (iii) implies r ∈ H, again the same contradiction.

– The map λ maps opposite pairs of points of Hr onto pairs of lines not contained in a symplecton. Let x1,x2 ∈Hr
be opposite points and suppose L1 = λ (x1) and L2 = λ (x2) are contained in a common symplecton S. Both
x1 and x2 are close to S and so collinear with respective lines M1 and M2 belonging to S. Inside S, M1 and M2
are opposite because if a point of u were collinear to all point of M2, then x2 ⊥⊥ u and by the last assertion of
Lemma 5.1.07 and the fact that x1 and x2 are opposite, this is a contradiction. Still inside S, every point of the
hyperbolic line M⊥1 ∩M⊥2 is symplectic to both x1 and x2 and hence belongs to Ê(p,q); hence r ∈ S belongs to
H by (ii), a contradiction.
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– The map λ sends the points of any hyperbolic line h⊆Hr either to all lines of a planar line pencil through r, or
to all lines through r intersecting a certain hyperbolic line g⊆ r⊥. Set S = S(h). By (ii), r /∈ S. There are two
possibilities. The first possibility is that r is close to S. Let L = r⊥∩S be the unique line of S collinear with r.
By the injectivity of λ , the projection of h onto L in S is injective, and since h is a hyperbolic line in S, it is also
surjective. So λ (h) consists of all lines of the plane through r and L, and hence is a (full) planar line pencil.
The second possibility is that r and S are far. Let z ∈ S be the unique point symplectic to r. Since all points of
h are special to r, Fact 5.1.05 implies that h ⊆ z⊥. Set T = r♦z. Then, each point x ∈ h is close to T and so
x on r belongs to T and is collinear with z. This implies λ (h)⊆ T . Now consider any point y ∈ h⊥, with y 6= z.
Then r and y are opposite, and hence, projection (in the sense of Proposition 4.2.012) defines an isomorphism
between Ny and Nr (and note, here, that projection means “meeting a common line”). But the line xy, for x∈ h,
corresponds to λ (x). Since x runs through a hyperbolic line, also r on x runs through a hyperbolic line and the
assertion is proved.

All this now implies that λ (Hr) is a fully embedded subgeometry and a subspace of the geometry D4(Nr). How-
ever, no subspace of a polar space of type D4 is isomorphic to a geometric hyperplane of a polar space of type B4,
except for the full polar space itself. Hence λ is surjective. This implies that every line R through r contains a point
collinear with some point of Hr; hence R contains a point of H. ut

The following are immediate corollaries of the proof of Lemma 5.4.02.

Corollary 5.4.03 Let r be a point not belonging to Ĥ(p,q). Then the set of points of Ê(p,q) not opposite r (hence
special to r) induces a polar subspace of type D4 in Ê(p,q), viewed as a full polar space of type B4 over K. ut

Corollary 5.4.04 Let L be any line of Γ containing a point of Ê(p,q). Then L contains precisely one point of
T̂ (p,q). ut

6 Constructing a building of type E6 from a split building of type F4

In this section we conclude our construction. The point set of the building of type E6 is the union of the point set
of Γ and the family of all extended equator geometries of Γ . In order to well-define the lines, we need another
lemma, which we prove in Subsection 6.1. In the rest of the section, we identify suitable substructures of the split
building Γ of type F4 as elements of various types of the building ∆ of type E6, and we define a suitable incidence
relation among them to conclude the construction of ∆ . Further, we construct the symplectic polarity of ∆ whose
fixed point geometry is precisely Γ , and prove Theorems 1 and 2.

6.1 The Point-Line E6-Geometry

The following proposition is the basis for the definition of new lines.

Proposition 6.1.01 Let Ê = Ê(p,q) be an extended equator geometry, with p,q two opposite points of Γ . Let x
be a point of T̂ (p,q) collinear with p and put U = β (x). Let y be the point of Γ collinear with all points of the
hyperbolic solid V of Ê containing q and the hyperbolic plane U ∩E(p,q). Then an extended equator geometry
Ê ′ contains U if, and only if, it can be written as Ê(p,q′), with q′ ∈ qy \ {y}. Also, if q′ 6= q, then Ê ∩ Ê ′ = U.
Consequently, if q′,q′′ ∈ qy\{y} with q′ 6= q′′, then Ê(p,q′)∩ Ê(p,q′′) =U.
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Proof Let q′ be a point of qy \ {y}. Since p ⊥ x ⊥ y (see Proposition 5.3.09(i)), we have that p is not opposite
y. Since p is opposite q, Lemma 5.1.07 implies that p is opposite q′. Since each point a of U ∩E(p,q) is collinear
with y and symplectic to q, it is symplectic to q′, as follows from Lemma 5.1.07. It follows that a ∈ E(p,q′).
Hence, Ê(p,q′) contains U ∩E(p,q). Since it also contains p, we easily deduce, using Proposition 5.3.09(ii), that
U ⊆ Ê(p,q′)

Let Ê ′ be an extended equator geometry containing U . Let a,b,c be three points in E(p,q)∩U = V ∩U not on
a common hyperbolic line. Then a,b,c, p generate U inside Ê(p,q). Let Sa,Sb,Sc be the symplecta containing
q and a,b,c, respectively. Since a,b,c ∈ Ê ′, each of Sa,Sb,Sc contains, by Corollary 5.2.016, a hyperbolic line
ha,hb,hc, respectively, entirely contained in Ê ′. Also, since y is collinear with q,a,b,c, it belongs to Sa,Sb,Sc.
By the isomorphism ϕq,p (Proposition 5.2.02), the intersection of Sa,Sb,Sc is precisely the line L := qy. Since
hyperbolic lines of symplecta are geometric lines, the point q is collinear in Γ with unique points qa,qb,qc of
ha,hb,hc, respectively. Suppose, by way of contradiction, that qa 6= qb. Then q belongs to the tropic circle geometry
T̂ ′ of Ê ′. But also y belongs to T̂ ′. Since y⊥ q, Proposition 5.3.09(i) implies that y⊥∩q⊥∩ Ê ′ is a hyperbolic plane
π . Clearly, π intersects U ∩V in a hyperbolic line, contradicting the fact that q is not collinear with any point
of U . Hence qa = qb = qc =: q′ ∈ L, with q′ 6= y. It follows from Lemma 5.1.07(7) that q′ is opposite p and so
Ê ′ = Ê(p,q′) by Proposition 5.2.015. The same proposition also implies the last assertion, as U is a maximal
singular subspace of both Ê and Ê ′ and, by Proposition 5.2.015, U ( Ê ∩ Ê ′ would mean that Ê = Ê ′. ut

Definition 6.1.02 (Point-Line E6-Geometry) We define the point-line E6-geometry as the pair (P,L ), where P
is the point set of Γ union the family E of extended equator geometries, and L is the set of ordinary and hyperbolic
lines of Γ union the following family F of subsets of P . Let U be any hyperbolic solid of Γ . Then β (U) together
with all extended equator geometries containing U is a general element of F (see Proposition 6.1.01). Inclusion
between the elements of P and those of L defines incidence. Members of E and F will frequently be referred to
as the new points and the new lines, respectively.

Note that (P,L ) is a partial linear space, i.e., every pair of distinct points is contained in at most one line.
When we write about collinear points of Γ , we will always mean the collinearity in Γ , and not in (P,L ), unless
explicitly mentioned otherwise.

Note also that, by Lemma 5.2.010 and Proposition 5.3.09(ii), the sets T̂ (p,q) and Ê(p,q) are subspaces of (P,L ).

6.2 (P,L ) corresponds to a building of type E6: First observations

We are left to show that (P,L ) is the point-line geometry of the building of type E6 over the field K. Towards
that end, we continue our series of lemmas.

A full pencil in a tropic circle geometry T̂ is the intersection of T̂ with the union x⊥∪x⊥⊥ for a certain point x of T̂
(hence it is the set of points of T̂ collinear with or equal to x, with “collinearity” in the half spin geometry of type
D5 defined by T̂ , see Theorem 5.3.010(ii); this collinearity coincides precisely with collinearity in (P,L )). The
point x is then called the centre of the full pencil. Obviously, a full pencil has a unique centre. Also, for a new point
e ∈ E , we denote by Te the corresponding tropic circle geometry. The element of L through distinct elements α

and α ′ in P will be denoted by 〈α,α ′〉. Note that the definition of F yields a natural bijective correspondence
between F and the family of hyperbolic solids of Γ .

Lemma 6.2.01 Let e,e′ ∈ E . Then, e and e′ are collinear in (P,L ) if, and only if, Te∩Te′ contains a full pencil
in both Te and Te′ . In this case, the intersection is that full pencil and it has centre 〈e,e′〉∩Γ .
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Proof First assume that e and e′ are collinear in (P,L ) and let U = e∩e′. Let x ∈ Te be collinear with all points
of U . Then clearly x ∈ Te′ . Now suppose y ∈ Te is collinear or symplectic to x. Then, by Proposition 5.3.09(i)
and (ii), y is collinear with at least two points of U , and hence y also belongs to Te′ . Now suppose that some point
z ∈ Te also belongs to Te′ , with z special to or opposite x. Let V = z⊥∩ e. Then, by Lemma 5.3.05, V 6=U and, by
Proposition 5.2.011, there is a hyperbolic solid W of e intersecting V in just a point z′ /∈U and intersecting U in at
least two points (and hence in a hyperbolic line or in a hyperbolic plane). The latter implies that the point z′′ of Te
corresponding to W belongs to Te∩Te′ . Further, Proposition 5.3.09(iii) implies that {z′′,z} is a special pair. Hence
z′ = z on z′′ belongs to both e and e′, contradicting our assumption z /∈U .

Now suppose that Te ∩Te′ contains a full pencil in both Te and Te′ . Let x ∈ Te be the centre of such a full pencil
in Te. Recall that, for z ∈ Te, we denote β (z) = z⊥ ∩ e. Given any point u ∈ β (x), we can choose y,z ∈ Te such
that β (y)∩β (x) and β (z)∩β (x) are hyperbolic lines, whereas β (y)∩β (z) = {u}. Consequently, y and z are both
symplectic to x and special to each other. As u = y on z and y,z ∈ Te′ , Proposition 5.3.09(iii) implies that u ∈ e′.
Since u∈ β (x) was arbitrary, β (x)⊆ e′ and by definition, this yields that e′ is collinear with e in (P,L ). It follows
from the first paragraph that Te∩Te′ coincides with the full pencil in both Te and Te′ with centre 〈e,e′〉∩Γ . ut

We can be a little more specific about the geometric structure of a full pencil in a tropic circle geometry, and its
relation to the corresponding extended equator geometry.

Lemma 6.2.02 Let U be a hyperbolic solid in Ê(p,q) and let PU be the set of points of Γ collinear with at least
two points of U. Then,

(i) PU ⊆ T̂ (p,q) and the structure on it induced by (P,L ) is a cone with vertex β (U) over a geometry isomor-
phic to the line Grassmannian of a projective 4-space W over K;

(ii) the subgeometry PΓ
U of PU restricted to the ordinary lines of Γ through β (U) is isomorphic to a cone over a

3-space over K; in the line Grassmannian, this 3-space corresponds to all lines through a point of W. Hence,
PΓ

U is a projective 4-space over K.

Proof

(i) By the definition of T̂ (p,q), every point of PU belongs to T̂ (p,q). Since PU is the set of points x of T̂ (p,q)
such that x⊥ ∩U contains a hyperbolic line, Lemmas 5.3.05 and 5.3.06, and Proposition 5.3.09 imply that
PU is the full pencil in T̂ (p,q) with deep point β (U). By Theorem 5.3.010(ii), T̂ (p,q), endowed with its
ordinary and hyperbolic lines, is a half spin geometry of type D5, say with corresponding polar space Ω

of type D5 and system Φ+ of maximal singular subspaces. So β (U) corresponds to an element U+ ∈ Φ+.
Then the set PU \{β (U)} corresponds to the set of elements of Φ+ intersecting U+ ∈Φ+ in planes. Clearly,
elements of Φ+ intersecting U+ in the same plane correspond to points in a(n ordinary or hyperbolic) line
of Γ through β (U), and vice versa. Hence the lines (of T̂ (p,q) viewed as a half spin geometry of type D5)
through β (U) correspond bijectively and naturally to the points of the plane Grassmannian G2(U+) of U+.
We show that this bijective correspondence is an isomorphism. Note that, by Lemmas 5.1.06 and 5.1.07,
two lines L and L′ through β (U) in T̂ (p,q) are “collinear” (meaning that each point of L \{β (U)} is either
collinear or symplectic to each point of L′ \{β (U)}) if, and only if, there is a point y ∈ L\{β (U)} collinear
or symplectic to a point y′ ∈ L′ \ {β (U)}. Two planes π1 and π2 are collinear in G2(U+) precisely if they
intersect in a line. This happens if, and only if, some members W1,W2 ∈Φ+, with πi ⊆Wi, i = 1,2, intersect
in a plane, hence, if, and only if, the corresponding lines are “collinear”. Note that G2(U+) is equal to the
line Grassmannian of the dual space W of U+.
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(ii) The ordinary lines through β (U) in PU correspond, according to Proposition 5.3.09(i), to the members of
Φ+ intersecting U+ in planes contained in U . Hence we obtain a 3-space in the plane Grassmannian of U+,
implying that PΓ

U is a cone with vertex β (x) over a 3-space. Dualising, we see that the ordinary lines of Γ

through β (U) correspond to all lines through a point of W . ut

Let T̂ be a tropic circle geometry and Ê its associated extended equator geometry. For a point x ∈ Ê, the set of
points T̂ ∩x⊥, endowed with the lines and hyperbolic lines contained in it, is a subspace of T̂ isomorphic to a polar
space of type D4, as follows from Theorem 5.3.010(ii). Such a polar space will be referred to as a standard D4 in
T̂ . A geometric hyperplane of T̂ ∩x⊥ isomorphic to a polar space of type B3 will be referred to as a standard B3 in
T̂ with centre x. Any singular geometric hyperplane of T̂ ∩ x⊥ consists of the set Ha of points of T̂ ∩ x⊥ collinear,
symplectic or equal to a given point a of T̂ ∩x⊥, which is then a deep point of Ha. It is unique since for every point
b ∈ Ha \{a}, we can find a point c ∈ Ha special to b. Hence b cannot be a deep point as well.

For the next lemma, we recall that the lines of the tropic circle geometries are the ordinary and hyperbolic lines of
Γ contained in it. As such, a geometric hyperplane of a subspace A of a tropic circle geometry is defined relative
to the ordinary and hyperbolic lines contained in A.

Lemma 6.2.03 Let p be any point of Γ and let p ∈ e∩ e′ with e,e′ ∈ E . Then,

(i) Te∩Te′ ∩ p⊥ is a geometric hyperplane of both Te∩ p⊥ and Te′ ∩ p⊥;
(ii) e and e′ are collinear in (P,L ) if, and only if, Te∩Te′ ∩ p⊥ is a singular geometric hyperplane in Te∩ p⊥

and Te′ ∩ p⊥. If this is the case, then the (unique) deep point is the unique point of Te∩Te′ collinear in Γ with
every point of the hyperbolic solid e∩ e′;

(iii) e and e′ are not collinear in (P,L ) if, and only if, Te ∩Te′ ∩ p⊥ is a standard B3. If this is the case, then
e∩ e′ = {p}.

Proof

(i) Let L be an ordinary or hyperbolic line in Te ∩ p⊥. Then the structure induced by the lines and hyperbolic
lines on the set of points obtained by joining p with the points of L is a projective plane π (noting that, if L
is a hyperbolic line, then p ∈ S(L)). By Corollary 5.4.04, each line through p in π contains a unique point of
Te′ , and Proposition 5.3.09(i) and (ii) imply that the set of points thus obtained is closed under taking lines
and hyperbolic lines. It follows that Te′ ∩π is a line L′ of π . Hence either L = L′ or L∩L′ is a unique point,
as required.

(ii) If e and e′ are collinear in (P,L ), then Lemma 6.2.01 implies that Te ∩ Te′ ∩ p⊥ is a singular geometric
hyperplane in both Te∩ p⊥ and Te′ ∩ p⊥.
Now suppose that Te ∩Te′ ∩ p⊥ is a singular geometric hyperplane in both Te ∩ p⊥ and Te′ ∩ p⊥, and let x
be the deep point. Let p′ 6= p belong to x⊥∩ e. Let L be an arbitrary line in p♦p′ through p. Then the point
xL := p′⊥∩L belongs to Te. Since also x belongs to p♦p′,
– the assumption that Te∩Te′ ∩ p⊥ is a singular geometric hyperplane in Te′ ∩ p⊥,
– the fact that x is a deep point, and
– x⊥⊥ xL,

imply that xL ∈ Te′ . Hence p⊥ ∩ p′⊥ (which lies automatically in p♦p′) is contained in Te′ . Since p ∈ e′,
Corollary 5.2.016 implies that some hyperbolic line h′ in p♦p′ through p is contained in e′, and hence h′⊥

belongs to Te′ . If h′ 6= h(p, p′), then h(p, p′)⊥ and h′⊥ generate in (P,L ) the 4-space p⊥ ∩ (p♦p′). Since
Te′ is a subspace, this would imply that p ∈ Te′ ∩ e′, a contradiction. Consequently h(p, p′) ⊆ e′ and hence e
and e′ intersect in the 3-space x⊥∩ e.
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(iii) The only nonsingular geometric hyperplanes of a polar space of type D4 are polar spaces of type B3 obtained
by slicing with a hyperplane in the standard embedding. Hence, by (ii), e and e′ are not collinear in (P,L )
if, and only if, Te∩Te′ ∩ p⊥ is a standard B3 in both Te and Te′ .
Finally, assume that e∩e′ contains two points p and p′ with p 6= p′. Then, p⊥∩ p′⊥ is contained in Te∩Te′∩ p⊥

and is a 3-dimensional subspace in p♦p′. Hence the geometric hyperplane Te∩Te′ ∩ p⊥ of Te∩ p⊥ is singular
as it cannot be a standard B3. Hence, e and e′ are collinear in (P,L ) and therefore they meet in a hyperbolic
solid. ut

6.3 The quads of (P,L )

Proposition 6.3.01 Let p be any point of Γ . Put X = p⊥∪{Ê(p,q) : q is opposite p}. Then X, endowed with the
members of L it contains as its lines, is a polar space of type D5 over K, denoted by Σ(p).

Proof By Lemma 5.4.01, the structure on the set of lines of Γ through p induced by the ordinary and hyperbolic
lines is a polar space of type D4. Since p is not collinear with any element of X ∩E , we see that, if X is a polar
space, then it is of type D5. In fact, the verification of all the axioms of a polar space of finite rank is immediate,
except for the one-or-all axiom, which is exactly what we proceed to do now. There are a few cases to consider.

CASE 1: Let x be a point of Γ in p⊥ and L an ordinary or a hyperbolic line contained in p⊥. In this case, the
one-or-all axiom follows straight from the fact that the lines of Γ through p form a polar space of type D4 when
two lines are considered collinear if they are contained in a common symplecton.

CASE 2: Let e be an extended equator geometry containing p and let L be an ordinary or a hyperbolic line
contained in p⊥. If L contains p, then Corollary 5.4.04 implies that e is collinear with the unique point of L in Te.
If L does not contain p, then the structure induced by the lines and hyperbolic lines on the set of points obtained
by joining p to each point of L is a projective plane π . By Corollary 5.4.04, all lines of π through p contain a
unique point of Te. Since Te is closed under taking lines and hyperbolic lines by Proposition 5.3.09(i) and (ii),
respectively, these points are on a line L′ of π . As L′ intersects L in a unique point or coincides with it, L contains
at least one point collinear in (P,L ) to e.

CASE 3: Let x ∈ p⊥ be a point of Γ and let L∈L be a new line contained in X. Then, p belongs to the hyperbolic
solid U contained in each new point of L. Let s be the unique point of L in Γ . We may assume that x /∈ L, i.e.,
x 6= s. So suppose first that x and s are collinear or symplectic in Γ (note that both belong to p⊥ and hence cannot
be opposite each other). If x belongs to Te for some e ∈ L\{s}, then Proposition 5.3.09(i) and (ii) imply that x is
collinear with at least two points of U and hence it belongs to Te for each e ∈ L\{s}. Consequently, x is collinear
in (P,L ) with either only the unique point s of L in Γ , or to all points of L according to whether x does not
belong to Te for each e ∈ L\{s} or does belong to Te for some e ∈ L\{s}.

Now suppose that x and s are special. Let e be an arbitrary extended equator geometry of L. By Corollary 5.4.04,
there is a unique point xe on the line M = px which is contained in Te. Then x⊥e ∩ e is a 3-space Ux,e sharing
only p with U . Let y be a point of Te such that y⊥ ∩U is a plane π not containing p. Put L = qy for each point
q ∈ (y⊥∩e)\π (note that q is automatically opposite p). By Proposition 6.1.01, there is a bijective correspondence
between the points of L \ {y} and the extended equator geometries in L, given by q′ 7→ Ê(p,q′). It also follows
that p is opposite all points of L \ {y} and is special to y. Now, since y⊥ ∩Ux,e is necessarily empty, y and xe are
opposite by Proposition 5.3.09(iv). So Lemma 5.1.07 implies that y (which is special to p) is opposite all points of
M \{p}. In addition, this lemma also implies that being not opposite defines a bijection, say σ , between the points
of M and those of L. Now note that, for any q′ ∈ L\{y}, Corollary 5.4.04 implies that there is a unique point z of
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M that belongs to T̂ (p,q′). Since q′ is symplectic to at least one point of z⊥∩ Ê(p,q′), Lemma 5.1.07 says that z
cannot be opposite q′. Hence σ(z) = q′. Let q∗ = σ(x). Then clearly, Ê(p,q∗) is the unique point of L collinear
with x. This completes the proof in this case.

CASE 4: Let e be an extended equator geometry containing p and let L ∈L be a new line contained in X. Note
that all extended equator geometries belonging to L contain p. We may assume that e /∈ L. Let s be the unique
point of L in Γ and let x be the unique point of Te on the line sp. Let Hs = Te∩ (s⊥∪ s⊥⊥)∩ p⊥ and, for a point f of
L\{s}, put Hf = Te∩Tf∩ p⊥.

First note that Te ∩ p⊥ only has points of Γ and the lines of (P,L ) in it are either ordinary or hyperbolic lines
of Γ . It then follows from cases 1 and 2, respectively, that the sets Hs and Hf, for every f in L\{s}, are geometric
hyperplanes of Te∩ p⊥. Moreover, case 3 implies that every point of Te∩ p⊥ is contained in either one or each of
those hyperplanes. Let H denote the intersection of all these hyperplanes. By the previous cases, H is a geometric
hyperplane of each of them, in particular of Hs, which is equal to Te∩ (x⊥∪x⊥⊥)∩ p⊥ by Lemma 5.1.07. Note that
Hs is a cone over a polar space D of type D3 and recall that Lemma 6.2.03 states that a point f ∈ L \ {s} is not
collinear with e precisely if Hf is a polar space of type B3.

Suppose first x = s. Then clearly H contains x. If H ∩D is a singular geometric hyperplane of D, then H is a cone
over a polar space of type D2 (with a line as vertex). If H ∩D is nonsingular, then H is a cone over a polar space
of type B2 (with a point as vertex). In the former case, Hf cannot be of type B3 for any f ∈ L \{s}, as it contains
3-spaces. In the latter case, Hf is of type B3 for all f ∈ L \ {s}, as otherwise it would have to be isomorphic to a
cone (with a line containing x as vertex) over a polar space of type B2, a contradiction.

Now suppose x 6= s. As H does not contain x, it is a polar space of type D3. Then Te∩ p⊥, being a polar space of
type D4, contains exactly two points collinear with all points of H. Obviously, x is one of them. The other point is
contained in Hf for a unique point f ∈ L\{s}, which is then the unique point of L collinear with e. ut

Lemma 6.3.02 Let x,y be two opposite points of T̂ (p,q). Then Ê(x,y)∩ T̂ (p,q), endowed with the hyperbolic
lines it contains, is a polar space of type D4 over K and a geometric hyperplane of Ê(x,y).

Proof Set β (x) = U ⊆ Ê(p,q) and β (y) = V ⊆ Ê(p,q). The points of E(x,y)∩ T̂ (p,q) correspond bijectively
(under β ) to maximal singular subspaces of Ê(p,q) (viewed as a polar space) intersecting both U and V in a line.
Let π be a (hyperbolic) plane in U , and consider a point a ∈ π . Let b be the unique point of V symplectic to all
points of π , and let ρ be the unique (hyperbolic) plane of V all of whose points are symplectic to a. Then for any
(hyperbolic) line L⊆U through a inside π , the unique (hyperbolic) line M ⊆V all of whose points are symplectic
with all points of L belongs to ρ and contains b. Hence, the maximal singular (hyperbolic) subspaces spanned by
L and M, as L ranges over the set of hyperbolic lines through a inside π , range over the set of maximal singular
(hyperbolic) subspaces of Ê(p,q) through the hyperbolic line h(a,b) intersecting each of the two opposite maximal
singular (hyperbolic) subspaces U and V in a line. By Theorem 5.3.010(ii), this set is thus exactly a(n imaginary)
line of the half spin geometry of type D5 corresponding to Ê(p,q), and so the set of points of T̂ (p,q) corresponding
to it under β is a hyperbolic line in E(x,y). So every line of U defines a point of E(x,y)∩ T̂ (p,q) and line pencils
in U correspond to hyperbolic lines in E(x,y)∩ T̂ (p,q), and these correspondences are bijective. It follows that
E(x,y)∩ T̂ (p,q) is a polar subspace of type D3 fully embedded in E(x,y), which is itself a polar space of type B3.

Since Ê(x,y)∩ T̂ (p,q) is a subspace of Ê(x,y) by Lemma 5.2.010 and Proposition 5.3.09(ii), it is a polar space
which contains a (point) residue of type D3 (namely, the cone with vertex x and base E(x,y)∩ T̂ (p,q)). Suppose
that the polar space were degenerate, and let a be a point of it collinear to all points of it. In particular, x⊥⊥ a⊥⊥ y,
so a ∈ E(x,y), implying that E(x,y)∩ T̂ (p,q) is also degenerate, a contradiction. Hence Ê(x,y)∩ T̂ (p,q) is a polar
subspace of Ê(x,y) of type D4. ut
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There is an immediate corollary.

Corollary 6.3.03 Let x,y be two opposite points of T̂ (p,q). Then x⊥⊥∩ T̂ (p,q)∩ Ê(x,y) has the structure of a cone
with vertex x over a polar space of type D3 over K. ut

Let Ê be the extended equator geometry associated with T̂ . Recall that, for a point p ∈ Ê, the set T̂ ∩ p⊥, endowed
with the lines and the hyperbolic lines contained in it, is a standard D4 in T̂ . A polar space of type D4 obtained
by intersecting T̂ with Ê(x,y), with x,y ∈ T̂ opposite, will be called a hyperbolic D4 in T̂ . A geometric hyperplane
therein isomorphic to a polar space of type B3 over K will be referred to as a hyperbolic B3 in T̂ . A hyperplane
therein arising as x⊥⊥∩ T̂ (p,q)∩ Ê(x,y) is called a hyperbolic D3-cone with vertex x.

The next lemma is probably well-known to the specialists. It will enable us to identify the point set of the imaginary
completion of Ê(p,q) with the set of standard and hyperbolic D4s of T̂ (p,q).

Lemma 6.3.04 Let Θ be a half spin geometry of type D5 and let Θ ∗ be the corresponding polar space of type D5.
Then the set of points of Θ incident with a fixed point of Θ ∗ induces a fully embedded polar space of type D4 in Θ .
Conversely, every fully embedded polar space of type D4 in Θ arises this way. In particular, there is a unique fully
embedded polar space of type D4 in Θ containing two points at distance two in Θ .

Proof The first assertion is obvious. So let Ω be a fully embedded polar geometry of type D4 of Θ . Consider
two non-collinear points x,y of Ω . They correspond to two maximal singular subspaces Ux,Uy, respectively, of
Θ ∗ intersecting in a point a of Θ ∗. Every point z ∈ x⊥ ∩ y⊥ in Ω corresponds to a maximal singular subspace
Uz of Θ ∗ intersecting both Ux and Uy in planes. Since these two planes certainly meet inside Uz, they both must
contain a, and so a ∈Uz. Now every point of Ω is collinear with two non-collinear points of x⊥∩y⊥, and the same
argument then implies that the corresponding maximal singular subspace contains a. Hence we have shown that Ω

is contained in the residue of a, as a fully embedded geometry. But it is now easy to see that it must coincide with
that residue, since that residue is also a polar space of type D4.

The last assertion follows from the fact that Θ is a parapolar space (see 13.4.2, example 4 of [20]). ut

Remark 6.3.05 By the previous lemma, and using the same notation, a point of Θ ∗ corresponds to a subspace of Θ

isomorphic to a geometry of type D4. Two points of Θ ∗ are collinear if, and only if, the corresponding geometries
of type D4 intersect in a 3-space. Two non-collinear points of Θ ∗ correspond to disjoint geometries of type D4.

Corollary 6.3.06 The standard and hyperbolic D4s in T̂ (p,q) are the only fully embedded polar spaces of type D4
in T̂ (p,q) (the latter viewed as a half spin geometry of type D5). The standard D4s in T̂ (p,q) arise from points of
Ê(p,q) and the hyperbolic ones arise from imaginary points of Ê(p,q), i.e. points of Θ(T̂ (p,q))\ Ê(p,q).

Proof Let Ω be a fully embedded polar space of type D4 in T̂ (p,q). By Lemma 6.3.04, it arises as the point-
residue of a point x ∈ Θ(T̂ (p,q)) (cf. Definition 5.3.011). Clearly, Ω contains two points y,z at distance two,
measured in the collinearity graph of (P,L ). Hence, {y,z} is either a special pair or an opposite pair in Γ . If
{y,z} is special, then y on z ∈ Ê(p,q) by Proposition 5.3.09(iii) and so {y,z} is contained in Ωyonz, the standard D4

defined by y on z. The last assertion of Lemma 6.3.04 then implies that Ω = Ωyonz and hence x = y on z ∈ Ê(p,q).
On the other hand, if {y,z} is opposite, then again Lemma 6.3.04 implies that Ω = Ê(y,z)∩ T̂ (p,q). Since Ω in
this case does not contain lines of Γ , the point x must be imaginary. ut
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Lemma 6.3.07 Let Q be a polar space of type D4 fully embedded in T̂ (p,q) whose lines are the hyperbolic lines
of T̂ (p,q) contained in it. Then, the hyperbolic solids U of Q all of whose points are collinear (in Γ ) with a point
of Ê(p,q) are precisely the members of one system M of maximal singular hyperbolic subspaces of Q. Moreover,
for each U in M , there is exactly one point xU in Ê(p,q) collinear with each point of U. The map U 7→ xU is
injective.

Proof Suppose first that Q arises from the residue of a point x of Ê(p,q), i.e. Q = x⊥∩ T̂ (p,q). Then all points
of Q are collinear with x. In this case, Q clearly contains lines of Γ , contradicting our hypothesis. Hence Q arises
from the residue Rz of an imaginary point z in the imaginary completion of Ê(p,q) to a polar space Θ ∗ of type
D5. So, the set of points of Q are in bijective correspondence with one system of maximal singular subspaces of
Rz, and vice versa (the principle of triality appears here). Hence, the set of lines of Θ ∗ through z are in bijective
correspondence to one system M of maximal singular subspaces of Q. Now we fix U ∈M and the corresponding
line LU through z. Consider the unique point xU on LU which belongs to Ê(p,q) – this point exists indeed since
Ê(p,q) is a geometric hyperplane of Θ ∗. Then, U is a maximal singular subspace of the subgeometry of type
D4 arising from the residue of xU (because everything different from points of Θ ∗ incident with LU belongs to
the residue of xU ). Hence all points of U are collinear in Γ to xU . This establishes existence. Uniqueness follows
immediately from Corollary 5.3.07. The injectivity of U 7→ xU follows from the bijective correspondence between
M and the set of lines of Θ ∗ through z.

Finally, we prove that no member of the other system M ′ of maximal singular subspaces of Q is collinear with
a point of Ê(p,q). Suppose that U ′ ∈M ′ is collinear with a point x′ ∈ Ê(p,q). Then there is a member U of
M intersecting U ′ in a plane. Since U and U ′ are contained in Ê(p′,q′), for opposite points p′,q′ in U ∪U ′, it
follows by Proposition 5.3.09(i) that x′ is collinear with the unique point of Ê(p,q) collinear with U , contradicting
Lemma 5.2.010. ut

Lemma 6.3.08 (i) Let x,y be two opposite points of T̂ (p,q). Then, Ê(p,q)∩T̂ (x,y) endowed with the hyperbolic
lines it contains is a polar space of type D4 over K and a geometric hyperplane of Ê(p,q). This set is precisely
the set of points of Ê(p,q) collinear with the members of one system of maximal singular subspaces of the
polar space Ê(x,y)∩ T̂ (p,q) of type D4.

(ii) Let Q be a geometric hyperplane of the polar space Ê(p,q) isomorphic to a polar space of type D4. Then,
there exist exactly two tropic circle geometries T1 and T2 with Ti∩ Ê(p,q) = Q, i = 1,2.

Proof

(i) By Lemma 6.3.02, Ê(x,y)∩ T̂ (p,q) endowed with the hyperbolic lines in it, is a polar space of type D4 over
K and a geometric hyperplane of Ê(p,q). From Lemma 6.3.07, we know that exactly one of its systems
of maximal singular subspaces is such that each of its members is collinear with a unique point of Ê(p,q).
Clearly, the set Z of points thus obtained is contained in Ê(p,q)∩ T̂ (x,y). Since Ê(x,y)∩ T̂ (p,q) contains
two disjoint maximal singular subspaces, Proposition 5.3.09(iv) implies that Z contains a pair of opposite
points (in Ê(p,q)∩ T̂ (x,y)). It follows from Lemma 6.3.02 that Z = Ê(p,q)∩ T̂ (x,y). This proves (i).

(ii) Note that, by symmetry, members of precisely one family of maximal singular subspaces of Ê(p,q)∩ T̂ (x,y)
correspond to points of Ê(x,y)∩ T̂ (p,q). Now look at the other family of maximal singular subspaces of
Ê(p,q)∩ T̂ (x,y). The corresponding set of points of T̂ (p,q) contains two opposite points, say x′ and y′. As in
the first paragraph of this proof, it follows that this set coincides with Ê(x′,y′)∩ T̂ (p,q). Using this argument,
we can start from any geometric hyperplane Q of Ê(p,q) of type D4 and conclude that the points of T̂ (p,q)
corresponding to the maximal singular subspaces of Q form two disjoint polar spaces of type D4, which arise
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as the intersections of T̂ (p,q) with two extended equator geometries Ê1 and Ê2, respectively. Let T̂1 and T̂2
be their respective tropic circle geometries. By (i), T̂1 and T̂2 both intersect Ê(p,q) in a polar space of type
D4 which clearly coincides with Q. Since for any tropic circle geometry T̂ ∗, with corresponding extended
equator geometry Ê∗, intersecting Ê(p,q) in Q, the members of one family of maximal singular subspaces
of Q have to be collinear with all points of Ê∗∩ T̂ (p,q), it follows that Ê∗∩ T̂1 ∈ {Ê1∩ T̂ (p,q), Ê2∩ T̂ (p,q)}
and hence Ê∗ ∈ {Ê1, Ê2} (use Proposition 5.2.015), establishing that T̂1 and T̂2 are the only tropic circle
geometries intersecting Ê(p,q) in Q. ut

Both Corollary 5.4.03 and Lemma 6.3.02 produce geometric hyperplanes of Ê(p,q) of type D4. The connection
between these two constructions is given by the following lemma.

Lemma 6.3.09 Let r be any point not belonging to Ĥ(p,q). With reference to Corollary 5.4.03, let Hr be the
subspace of Ê(p,q) of type D4 consisting of the points of Ê(p,q) special to r. Then, there exists a unique extended
equator geometry Êr containing r and intersecting T̂ (p,q) in a hyperbolic D4. The tropic circle geometry T̂r
corresponding to Êr intersects Ê(p,q) precisely in Hr. Also, the set of points of T̂ (p,q) which are symplectic to r
is contained in Êr ∩ T̂ (p,q) (and hence constitutes a hyperbolic B3).

Proof Let Ω1 and Ω2 be the two natural systems of maximal singular subspaces of Hr, and let ω1 and ω2 be the
corresponding sets of points of T̂ (p,q) (so β (x)∈Ωi for all x∈ωi, i = 1,2). We claim that, if Ui ∈Ωi, with U1∩U2
a hyperbolic plane, then exactly one of β (U1) and β (U2) is special to r, whereas the other is either symplectic to
or opposite r.

Indeed, let h be a hyperbolic line in U1 ∩U2. The elements of Ωi, i = 1,2, containing h form a (hyperbolic) line
in the half spin D5 geometry corresponding to the dual polar space of type B4 associated with Ê(p,q). Hence, the
points of ωi corresponding to the elements of Ωi that contain h form a hyperbolic line hi in T̂ (p,q). Then h1 and
h2 are contained in h⊥, which, in turn, is contained in S(h). Hence, we see that h⊥ is a 3-space when endowed with
the lines and hyperbolic lines it contains, and, moreover, h⊥ is entirely contained in T̂ (p,q). Let x be any point of
h⊥ \ (h1∪h2). Then β (x) /∈Ω1∪Ω2, and hence it contains points of Ê(p,q) that are opposite r. Hence x cannot be
symplectic to r. Note also that by Lemma 5.4.02 no point of h⊥ is collinear with r. Now there are two possibilities.

– r is close to S(h). In this case, r is collinear with all points of a line L of S(h), and by our previous remark, L
does not meet h⊥. Hence the set of points of h⊥ symplectic to r is h⊥∩L⊥, which is a hyperbolic line g of Γ .
But g is disjoint from h⊥ \ (h1∪h2) and must thus be contained in h1∪h2. Obviously, this implies that g = h1
or g = h2. Since β (Ui) ∈ hi, i = 1,2, r is special to β (Ui) if g = hi and opposite β (Ui) if g 6= hi. The claim now
follows in this case.

– r is far from S(h). In this case, r is symplectic to a unique point s ∈ S(h). Since points of S(h) not collinear
with s are opposite r, we deduce that s ∈ h⊥. Hence, as before, s ∈ h1∪h2, say s ∈ h1, and then all points of h2
are special to r (since h2 ⊆ h⊥1 ), whereas all points of h1 \{s} are opposite r. The claim follows in this case as
well.

Now, since the bipartite graph on Ω1 ∪Ω2, where adjacency is intersecting in a 2-space, is connected, it follows
that we can choose indices so that all elements of ω1 are symplectic to or opposite r, and all elements of ω2
are special to r. Moreover, from the two cases above, it follows that the set of points in ω1 symplectic to r is a
geometric hyperplane of ω1, viewed as a polar space of type D4. Hence there are at least two opposite points in ω1
which are symplectic to r. It follows that the unique extended equator geometry Êr intersecting T̂ (p,q) in ω1 (see
Lemma 6.3.08) contains r.
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Now the other assertions follow easily from Lemma 6.3.08. ut

We can now distinguish the points of Ê(p,q), of T̂ (p,q), of Ĥ(p,q) \ (Ê(p,q)∪ T̂ (p,q)) and the rest by their
relations with the points of Ê(p,q).

Lemma 6.3.010 Let x be any point of Γ . Then

(i) x∈ Ê(p,q) if, and only if, no point of Ê(p,q) is collinear or special to x. So, in this case, each point of Ê(p,q)
is either equal to, symplectic to or opposite x and all possibilities occur, for all x ∈ Ê(p,q).

(ii) x ∈ T̂ (p,q) if, and only if, no point of Ê(p,q) is equal to, symplectic to, or opposite x. So, in this case, each
point of Ê(p,q) is either collinear or special to x and both possibilities occur, for all x ∈ T̂ (p,q).

(iii) x ∈ Ĥ(p,q) \ (Ê(p,q)∪ T̂ (p,q)) if, and only if, each point of Ê(p,q) is either collinear with, symplectic to,
special to, or opposite x, and all possibilities occur. In this case, there is a unique point z ∈ Ê(p,q) collinear
with x, there is a unique hyperbolic solid U of Ê(p,q) through z all of whose points except z are symplectic
to x, all other points of Ê(p,q) symplectic to z are special to x and all points of Ê(p,q) opposite z are also
opposite x.

(iv) x /∈ Ĥ(p,q) if, and only if, each point of Ê(p,q) is either special to or opposite x. In this case, the points of
Ê(p,q) that are special to x form a hyperbolic D4 and hence a geometric hyperplane of Ê(p,q).

Proof We prove all the “only if” statements and show that all possibilities do occur. Since the cases above are
mutually exclusive and exhaustive, the “if” parts then also follow.

If x ∈ Ê(p,q), then the result follows from Lemma 5.2.010. Suppose now x ∈ T̂ (p,q), and put β (x) =U . Then all
points of U are collinear with x. Now let y ∈ Ê(p,q) \U . Consider a symplecton S through y and a point u of U .
Then x does not belong to S as otherwise by projecting y onto the line xu we find a second point of T̂ (p,q) on that
line, a contradiction to Corollary 5.4.04. Hence x is close to S and since y is not collinear with u, the point y is
special to x.

Now suppose x ∈ Ĥ(p,q)\ (Ê(p,q)∪ T̂ (p,q)). Let L be the unique line of Γ through x that intersects both Ê(p,q)
and T̂ (p,q) in respective points y and z. Clearly, the point y is collinear with x, and all other points of β (z) are
symplectic to x, by Lemma 5.1.07. Now let u be a point of Ê(p,q) symplectic to y, but not belonging to β (z). By
considering the symplecton through u and y, Fact 5.1.05(1) implies that x is special to u. Finally, let v be a point of
Ê(p,q) opposite y. Since v is opposite y and special to z, each other point on the line yz, in particular x, is opposite
v, as follows from Lemma 5.1.07.

Finally, if x /∈ Ĥ(p,q), then the result follows from Lemma 6.3.09. Now the complete assertion is clear. ut

There is a nice consequence.

Corollary 6.3.011 Let e be an extended equator geometry intersecting T̂ (p,q) in a hyperbolic D4. Then, no point
of e\ T̂ (p,q) belongs to Ĥ(p,q).

Proof Let x be a point of e not belonging to T̂ (p,q). Then, by Lemma 6.3.07, there is one system of max-
imal singular subspaces of e∩ T̂ (p,q) each member of which is collinear with a unique point of Ê(p,q). By
Lemma 6.3.08(i), these points are precisely the points of Ê(p,q)∩Te, which is a hyperbolic D4 that we will denote
by Q. Then, since every point of Q is collinear with some point symplectic to x, Lemma 5.1.07 implies that x
cannot be opposite any point of Q. It follows that x /∈ Ê(p,q), because otherwise some point of Q is opposite x.
For the same reason, Lemma 6.3.010(iii) also rules out x ∈ Ĥ(p,q)\ (Ê(p,q)∪ T̂ (p,q)). Of course x /∈ T̂ (p,q) by
assumption, so that only leaves x /∈ Ĥ(p,q). ut
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Proposition 6.3.012 Let Ê(p,q) be an extended equator geometry. Put

X = Ê(p,q)∪{Ê(x,y) : x,y ∈ T̂ (p,q),x opposite y}.

Then X endowed with the members of L contained in X, is a polar space of type D5 over K.

Proof Let Θ ∗=Θ(T̂ (p,q)), as in Definition 5.3.011. To each point x of Ê(p,q), we can associate the standard D4

given by x⊥∩ T̂ (p,q). Moreover, if x,y ∈ T̂ (p,q) are two opposite points, then by Lemma 6.3.02, Ê(x,y)∩ T̂ (p,q)
is a hyperbolic D4 in T̂ (p,q), hence it corresponds to a point u of Θ ∗ \ Ê(p,q). We write ζ (u) = Ê(x,y)∩ T̂ (p,q).
Clearly, Ê(x,y)∩ T̂ (p,q) determines Ê(x,y) and we write γ(Ê(x,y)∩ T̂ (p,q)) = Ê(x,y). So, by Lemma 6.3.04,
there is a natural bijection σ from the point set of Θ ∗ to X which is the identity on Ê(p,q) and γ ◦ζ on Θ ∗ \ Ê(p,q).
Since the structure of a polar space with given point set is uniquely determined by collinearity, it suffices to
show that σ preserves collinearity in both directions. Note that two points in Θ ∗ are collinear if, and only if, the
corresponding standard/hyperbolic D4s intersect nontrivially, and then they intersect in a hyperbolic solid.

So let x1 and x2 be two points of Θ ∗. There are essentially three possibilities.

– Both σ(x1) and σ(x2) are points of Ê(p,q). In this case, the assertion follows since σ is the identity. (The fact
that we do not seem to have to prove anything here is due to the fact that β induces an isomorphism between
the half spin geometry T̂ (p,q)—endowed with ordinary and hyperbolic lines in it—and Ê(p,q), viewed as half
spin geometry by considering its imaginary completion.)

– Both σ(x1) = e and σ(x2) = e′ are new points. If x1 and x2 are collinear in Θ ∗, then we know that their images
under ζ intersect in a hyperbolic solid. Then, clearly, also their images under σ do.
Conversely, if e and e′ are collinear, we show that the hyperbolic solid e∩ e′ is contained in T̂ (p,q). By Corol-
lary 6.3.011, a point of e∪ e′ outside T̂ (p,q) is not contained in Ĥ(p,q) and hence, by Lemma 6.3.09, it is con-
tained in a unique extended equator geometry intersecting T̂ (p,q) in a hyperbolic D4. Hence e∩ e′ ⊆ T̂ (p,q)
and the assertion follows.

– σ(x1)= e is a new point and σ(x2)= x is a point of Ê(p,q). If e and x are collinear, then x∈ Te. So, x is collinear
in Γ to the points of a projective 3-space of e, which is entirely contained in e∩ T̂ (p,q) by Lemma 5.4.02. Hence
x1 and x2 are collinear in Θ ∗.
Now assume that x1 and x2 are collinear in Θ ∗. This means that e and x⊥ intersect in a hyperbolic solid, which
implies that x ∈ Te and the assertion is proved. ut

Definition 6.3.013 (The quads) We will denote the polar space of the previous proposition by Σ(Ê(p,q)). Note
that, alternatively, one can define this as

Σ(Ê(p,q)) = Ê(p,q)∪{e : e∩ T̂ (p,q) is a hyperbolic D4}.

We call the polar spaces of type D5 of Propositions 6.3.01 and 6.3.012 the quads of (P,L ) and denote the family
of quads by Q.

After P and L , the family of quads defines the third type of vertices of the associated building of type E6 we
wish to construct. The points have type 1, the lines have type 3, the quad having type 6. Our next goal is to define
the elements of the remaining three types and the incidence relation; and to show that the structure obtained is
indeed a building of type E6 on which a symplectic polarity acts with corresponding fixed point building exactly
the building of type F4 associated with Γ .
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6.4 Maximal singular 4-spaces of (P,L )

We need to define the elements of type 4 (these will be singular planes of (P,L )), the elements of type 5 (these
will be certain singular 4-spaces of (P,L )) and the elements of type 2 (these will be singular 5-spaces of (P,L ))
in the geometry (P,L ). We start with the set U of elements of type 5, defined as the set of intersections of two
(distinct) quads which meet in at least two collinear points. In the next three lemmas we introduce three types of
members of U , prove that these are singular 4-spaces, and in Lemma 6.4.04 we show that these are all the elements
of U . Note that U will certainly not consist of all singular 4-spaces of (P,L ). However, U is the family of all
maximal singular 4-spaces. We will not show this, as this will not be needed (but in fact it is easy to do). With the
terminology of Section 3.1, we will later on (see Lemma 6.5.01) construct the 5-spaces, which will be maximal
singular subspaces of dimension 5 of (P,L ). The hyperplanes of the 5-spaces will be the 4′-spaces. The 4-spaces
(i.e. the elements of U ) and the 4′-spaces are all the 4-dimensional singular subspaces of (P,L ).

Lemma 6.4.01 Let L be a line of Γ . Then, the set L⊥, endowed with all ordinary and hyperbolic lines of Γ

contained in it, is a projective 4-space over K, denoted by U(L). Moreover, U(L) = x⊥1 ∩ x⊥2 = Σ(x1)∩Σ(x2)⊆ Γ

for every pair {x1,x2} of distinct points of L, and so U(L) ∈U .

Proof Consider a point p∈ L, then all points of L⊥ belong to Σ(p). Clearly, every pair of points of L⊥ is collinear
or symplectic, and the line or hyperbolic line joining them is completely contained in L⊥, by Lemmas 5.1.06
and 5.1.07. Hence, L⊥ is a singular subspace of Σ(p) of dimension at most 4, by Proposition 6.3.01. Since L⊥∩S,
for any symplecton S containing L, is a projective space of dimension 3, and is properly contained in L⊥, the
dimension of L⊥ must be 4. The last assertion of the lemma follows from Lemma 5.1.07, the definition of Σ(p)
and the fact that the intersection of Σ(x1) and Σ(x2) does not contain new points. ut

Lemma 6.4.02 Let h be a hyperbolic line of Γ . Then U(h) = h⊥∪{e ∈ E : h⊆ e} ⊆P , endowed with the lines of
L contained in it, is a projective 4-space over K. Moreover, U(h) = Σ(x1)∩Σ(x2) for any pair {x1,x2} of distinct
points of h, and so U(h) ∈U .

Proof We first claim that U(h) is a singular subspace of (P,L ). Indeed, since any two points of h⊥ lie in S(h),
they are collinear or symplectic and the line joining them is contained in h⊥ as well. As any two new points e and
e′ of U(h) have h in common, Lemma 6.2.03 implies that e and e′ are collinear in (P,L ). Further, all new points
of 〈e,e′〉 also contain h. The unique ordinary point of that new line must belong to h⊥ and hence also belongs to
U(h). Finally, if we consider a point x ∈ h⊥ and e ∈ E with h ⊆ e, then x is collinear with at least two points of e
and hence belongs to Te. Consequently, by definition, x is collinear with e in (P,L ), and all new points of 〈x,e〉
contain x⊥∩ e⊇ h. The claim is proved.

But now we see that U(h) is contained in Σ(x), for each x ∈ h. Since U(h) properly contains the 3-space h⊥,
Proposition 6.3.01 implies that its dimension is 4. It follows that, if x1 and x2 are two distinct points of h, then U(h)
belongs to Σ(x1)∩Σ(x2). Now, Lemma 5.1.06 and Proposition 5.2.02 readily imply that U(h) = Σ(x1)∩Σ(x2).

ut

Lemma 6.4.03 Let V be a hyperbolic solid and let x = β (V ). Let PV be the set of points of Γ collinear with at
least two points of V . Then,

U(V ) =V ∪{e ∈ E : e∩PV is a hyperbolic D3-cone with vertex x}

is a projective 4-space in (P,L ). Moreover, U(V ) = Σ(x)∩Σ(f) for any extended equator geometry f containing
V , and so U(V ) ∈U .
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Proof Since x ∈ e for every e ∈ E ∩U(V ), we see that U(V ) ⊆ Σ(x). We now show that U(V ) is a singular
subspace of Σ(x). Towards that aim, we consider two arbitrary points of U(V ), show that they are collinear in
(P,L ), and that all points of the line connecting them belong to U(V ). There are three possibilities.

– If both points belong to V , then the assertion follows from the definition of a hyperbolic solid.
– Suppose v ∈V and e ∈U(V )∩E . We fix an arbitrary extended equator geometry f containing V . The definition

of Tf implies that PV ⊆ Tf. Hence, e∩Tf contains e∩PV , which in turn contains an opposite pair of points, as
e ∈U(V ). Lemma 6.3.02 implies that e∩Tf is a hyperbolic D4 in Tf. Hence there is a point x′ ∈ e∩Tf opposite
x. Let V ′ = x′⊥ ∩ f. By the proof of Lemma 6.3.02, the points of Tf ∩E(x,x′) map through β (relative to f) to
all hyperbolic solids of f intersecting both V and V ′ in hyperbolic lines. Now, as v is on such a hyperbolic line,
it is collinear with at least one point of Tf∩E(x,x′). Since v is also collinear with x, it belongs to Te. Then, by
definition, e and v are collinear as points of (P,L ).
Since v /∈ V ′, there is a unique hyperbolic solid W of f containing v and intersecting V ′ in a hyperbolic plane.
Put β (W ) = w. Then x′ ⊥w⊥ v⊥ x, and so, by Proposition 6.1.01, every new point e′ of the line 〈e,v〉 contains
a point x′′ of x′w\{w}, more precisely, e′ = Ê(x,x′′). By Proposition 5.3.09(i), x′′ ∈ Tf, so by Corollary 6.3.03,
x⊥⊥ ∩Tf ∩ Ê(x,x′′), which equals PV ∩ Ê(x,x′′), is a hyperbolic D3-cone with vertex x. Hence all points of the
new line 〈v,e〉 belong to U(V ).

– Suppose e,e′ ∈U(V )∩E . Then, e∩PV and e′∩PV are two cones (with vertex x) over standard line Grassman-
nians of projective 3-spaces inside a cone (with vertex x) over the line Grassmannian of a projective 4-space,
see Lemma 6.2.02. Hence their intersection is a cone (with vertex x) over the line Grassmannian of a plane (the
intersection of the two 3-spaces inside the 4-space). It follows that e∩ e′ is a hyperbolic solid, contained in PV .
Let f be as above. Then, e∩Tf and e′∩Tf are two hyperbolic D4s in Tf. By Lemma 6.3.04, they correspond to
imaginary points z,z′ of Θ(Tf). Since x is contained in both e∩Tf and e′ ∩Tf, the points z and z′ are collinear
in Θ(Tf). Hence, the joining line contains a unique point v of f, and clearly the corresponding standard D4 also
contains x. Hence, v ∈V . We now see that v ∈ 〈e,e′〉 and the assertion follows from the second case.

Hence, U(V ) is a singular subspace of Σ(x), and also of Σ(f), with f as above. Since it properly contains the 3-
space V , it has dimension 4. It remains to show that Σ(x)∩Σ(f) =U(V ). Clearly, the only points of Γ contained
in both Σ(x) and Σ(f) are the points of V . Suppose a new point e ∈ E is contained in Σ(x)∩ Σ(f). Then, by
definition of Σ(f) and Lemma 6.3.02, we have that f∩Te is a hyperbolic D4, which implies by Lemma 6.3.08(i)
that e∩Tf is a hyperbolic D4. Since also x ∈ e∩Tf and PV is the set of all points of Tf collinear or symplectic to x,
by Corollary 6.3.03, the intersection e∩PV is a hyperbolic D3-cone with vertex x. Hence e ∈U(V ). ut

In view of the natural bijection between the elements L of F and the hyperbolic solids V appearing as the inter-
section of any pair of collinear new points of L (see Proposition 6.1.01 and Definition 6.1.02), we define U(L) as
U(V ). This, together with Lemmas 6.4.01 and 6.4.02, defines U(l) for every l ∈L . We note that, for all l, l′ ∈L ,
we have U(l) = U(l′) if and only if l = l′ (this is easy to see; we refer to this property as the injectivity of U(·)).
We now show that U = {U(L) | L ∈L }.

Lemma 6.4.04 Any two quads containing a common line of (P,L ) intersect in a singular 4-dimensional sub-
space of (P,L ). A singular 4-dimensional subspace of (P,L ) is the intersection of two quads if, and only if, it
is of the form U(l), with l ∈L . Moreover, at least one of these quads can be chosen to be of type Σ(p), with p a
point of Γ .

Proof By Lemmas 6.4.01, 6.4.02 and 6.4.03, it remains to show that the intersection of two quads sharing at
least one line is of the form U(l), with l ∈L .
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Let Σ ,Σ ′ be two distinct quads sharing at least two collinear points. Since they then share a line of (P,L ), and
since every member of L contains a point of Γ , we already know that Σ and Σ ′ share a point s of Γ . There are
now three possibilities.

– Σ = Σ(x) and Σ ′ = Σ(x′), for distinct points x,x′ of Γ . If x ⊥ x′, then Σ ∩Σ ′ = U(xx′) by Lemma 6.4.01. If
x ⊥⊥ x′, then Σ ∩Σ ′ =U(h(x,x′)) by Lemma 6.4.02. Now x and x′ cannot be special, as otherwise s would be
equal to x⊥∩x′⊥ = x on x′. Also, by Lemma 5.2.010, no new point would be contained in Σ ∩Σ ′. Finally, x and
x′ cannot be opposite either, since in that case Σ and Σ ′ would not share any point of Γ as x⊥∩ x′⊥ = /0.

– Σ = Σ(x), for some point x of Γ , and Σ ′ = Σ(e), for some e ∈ E . Let e = Ê(p,q) for a pair of opposite
points p,q ∈ e. Then x ∈ Ĥ(p,q), as s ∈ x⊥∩ e. If a new point f would belong to Σ ∩Σ ′, then x ∈ f∩ Ĥ(p,q),
contradicting Corollary 6.3.011. Hence Σ ∩Σ ′ ⊆ Γ and, and the structure of Σ ′ implies that any line in Σ ∩Σ ′

is a hyperbolic line h which is contained in Ê(p,q). The structure of Σ implies that x /∈ h and x is collinear to
all points of h. Consequently, x ∈ T̂ (p,q) and Σ ∩Σ ′ =U(x⊥∩ e), as follows from Lemma 6.4.03.

– Σ = Σ(e) and Σ ′ = Σ(e′), for some distinct e,e′ ∈ E . Since Σ and Σ ′ must have a point of Γ in common, there
are only two possibilities, in view of Lemma 6.2.03. The first one is that e and e′ are collinear in (P,L ). Put
V = e∩ e′ and let x = β (V ), so x is the unique point of Γ on the new line 〈e,e′〉. Then, by Lemma 6.4.03,
U(〈e,e′〉) =U(V ) = Σ ∩Σ(x) = Σ ′∩Σ(x). Hence, U(〈e,e′〉)⊆ Σ ∩Σ ′. We now show that U(〈e,e′〉) = Σ ∩Σ ′.
Clearly, the points of Γ in Σ ∩Σ ′ are precisely those of V and hence they also belong to U(〈e,e′〉). Now suppose
f is a new point of Σ ∩Σ ′. In order to show that f belongs to U(〈e,e′〉), it suffices to show that f∈ Σ(x), i.e. x∈ f.
Since f ∈ Σ ∩Σ ′, both e∩Tf and e′∩Tf are hyperbolic D4s in Tf. We claim that e∩ e′∩Tf =V . Indeed, suppose
that a point v ∈ V does not belong to Tf. Then Corollary 6.3.011 implies that we can apply Lemma 6.3.09 to
v and Tf and conclude that e = e′, a contradiction. The claim follows. It now follows from Lemma 6.3.04 that
the imaginary points z and z′ of Θ(Tf) that correspond to e∩Tf and e′ ∩Tf, respectively, are collinear. Hence
the unique point of f on the imaginary line joining z and z′ is collinear with V . By Lemma 5.3.07, this point
coincides with x and so x ∈ f.
The second possibility is that e∩ e′ is a single point x. Clearly, x is the unique point of Γ in Σ ∩Σ ′. Hence it
suffices to show that no new point of Σ ∩Σ ′ is collinear with x. Suppose, for a contradiction, that there is a
new point f of Σ ∩Σ ′ collinear with x. Then, Tf contains x and intersects both e and e′ in hyperbolic D4s. But it
follows from Lemma 6.3.04 that two hyperbolic D4s in Tf are either disjoint or share a 3-space, a contradiction
to (e∩Tf)∩ (e′∩Tf) = {x}.

The lemma is proved. ut

Corollary 6.4.05 For every l ∈L , and for every pair of distinct points p,q ∈ l, we have U(l) = Σ(p)∩Σ(q).

Proof If L is contained in Γ , then this follows from Lemmas 6.4.01 and 6.4.02. If L is not contained in Γ , then
Lemma 6.4.03 implies that U(L) = Σ(x)∩Σ(f) for any new point f of L and x the unique point of L in Γ . Now let
f and f′ be two distinct new points of L. Then U(L)⊆ Σ(f)∩Σ(f′) and equality follows from Lemma 6.4.04. ut

Lemma 6.4.06 Let p ∈P and L ∈L . Then U(L)⊆ Σ(p) if, and only if, p ∈ L.

Proof The “if”-part follows from Corollary 6.4.05. We now show the “only if”-part. So suppose U(L)⊆ Σ(p).
We consider the different cases for L separately.

– If L is a line of Γ , then U(L) cannot be contained in an extended equator geometry by Lemma 5.2.010, hence
p is a point of Γ , which is collinear with every point of U(L). Since Γ does not contain 3-spaces whose lines
are ordinary lines of Γ , p must be contained in every plane of Γ in U(L), hence p ∈ L.
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– If L is a hyperbolic line of Γ , then, again, clearly U(L) cannot be contained in a extended equator geometry
since VL =U(L)∩Γ contains lines of Γ . Hence p is a point of Γ , which must belong to V⊥L = L.

– If L is a new line and p is a point of Γ , then p is the unique point of Γ on L by Lemma 5.3.06. If p is a new
point, then, as an equator geometry, it contains all of Γ of U(L), and hence it belongs to L by the definition of
new lines and Proposition 6.1.01.

This completes the proof of the lemma. ut

Lemma 6.4.07 Two distinct members of U intersect in a projective subspace of (P,L ) of dimension at most 2.

Proof Suppose U1,U2 ∈ U are such that their intersection is a singular 3-space. Let Ui = U(Li), i = 1,2, with
Li ∈ L . Let pi ∈ Li be a point of Γ and let qi ∈ Li be a second point on Li, possibly in Γ , possibly in E . By
Corollary 6.4.05, we have that U1 = Σ(p1)∩Σ(q1) and U2 = Σ(p2)∩Σ(q2). Since U1∩U2 is a singular 3-space, at
least one of U1∩Σ(p2), U1∩Σ(q2) equals U1∩U2 and hence U1∩U2 =Σ(p1)∩Σ(q1)∩Σ(x) for some x∈{p2,q2}.

We claim that U1∩U2 is the intersection of three quads related to three points that are pairwise collinear in (P,L ),
at most one of which is related to a new point. Indeed, suppose q1,q2 ∈ E and that we cannot choose x equal to
p2. Then Σ(p1)∩Σ(q1)∩Σ(p2) =U1. Moreover, by Lemma 6.4.03, U1 contains a hyperbolic solid V . Hence both
p1 and p2 are collinear with all points of V , so p1 = p2 by Corollary 5.3.07. As Σ(q1)∩Σ(q2) contains U1 ∩U2,
Lemma 6.4.04 implies that Σ(q1)∩Σ(q2) =U(l), for some l ∈L . Then, Lemma 6.4.06 implies that both q1 and
q2 belong to l, hence, in particular, they are collinear. If p3 is the ordinary point of Γ on the line 〈q1,q2〉, then, by
Corollary 6.4.05, we have Σ(p3)∩Σ(q1) = Σ(q1)∩Σ(q2). Hence U1∩U2 = Σ(p1)∩Σ(p3)∩Σ(q1), which proves
the claim. As above, it follows that p1, p3,q1 are pairwise collinear in (P,L ).

Hence there are two possibilities. We forget the above notation in the rest of the proof.

– U1 ∩U2 = Σ(p1)∩Σ(p2)∩Σ(p3), with p1, p2, p3 points of Γ . By the above, pi and p j for i 6= j are either
collinear are symplectic. Suppose first that p1 ⊥ p2. Every 3-space inside the 4-space U(p1 p2) contains a point
of p1 p2. Hence we may assume that p3 ⊥ p1. If p2 is not collinear with p3 (in Γ ), then p⊥3 ∩ p⊥1 ∩ p⊥2 , which
is 3-dimensional as it is precisely U1∩U2, contains a hyperbolic plane. Lemma 5.2.014 and Theorem 5.3.010
imply that p3 ∈ p1 p2, a contradiction, as otherwise U1 =U2. Hence p3⊥ p2. So p3 ∈ p⊥1 ∩ p⊥2 = Σ(p1)∩Σ(p2),
and then it is easy to see, since planes are the maximal singular subspaces of Γ , that U1∩U2, which is contained
in p⊥1 ∩ p⊥2 ∩ p⊥3 , has dimension at most 2, a contradiction.
Hence, we may assume that p1 ⊥⊥ p2 ⊥⊥ p3 ⊥⊥ p1. So p1, p2, p3 are contained in a hyperbolic plane, and
as in the previous paragraph, we deduce that p⊥1 ∩ p⊥2 ∩ p⊥3 is a line L. Since L is a subspace of U1 ∩U2 of
codimension at most 1, the dimension of U1∩U2 is at most 2, a contradiction.

– U1∩U2 = Σ(p1)∩Σ(p2)∩Σ(e), with p1, p2 points of Γ and e ∈ E . As above, either p1 ⊥ p2 or p1 ⊥⊥ p2. If
p1 ⊥ p2, then U1∩U2 does not contain new points and hence, since it also contained in Σ(e), it is a hyperbolic
solid in p⊥1 ∩ p⊥2 . However, every singular 3-space S of (P,L ) in p⊥1 ∩ p⊥2 contains a point of p1 p2, which
is then collinear with all other elements of S, so S cannot be hyperbolic, a contradiction. If p1 ⊥⊥ p2, then
p⊥1 ∩ p⊥2 does not contain a hyperbolic plane, contradicting the fact that p⊥1 ∩ p⊥2 ∩ e is a subspace of U1 ∩U2
of codimension at most 1. ut

Lemma 6.4.08 Let W be a hyperbolic solid in Γ and let x = β (W ). Let V+ be the set of points on the lines of Γ

joining points of W to x and let V− be the set of elements of x⊥ collinear with at least two points of W. Then,

(i) V+ and V− are maximal singular subspaces of Σ(x). The lines of Γ in V+ and V− are precisely the lines in
V+ and V− through x. Hence both V+ and V− are cones over hyperbolic solids with vertex x.
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(ii) Let W ′ be a hyperbolic solid in V− \{x}. Then, x = β (W ′) and V+ coincides with the set of elements of x⊥

collinear with at least two points of W ′.
(iii) V− is independent of the choice of the hyperbolic solid W in V+.

Proof (i) First, note that W is a singular subspace of the quad Σ(x). Since x is collinear with all points of W , it
follows that x and W generate a singular subspace of Σ(x) which must necessarily be of dimension 4 and clearly
coincides with V+.

Let v ∈ V− \ {x}. We first claim that v⊥ ∩V+ is a singular 3-dimensional subspace of (P,L ) of V+ containing
x. Indeed, v is collinear with at least two points of e, where e is an arbitrary extended equator geometry containing
W . Hence v belongs to Te. Since v⊥ x, Proposition 5.3.09(i) implies that β (v)∩β (x) is a hyperbolic plane π in e.
By Lemma 5.1.06, v is collinear with all points of the 3-space Z of V+ generated by x and π . If Z ( v⊥∩V+, then
Lemmas 5.1.06 and 5.1.07 imply that W ⊆ v⊥, contradicting Corollary 5.3.07. The claim is proved.

In the notation of Lemma 6.2.02, we have V− ⊆ PW . Since for every u ∈ V− \ {x}, the intersection u⊥ ∩W is a
hyperbolic plane by the previous claim, V− ⊆ PΓ

W . The inverse inclusion follows analogously. Hence V− is a cone
over a hyperbolic solid and (i) is proved.

(ii) Now it follows from Lemma 6.2.02(ii) that V−, endowed with the ordinary and hyperbolic lines contained in
it, is also a maximal singular subspace of Σ(x). The same lemma implies that V− is a cone over a hyperbolic solid,
say W ′, and we have x = β (W ′). By the previous paragraph, collinearity induces a duality from W ′ and W , because
a point of W ′ is collinear with a hyperbolic plane in W . Hence V+ is the set of points of Γ collinear with x and
collinear with at least two points of W ′.

(iii) This follows immediately from the fact that, by Lemma 5.1.07 V− can be defined as the set of points collinear
with all points of at least two (ordinary) lines of V+ (necessarily containing x). ut

Definition 6.4.09 The set V+ of the previous lemma will be called a hyperbolic cone (with vertex x) and V−,
which is a hyperbolic cone too, is called the twin of V+. The previous lemma also implies that the twin of V− is
V+.

6.5 Singular 5-spaces of (P,L )

We will now describe two types of singular 5-spaces of (P,L ). In fact, together with the subspaces U(L), L∈L ,
defined earlier, these will be all the maximal singular subspaces of (P,L ), but there is no need to show this as it
will follow once we have proved that (P,L ) defines a building of type E6.

Lemma 6.5.01 (i) Every symplecton of Γ , endowed with the ordinary and hyperbolic lines contained in it, is a
projective 5-space.

(ii) Let V+ be a hyperbolic cone in Γ . Define

M(V+) =V∪{f ∈ E : V+ ⊆ Tf}.

Then, M(V+) endowed with the members of L contained in it is a projective 5-space.
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Proof Assertion (i) is clear. We show (ii).

Let V− be the twin of V+. Let x be the common vertex of V+ and V−.

We first claim that, if a tropic circle geometry T , say T = Tf for f ∈ E , contains some singular 3-space Z of V+

through x, then it contains V+ entirely, and f∩V− is a hyperbolic solid. Indeed, let L be any line of Γ in V− through
x. Then, by the proof of Lemma 6.4.08, L is collinear with all points of a 3-space ZL of V+ containing x and there
is a pair of symplectic points u1,u2 in Z ∩ZL. The set of points of Γ collinear (in Γ ) with {x,u1,u2} is a plane π

(when endowed with all lines and hyperbolic lines in it) contained in u1♦u2 and x lies on each line of Γ contained
in π . As each point of π is collinear with u1 and u2, we have that π is contained in V−, and so L is one of the
lines through x inside π . But, with respect to f and T , the intersection β (x)∩β (u1)∩β (u2) is easily seen to be a
hyperbolic line h of f, which must then be contained in π . Consequently, the point L∩h belongs to f. So we have
shown that f∩V− is a hyperbolic solid. But then every point of V+ is collinear with at least two symplectic points
of f, and hence belongs to T . The claim is proved.

Let v be any point of V− \ {x}. Let Π 3 x be the 3-space of V+ all of whose points are collinear with v. Then Π

is a singular 3-space of the quad Σ(v). Since Σ(v) is of type D5, Π is contained in exactly two maximal singular
subspaces of Σ(v), one of which is the subspace U(vx). The latter only contains points of Γ . Let Mv be the other
maximal singular subspace through Π . Since v /∈Π , no point of Mv \Π is collinear in Σ(v) with v and hence each
point of Mv \Π is a new point. It follows that Mv \Π is the set of extended equator geometries containing v, such
that Π is contained in the associated tropic circle geometry. By our above claim, the latter is equivalent to requiring
that V+ is contained in the tropic circle geometry. Hence Mv ⊆M(V+). The second assertion of our above claim
now implies that M(V+) is the union of V+ and all Mw, for w ranging over vx\{x}.

The set of points v ∈V− for which a given new point of M(V+) belongs to Σ(v) is a hyperplane of V−, viewed as
a projective 4-space. Also, the set of points v ∈V− for which a given point u ∈ Γ of M(V+) belongs to Σ(v) is the
hyperplane V−∩u⊥. It follows that every triple of points of M(V+) is contained in at least one quad Σ(v), v ∈V−,
where they lie in a maximal subspace, and hence generate in (P,L ) a plane. That plane is entirely contained in
M(V+), as is easily checked. Hence M(V+) is a linear space where any three points generate a projective plane.
By the celebrated theorem of Veblen and Young ([30], see Theorem 2.3 in [5] for a modern version), M(V+) is a
projective space. Since every new line contains a unique ordinary point of Γ , V+ is a hyperplane of M(V+) and so
the dimension of M(V+) is equal to five. ut

We denote the family of 5-spaces obtained in Lemma 6.5.01 by M . It is clear that M(V ) 6= M(V ′) for distinct
hyperbolic cones V,V ′ (since Γ ∩M(V ) = V 6= V ′ = M(V ′)∩Γ ); we refer to this property as the injectivity of
M(·). Finally, we denote the family of projective planes contained as singular subspace in at least one quad by T .
Our next goal is to show that the 6-tuple E = (P,L ,T ,M ,U ,Q), with a suitable incidence relation, defines a
geometry of type E6, hence a building by [2]. We now define the incidence relation.

Definition 6.5.02 (Incidence relation in E) The incidence between two elements of different types, where one or
both of these elements are members of P∪L ∪T , or both belong to U ∪Q, is given by symmetrized set-theoretic
(strict) containment. A 5-space (member of M ) is incident with a 4-space (member of U ) if they intersect in a
singular 3-space. A 5-space (member of M ) is incident with a quad (member of Q) if they intersect in a singular
4-space (which is in fact, with earlier terminology, a 4′-space). Two elements of the same type are never incident.
We will denote this incidence relation with ∗.
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6.6 The symplectic polarity

Our eventual goal is to show that the pair (E,∗) is a geometry of type E6. This proof will be facilitated by the use
of the symplectic polarity θ that eventually will define Γ . We now define θ .

Definition 6.6.01 (The Symplectic Polarity) For x ∈P , we set θ(x) = Σ(x), and for Σ ∈Q, we define θ(Σ) as
the point x ∈P for which Σ(x) = Σ . Similarly, for L ∈L , we set θ(L) =U(L), and for U ∈U , we define θ(U)
as the line L ∈ L for which U(L) = U . This is well defined by the injectivity of U(·). For M ∈M , we define
θ(M) = M if M is a symplecton of Γ . If M can be written as M(V+), as in the second statement of Lemma 6.5.01,
for appropriate V+, then we define θ(M) = M(V−), with V− the twin of V+. This is well defined by the injectivity
of M(·) and the fact that, by Lemma 6.4.08, twins are unique.

Note that in the previous definition we did not define θ on the planes. This will be done later, after Lemma 6.6.05
below. The next two lemmas will identify the two classes of maximal singular subspaces of the quads. The first
lemma is an analog of Lemma 6.4.07.

Lemma 6.6.02 Two distinct members of M never have a subspace of dimension 3 in common.

Proof By Fact 5.1.04, we may assume that at least one of the two members of M is of the form M(V+), with
V+ a hyperbolic cone with vertex x. Let the second member first be a symplecton S. Since both S and M(V+) are
singular subspaces of (P,L ), their intersection is a projective subspace. Suppose that it contains a 3-space. Then,
S∩V+ contains a plane π . Since no plane in V+ consists solely of lines of Γ , the plane π contains a hyperbolic
line h. Hence S = S(h). It follows that x ∈ S∩V+. Since S does not contain planes without ordinary lines of Γ , and
since every plane in V+ not through x is hyperbolic in Γ , we see that S∩V+ = π . But now S∩M(V+) = S∩V+

since S does not contain any new point, a contradiction.

Now let the second member be M(W+), with W+ a hyperbolic cone with vertex y. If M(V+)∩M(W+) has di-
mension at least 3, then V+ ∩M(W+) has dimension at least 2. Since V+ only contains points of Γ , we have
V+∩M(W+) =V+∩W+. Hence we may assume for a contradiction that V+∩W+ contains a plane π , and that, if
V+∩W+ = π , then M(V+)∩M(W+) contains at least one new point. Assume first that x ∈ π , and note that this is
equivalent with x = y. There are two possibilities. The first one is that V+∩W+ = π . In this case some new point
f is contained in M(V+)∩M(W+). Then Tf contains V+∪W+. Lemma 6.2.02(ii) yields V+ =W+, since both are
cones with common vertex over a 3-space and only ordinary lines through the vertex. The second possibility is
that V+ ∩W+ is a 3-space Z 3 x. Let Nx be as in Lemma 5.4.01 and let D4(Nx) be the corresponding geometry
of type D4. Then V+ and W+ correspond to 3-spaces of D4(Nx) containing no line of the dual polar subspace of
type B3 arising from the residue of x in Γ . This means that, viewing D4(Nx) as a half spin geometry of type D4 of
some quadric Q of type D4, and the subspace of type B3 arising from the residue of x in Γ as the intersection with
a subquadric Q′ of Q of type B3, both V+ and W+ arise from the set of appropriate 3-spaces through points v+ and
w+, respectively, of Q \Q′ (the other possibility, namely that V+ or W+ would arise from the set of appropriate
3-spaces intersecting a given 3-space in planes is not feasible since in this case V+ or W+ would contain lines of
the dual polar space related to Q′, a contradiction). But the set of appropriate 3-spaces through both v+ and w+ is
either empty, or corresponds to a line in the half spin geometry, hence to V+∩W+ = /0, or V+∩W+ a plane, both
are contradictions to our assumption.

Assume now that x 6= y. Then V+ ∩W+ = π is a hyperbolic plane. We claim that x ⊥ y. Indeed, let a,b,c ∈ π be
not on a common hyperbolic line. Then c is close to S(h(a,b)) and both x and y must belong to the unique line of
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S(h(a,b)) consisting of points collinear with c. The claim follows. Again, there is some new point f contained in
M(V+)∩M(W+). Then Tf contains V+∪W+. Lemma 6.2.02(ii) yields xy ∈V+, a contradiction. ut

We denote the subset of elements of U incident with the quad Σ by U (Σ) and we denote by M (Σ) the set of
4-spaces of Σ obtained by intersecting Σ with the members of M that are incident with Σ . The next lemma states
that U (Σ) and M (Σ) are the two natural families of maximal singular subspaces of Σ .

Lemma 6.6.03 Let Σ be an arbitrary quad. Then, every maximal singular subspace of Σ is a member of exactly
one of U (Σ),M (Σ). Moreover, any two distinct elements of U (Σ) (M (Σ), respectively) intersect in either a point
or a plane. Hence, U (Σ) and M (Σ) are the two natural systems of maximal singular subspaces of the hyperbolic
quadric Σ ; i.e. any 3-space of Σ is contained in a unique member of U (Σ) and in a unique member of M (Σ).

Proof We begin by showing that every maximal singular subspace W of Σ either belongs to U (Σ) or to M (Σ).
Let WΓ be W ∩Γ . There are two cases, depending on the type of Σ . First we assume that Σ = Σ(p), for some point
p of Γ . Then there are again two cases, depending on the dimension of WΓ . Assume first that WΓ =W . Clearly this
is equivalent to p ∈W . Using Lemma 5.4.01, we see that there are three possibilities for W . To identify these, we
view D4(Np) as a half spin D4-geometry, and we fix a polar space Q of type B3 in the corresponding polar space
Q+ of type D4.

– W is a cone with vertex p over a hyperbolic solid V . (This case corresponds to the set of all maximal singular
subspaces of Q+ of the given half spin type through a fixed point of Q+ \Q.) Here, clearly W = M(W )∩Σ ∈
M (Σ) (with the notation of Lemma 6.5.01).

– W is the intersection of p⊥ with a symplecton S through p. (This case corresponds to the set of all maximal
singular subspaces of Q+ of the given half spin type through a fixed point of Q.) Here, clearly W = S∩Σ ∈
M (Σ).

– W is a cone with some line L through p as vertex line and base a hyperbolic plane. (This case corresponds
to the set of all maximal singular subspaces of Q+ of the given half spin type intersecting a fixed maximal
singular subspace of Q+ of the other half spin type in a plane.) Here, clearly W =U(L) ∈U (Σ).

Now assume that p /∈W . Then WΓ is a hyperplane section not containing p of the maximal singular subspace of
Σ generated by p and WΓ . The three possibilities above give rise to the following three respective possibilities for
WΓ .

– WΓ is a hyperbolic solid. If f is an arbitrary extended equator geometry containing WΓ , then clearly p = β (WΓ ).
Hence, by Lemma 6.4.03, U(WΓ ) is contained in Σ . Since U(WΓ ) is the only maximal singular subspace of Σ

containing WΓ and not containing p, we conclude W =U(WΓ ) =U(〈p, f〉) ∈U (Σ).
– WΓ can be written as p⊥∩q⊥, with q symplectic to p. Put h = h(p,q). Here, clearly all points of U(h) belong

to Σ . Since, as before, U(h) is the only maximal singular subspace of Σ containing WΓ and not containing p,
we conclude W =U(h) ∈U (Σ).

– WΓ is a cone over a hyperbolic plane. In D4(Np), the planes are the intersections of two 3-spaces of different
types; translated to the half spin setting, a plane is the set of 3-spaces of Q+ of the given half spin type through
a point x of Q+ and intersecting in an ordinary plane a 3-space of Q+ of the other type incident with x. If the
plane is hyperbolic, then x ∈ Q+ \Q, and so we see that x defines a unique hyperbolic solid V+ of D4(Np)
containing WΓ (we view V+ as a cone over a hyperbolic solid, say with vertex q). Let V− be the twin of V+,
then clearly p ∈ V− (by the definition of twin). Let W ′ be a hyperbolic solid in V− containing p, then, since
each point of V+ is collinear with at least two points of W ′ (because V+ is the twin of V−) we see that V+ ⊆ Te,
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for every e∈ E containing W ′. Hence such e belongs to M(V+), belongs to Σ(p) and is collinear with all points
of WΓ . It follows that M(V+) intersects Σ in a 4-space containing WΓ and not containing p; consequently
M(V+)∩Σ =W and M(V+) ∈M .

The second case is Σ = Σ(e), with e ∈ E . Since Σ(e)∩Γ = e, the set WΓ ⊆ e is a hyperbolic solid of e. Put
x = β (WΓ ). We view Te as a half spin geometry of type D5 with corresponding hyperbolic quadric Q+; the quadric
of type B4 corresponding to e is denoted by Q. Then x ∈ Te represents a maximal singular subspace of Q+ of
the given half spin type. That is already one maximal singular subspace W1 of Σ(e) containing WΓ . The second
maximal singular subspace W2 of Σ(e) containing WΓ is a maximal singular subspace of Q+ of the type distinct
from the given half spin type.

Suppose first that W = W1. Besides the points of β (x) = WΓ , the subspace W further consists of the extended
equator geometries f containing x and such that Tf contains WΓ . Since all these new points also belong to Σ(x), it
follows that W ⊆ Σ(x)∩Σ(e) =U(〈x,e〉). Since W is a 4-space, it follows that W =U(〈x,e〉) ∈U (Σ).

Suppose now that W = W2. Then, W is represented by a full pencil with centre x. A point of Q+ belongs to it if,
and only if, its residue (hence the set of maximal singular subspaces of the given half spin type incident with it)
induces a half spin D4 in that full pencil. Such half spin D4s containing x are given by the points of the full pencil
collinear in Γ with a point of WΓ ; those not containing x are given by the hyperbolic D4s contained in the full
pencil. If f ∈ E intersects the full pencil in a hyperbolic D4, then clearly x ∈ Tf. Hence, if we denote the cone with
vertex x and base WΓ by V+, then it follows that W is contained in M(V+) ∈M .

So we have shown that every maximal singular subspace of Σ either belongs to U (hence to U (Σ)), or is con-
tained in a unique member of M (and hence belongs to M (Σ)). Now consider the graph Ω with vertices the
maximal singular subspaces of Σ , two of those being adjacent if they meet in a 3-space. Then by Lemma 6.4.07,
Lemma 6.6.02, and the above, the sets U (Σ) and M (Σ) form a bipartition of Ω . Since Ω is a connected bipartite
graph with partitions the maximal singular subspaces of the two types, we see that U (Σ) is one of the natural types
of maximal singular subspaces of Σ , and M (Σ) the other one. Hence, any two distinct elements of U (Σ) (M (Σ),
respectively) intersect in either a point or a plane.This completes the proof of the lemma. ut

This has the following consequence.

Corollary 6.6.04 Every M ∈M sharing a 3-space with a given quad Σ intersects Σ in a 4-dimensional projective
subspace of Σ .

Proof Let M ∈M share a 3-space W with some quad Σ . By Lemma 6.6.03, there exists Y ∈M (Σ) with W ⊆Y .
By the definition of M (Σ), there exists M′ ∈M with Y ⊆M′. But then W ⊆M∩M′ implies, by Lemma 6.6.02,
that M = M′. So Y = M∩Σ is a 4-dimensional subspace. ut

We can now extend θ to T .

Lemma 6.6.05 (i) For every point p ∈P and every quad Σ ∈Q, we have p∗Σ if, and only if, θ(p)∗θ(Σ).
(ii) Let π ∈T . Then the intersection of all quads Σ(x), where x runs over the points of π , is a plane π ′. Also, the

intersection of all quads Σ(x′), where x′ runs over the points of π ′, is precisely π again.

Proof Assertion (i) follows from the symmetry in the following three easy assertions. Let p,q be points of Γ

and let e, f be extended equator geometries of Γ .

(a) p ∈ Σ(q) if, and only if, p⊥ q;
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(b) p ∈ Σ(e), if, and only if, p ∈ e if, and only if e ∈ Σ(p);
(c) E 3 e ∈ Σ(f) if, and only if, Te ∩ f is a hyperbolic D4 (this is just part of Definition 6.3.013), which happens,

by Lemma 6.3.08(i), if, and only if, Tf∩ e is a hyperbolic D4.

We now prove (ii). By definition, π is contained in at least one quad, say Σ1. By Lemma 6.6.03, we can select
two members U2,U3 of U , contained in Σ1, such that π = U2 ∩U3. By the definition of U , we can select a quad
Σi 6= Σ1 such that Ui = Σ1∩Σi, for i = 2,3. So π = Σ1∩Σ2∩Σ3. Now let p ∈ π be arbitrary. Then Σ(p) contains
the point θ(Σi), i = 1,2,3, by (i). By Lemma 6.4.06, the points θ(Σ1), θ(Σ2) and θ(Σ3) are not contained in a
member of L , but since they are pairwise collinear, they generate a plane π ′ inside Σ(p). Again by Lemma 6.4.06,
the intersection of all Σ(p), with p ∈ π , is not a 4-space, and so it is at most a plane by Lemma 6.4.07. Since it
contains π ′, we see that π ′ is the intersection of all Σ(x), with x ∈ π . Since θ(Σi), i = 1,2,3, belongs to π ′, and Σi
contains π , it follows that π is the intersection of all Σ(x′), with x′ ∈ π ′. ut

The plane π ′ of the previous lemma is by definition the image of π under θ and hence will be denoted by θ(π).

Lemma 6.6.06 The map θ preserves incidence and non-incidence and has order 2.

Proof For two distinct elements X and Y of P ∪L ∪T ∪U ∪Q∪M , we have to show that X ∗Y if, and only
if, θ(X)∗θ(Y ). If X ∈P and Y ∈L ∪T ∪Q, this follows from Lemmas 6.4.06 and 6.6.05. Now suppose X ∈P
and Y ∈ U . Let Y = U(L), with L ∈L . Then X ∈U(L) if, and only if, X ∈ Σ(a)∩Σ(b), for a,b ∈ L, a 6= b, if,
and only if, Σ(X) contains a and b if, and only if, Σ(X) contains L if, and only if, Σ(X) = θ(X) is incident with
L = θ(Y ).

Next suppose X ∈P and Y ∈M . If Y is a symplecton of Γ and X ∗Y , then X is a point of Γ and Σ(X) has the
4-space X⊥∩Y in common with Y = θ(Y ), hence θ(X)∗θ(Y ). If X is a point of Γ and X /∈ Y , then Σ(X) has at
most a line in common with Y by Fact 5.1.05, and so θ(X) is not incident with θ(Y ). Since for a new point X ∈ E
the quad Σ(X) does not contain ordinary lines of Γ , we see that θ(X) cannot be incident with Y = θ(Y ). Now let
Y = M(V+), with V+ a hyperbolic cone with vertex x over a hyperbolic solid. Let V− be the twin of V+. Then
θ(Y ) = M(V−) by definition. Suppose X ∈ V+. If X = x, then x⊥ contains V− and hence Σ(x)∩M(V−) = V−,
which means Σ(x) ∗M(V−). Now suppose X 6= x. Then X⊥ ∩V− is a 3-subspace, as is shown in the second
paragraph of the proof of Lemma 6.4.08. Since by Lemma 6.6.03 every 3-subspace of a quad is contained in a
member of M , and members of M do not share any 3-space by Lemma 6.6.02, we see that M(V−)∗Σ(X). Now
let X be a new point with V+ ⊆ TX . In the fourth paragraph of the proof of Lemma 6.5.01 it is shown that X , as
an extended equator geometry, intersects V− in a hyperbolic 3-space, hence Σ(X) ∗M(V−) again. Now suppose
θ(X) ∗M(V+), for X an ordinary point of Γ . Then X⊥ intersects V+ in at least a 3-space, and so X belongs to
V− by the definition of twin. If X ∈ E and Σ(X) ∗M(V+), then X shares a hyperbolic solid with V+, and by the
definition of V−, the latter is contained in TX . So X ∗M(V−) again. Hence we have shown that X ∗M(V+) if, and
only if, θ(X)∗θ(M(V+)), as θ(M(V+)) = M(V−).

So, if X ∈P , incidence and non-incidence is preserved. As θ(X)∈Q, the same holds for all X ∈Q. There remain
the cases when X ,Y ∈L ∪T ∪U ∪M . First suppose X ∈L and Y ∈ T . Let x,y ∈ X be two different points.
Then X ∗Y if, and only if, X ⊂Y if, and only if, x ∈Y and y ∈Y if, and only if, θ(x)∗θ(Y ) and θ(y)∗θ(Y ) if, and
only if, θ(Y ) ⊆ Σ(x)∩Σ(y) if, and only if, θ(Y ) ⊆U(X) if, and only if, θ(Y )∗θ(X). Reading this from right to
left also proves the assertion for X ∈U and Y ∈ T . Now suppose X ∈L and Y ∈U , and let x,y ∈ X be distinct
again. Then, by definition, we can write Y =U(L). So X ⊂Y if, and only if, x,y∈Y if, and only if, Σ(x)∩Σ(y)⊇ L
if, and only if, U(X)⊇ L if, and only if, θ(X)∗θ(Y ) (since θ(X) =U(X) and θ(Y ) = L).

So we may suppose X ∈M . First let Y ∈ L . Let again x,y ∈ Y be distinct points. Then we have that X ∗Y
if, and only if, Σ(x) ∗ θ(X) and Σ(y) ∗ θ(X) if, and only if, Σ(x)∩Σ(y)∩ θ(X) is 3-dimensional (here we use
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Corollary 6.6.04 and the fact that no element of U is contained in an element of M ) if, and only if, U(Y )∩θ(X) is
3-dimensional, and this is by definition equivalent to θ(Y )∗θ(X). Reading this the other way around takes care of
the case X ∈M and Y ∈U . So the remaining case is X ∈M and Y ∈T . Now we choose three non-collinear points
x,y,z ∈ Y . Then, if Y ⊆ X , then also x,y,z ∈ X and hence Σ(x)∗θ(X), Σ(y)∗θ(X) and Σ(z)∗θ(X). This implies
Σ(x)∩θ(X) is 4-dimensional, and likewise for Σ(y)∩θ(X) and Σ(z)∩θ(X). Hence Σ(x)∩Σ(y)∩Σ(z)∩θ(X) is
at least 2-dimensional. This is equivalent with θ(Y )∩θ(X) is 2-dimensional and so θ(Y ) ⊆ θ(X). By symmetry,
the other direction also holds.

The fact that θ has order 2 is easy (by definition, it has order 2 on the points, and so θ 2 must be the identity). ut

We can now prove the main results.

6.7 Proofs of Theorems 1 and 2

The following result yields Theorem 1.

Theorem 6.7.01 (i) The geometry (E,∗) has type E6, where, with the Bourbaki labeling specified in Section 2
(see Figure 1), the sets P,M ,L ,T ,U ,Q are the elements of types 1,2,3,4,5,6, respectively.

(ii) The map θ is a symplectic polarity of (E,∗) with fixed point structure Γ . More exactly, the set of absolute
points and absolute lines are precisely the set of points and lines of Γ , and the fixed planes and fixed 5-spaces
are the planes and symplecta, respectively, of Γ .

Proof It follows from the definition and Lemma 6.6.03 that the elements incident with a quad form the oriflamme
complex of a polar space of type D5 with point set the elements of P in the quad, line set the elements of L in the
quad, plane set the elements of T in the quad, maximal singular subspaces of one type the elements of U in the
quad, and the maximal singular subspaces of the other type the elements of M incident with the quad. Applying
the map θ , the elements of L ∪T ∪M ∪U ∪Q incident with a fixed point also form the oriflamme complex
of a polar space of type D5. This determines all rank 2 residues of (E,∗) except for the residue of cotype {1,6}.
But it is easy to see that, if a point is incident with a plane, and that plane is incident with a quad, then the point is
incident with the quad. Hence the diagram of (E,∗) has type E6. This proves (i).

By [2], we now know that (E,∗) is a building of type E6. Since θ has order 2 it is bijective, and since it preserves
incidence, it is an automorphism of the building. Since it does not preserve the types of the elements, it is a polarity.
If p is a point of Γ , then clearly p ∗ θ(p) = Σ(p). If e ∈ E , then we claim that no point of (E,∗) collinear with
e is incident with θ(e). Indeed, if f ∈ E is collinear with e, and f is incident with θ(e), then, as extended equator
geometries, they share a hyperbolic solid. But since Tf ∩ e is a geometric hyperplane of e by Lemma 6.3.02 and
Definitions 6.3.013 and 6.5.02, it intersects e∩ f nontrivially, a contradiction. Also, an ordinary point of e never
lies in Te, hence the claim follows. By Proposition 4.2.014, θ is a symplectic polarity. Clearly, the set of absolute
points is the point set of Γ , the set of absolute lines is the line set of Γ , and the set of fixed planes is the plane set of
Γ . The latter is true since every point of an absolute plane must be absolute (otherwise the plane cannot coincide
with its image), and taking into account the definition of θ on points, it follows that all points of the plane must
be collinear in Γ with each other. Hence the plane is an “ordinary” plane of Γ (and vice versa). Also, the fixed
5-spaces are the symplecta of Γ , as is immediate from the definition of θ on M .

This completes the proof of the theorem. ut

This now implies the following uniqueness result and Theorem 2.
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Theorem 6.7.02 A building ∆ of type E6 admits, up to conjugacy, a unique symplectic polarity.

Proof Let K be the field underlying ∆ , i.e., each residue plane of ∆ is isomorphic to the Pappian projective
plane defined over K (and by the classification of spherical buildings of rank at least 3, see [24], this defines ∆ in
a unique way). Let Γ be the split building of type F4 over K, i.e., the planes of Γ are the Pappian projective planes
defined over K and the rank 2 residue of type C2 corresponds to a symplectic generalized quadrangle over K. Then
Theorem 6.7.01 implies that Γ can be seen as the fixed point structure of a symplectic polarity of a building of type
E6 over K, hence isomorphic to ∆ . This shows existence of the symplectic polarity in ∆ .

Let now θ and θ ′ be two symplectic polarities in ∆ . Then their fixed point structures, say Γ and Γ ′, respectively,
are both split buildings of type F4 over K. Hence, by Theorem 10.2 of [24], Γ and Γ ′ are isomorphic to each other,
say, under the isomorphism ψ : Γ → Γ ′. Also, by Lemma 4.3.02, the absolute points of θ and θ ′ form geometric
hyperplanes H and H ′, respectively, of the natural point-line geometry associated with ∆ .

Let Q be a quad of ∆ . Then, by Lemma 4.3.04, either it is absolute under θ and intersects H in a singular geometric
hyperplane of Q, or it is not absolute and intersects H in a parabolic quadric of type B4. Suppose first Q is absolute
and put x =Qθ . Then, by Lemma 4.3.03, Q∩H consists of the union of lines of Γ through x. Suppose now that Q is
not absolute, and again put x=Qθ . We claim that Q∩H does not contain lines of Γ . Indeed, let, for a contradiction,
L be a line of Γ in Q∩H. Pick z∈ L arbitrarily. Since L is absolute, zθ contains L. But zθ also contains x. Since zθ is
a polar space, there is some point on L collinear with x. Hence, by Fact 4.2.03, x neighbours Q. But this contradicts
the second statement of Proposition 4.2.014. The claim is proved. Consequently, by Proposition 4.2.015, all the
lines of Q in H are hyperbolic lines of Γ . Let p,q be two points of Q∩H not collinear in ∆ . Then, by the
foregoing, p and q are either symplectic, special or opposite. By Corollary 4.2.04, if p and q are special, then p on q
also belongs to Q∩H and hence also the line of Γ joining p and p on q, a contradiction. If p and q are symplectic,
then, again by Corollary 4.2.04, the set p⊥∩q⊥ (⊥ denotes collinearity in Γ ) belongs to Q, a contradiction as this
set contains lines of Γ . Hence p and q are opposite. Now, using Corollary 4.2.04, it is easy to see that Ê(p,q)⊆ Γ

is contained in Q∩H. But since Ê(p,q) is also convex with respect to the hyperbolic lines of Γ , we easily deduce
that Ê(p,q) = Q∩H. Conversely, every extended equator geometry Ê(a,b) arises as the intersection of a non-
absolute quad with H. Indeed, the points a and b are not collinear in ∆ and the unique quad Q containing a and b
cannot be absolute as otherwise Qθ is collinear with both a and b, contradicting Lemma 4.3.04. Hence there is a
natural bijective correspondence between the family of quads of ∆ and the union of the family of extended equator
geometries of Γ and the family of point-perps in Γ .

The same thing holds for θ ′. Hence ψ induces a natural permutation ξ of the family of quads of ∆ by first
intersecting a quad Q with H, then applying ψ , and then taking the unique quad of ∆ whose intersection with H ′

coincides with (H ∩Q)ψ . Let Q and Q∗ be two quads. Suppose they share a 4-space. Then clearly the intersection
Q∩Q∗∩H contains a 3-space, and so does (Q∩Q∗∩H)ψ . Hence Qξ ∩ (Q∗)ξ ∩H ′ contains a 3-space and so Qξ

and (Q∗)ξ share a 4-space. A similar argument, or just arguing with the inverse of ψ , implies that, if, for two quads
Q,Q′ of ∆ , the quads Qξ and (Q∗)ξ intersect in a 4-space, then Q and Q′ intersect in a 4-space.

This now means that ξ induces an isomorphism, which we can again denote by ξ , from ∆ to ∆ ′, since “collinearity”
of quads is preserved in both directions. Clearly, ξ extends ψ . Hence θ and θ ′ are conjugate (more exactly,
θ = ξ−1θ ′ξ ). ut

7 Proof of Theorem 3

Let Γ be a split building of type F4, viewed as a symplectic metasymplectic parapolar space, defined over the field
K. Suppose that it is point-line-embedded in the natural point-line geometry associated with a building ∆ of type
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E6. We identify the points and lines of Γ with points and lines of ∆ . If two points x,y ∈ Γ are collinear in Γ , then
we say that x and y are Γ -collinear, and write x ⊥Γ y. Likewise, if two points x,y ∈ ∆ are collinear in ∆ , then we
say that they are ∆ -collinear, and write x⊥∆ y. The set of points equal to or Γ -collinear (∆ -collinear, respectively)
to a point x of Γ (of ∆ , respectively) is denoted by x⊥Γ (x⊥∆ , respectively).

7.1 The type in ∆ of the symplecta of Γ

We now assign to every type of elements of Γ a unique type of elements of ∆ . This will be trivial for the points and
lines of Γ , and easy for the planes. It requires more work for the symplecta. We will show that every symplecton
of Γ is contained in a unique 5-space of ∆ .

We start with an easy lemma, showing that the planes of Γ correspond to (full) planes of ∆ .

Lemma 7.1.01 Let π be a plane of Γ . Then the points and lines of π are all the points and lines of a unique plane
of ∆ , i.e., there is a unique element of type 4 of ∆ whose points and lines are precisely those of π .

Proof This follows immediately from the fullness of the embedding. ut

An immediate consequence of this lemma is the following.

Corollary 7.1.02 The defining field of ∆ is K.

Proof By Lemma 7.1.01, the planes of Γ and ∆ are isomorphic, hence they are defined over the same field,
which is K by our choice of Γ . ut

We now determine which elements of ∆ the symplecta of Γ correspond to. If a symplecton S of Γ is contained
in a singular subspace of ∆ , then, since such a subspace has dimension at most 5, S is embedded in a 5-space in
the usual way, i.e., as the absolute geometry of a symplectic polarity. In this case, S corresponds to that unique
5-space of ∆ and the point set of S coincides with the point set of that 5-space. We next consider the case when
some symplecton is not embedded in a 5-space of ∆ .

Lemma 7.1.03 If the point set of a symplecton S of Γ does not coincide with the point set of a 5-space of ∆ , then
S is contained in a unique quad of ∆ . Moreover, in this case, the characteristic of the field K is equal to 2.

Proof Since S is not contained in a singular subspace of ∆ , there are two points x,y of S that are not ∆ -collinear.
Then they are not Γ -collinear either, and so T := x⊥Γ ∩ y⊥Γ is a symplectic quadrangle (i.e., a symplectic polar
space of rank 2). By Fact 4.2.01, there is a unique quad Q containing x,y. By Corollary 4.2.04, Q also contains T .
Hence T ⊆ Qx,y := x⊥∆ ∩ y⊥∆ ⊆ Q, and Qx,y is a polar space of type D4.

Suppose for a contradiction that some point p ∈ S is not contained in Q. Note that, by the previous paragraph,
p is not Γ -collinear with either x or y. There are two possibilities. The first one is that (p⊥Γ ∩ x⊥Γ ) \T 6= /0. Let
q∈ (p⊥Γ ∩x⊥Γ )\T . Then q belongs to (x⊥Γ ∩S)\T and is Γ -collinear with p. Also, the line pq intersects y⊥Γ in a
point z distinct from q. Then Q contains q and z and, since Q is a subspace, it contains all points of the line qz. This
contradicts our assumption that p is not contained in Q. The second possibility is that p⊥Γ ∩ x⊥Γ ⊆ T . Then, since
every line of S through x contains a point Γ -collinear with p and one Γ -collinear with y, we have p⊥Γ ∩ x⊥Γ = T
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and so T ⊆ p⊥Γ . But then, by the foregoing, every point of every line of S through p is contained in Q, and hence
so is p, a contradiction. Hence S⊆ Q.

Now for T there are two possibilities. First assume that T is contained in a singular subspace W of Qx,y. Since
T is a symplectic generalized quadrangle over K, and T is fully embedded in W , we see that W has dimension 3
and T is embedded in the standard way as the absolute geometry of a symplectic polarity. Since S is a symplectic
polar space of rank 3, it contains a point z /∈ {x,y} which is Γ -collinear with all points of T . If we denote by ⊥S
the collinearity in S (inherited from Γ ), then x⊥S ,y⊥S and z⊥S are three singular 4-dimensional subspaces of Q
containing W , a contradiction since Q is isomorphic to a polar space of type D5.

Hence there are two points a,b ∈ T which are not ∆ -collinear. Then the lines ax and by are opposite in both polar
spaces S and Q. In Q, the subspace generated by ax and by is a grid. Since S is also a polar space and since Γ -
collinearity implies ∆ -collinearity, it also contains that grid. This implies that the characteristic of K is equal to
2. Indeed, this either follows from a direct calculation, or we can geometrically argue as follows. A grid in S is
contained in a 3-space and hence it is the intersection of the perp of two non-collinear points of S, implying that it
is contained in a symplectic quadrangle S′ over K. So S′ contains three mutually non-intersecting lines which are
concurrent to three other mutually non-intersecting lines. Dually, this yields three mutually non-collinear points
in a parabolic polar space Ω of type B2 over K collinear with three other mutually non-collinear points. Noting
that, if the characteristic of K is not equal to 2, then Ω arises from a polarity ρ in PG(4,K), we find two planes
(generated by the respective non-collinear points) contained in each other’s image under ρ , a contradiction to the
dimensions.

The lemma is proved. ut

Our next aim is to show that, in the case when charK= 2 also, the symplecta correspond to 5-spaces of ∆ . Hence
we aim for the following proposition.

Proposition 7.1.04 The point set of every symplecton of Γ coincides with the point set of some 5-space of Γ .

The way to accomplish this in the case when charK = 2, is to use the following strategy. The rank 2 residues
of Γ isomorphic to projective planes and consisting of symplecta and planes of Γ can be interpreted in ∆ as
representations of projective planes in projective spaces where the points of the projective plane are lines of the
projective space, and the lines of the projective plane are reguli and partial planar line pencils (see below for precise
definitions). In the next four lemmas, we prepare to prove nonexistence of those representations that would arise if
some symplecton of Γ would not correspond with a 5-space of ∆ .

Lemma 7.1.05 Let p be a point of the projective plane PG(2,K), with K a field of characteristic 2. Let C be a
family of conics with nucleus p satisfying each of the following properties.

(i) All conics of C have the same set of tangents.
(ii) Every pair of conics in C intersects in a unique point.
(iii) Every pair of points on distinct tangents lies on a unique member of C .

Then K is a perfect field.

Proof Let p have coordinates (0,0,1) and let one of the conics C0 in C have equation XY = Z2. An arbitrary
irreducible conic with nucleus p has equation XY = aX2 +bY 2 + cZ2, a,b,c ∈K, c 6= 0. This conic belongs to C
only if it meets every tangent to C0 (see (i)). Such a tangent is a line with equation X = 0, or Y = 0, or X = sY , with
s a nonzero square in K. Hence, in this case, bc ∈K2, ac ∈K2 and sY 2 = as2Y 2 +bY 2 +cZ2 has a unique solution
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with Y = 1. Thus, cs+acs2+cb is a square, and as bc and ac are squares, this happens if, and only if, cs, and hence
c, is a square. Hence a,b,c are squares and we can replace a,b,c by a2,b2,c2 and obtain as equation of the conic
XY = (aX +bY +cZ)2. Moreover, in this case we automatically have that every line with equation X = nY , with n
a non square of K, does not intersect the conic. The unique point of intersection (x,y,z) of this conic with C0 (see
(ii)) satisfies xy = z2 and ax+by = (c+1)z. If c+1 6= 0, then xy = s2

1x2 + s2
2y2, with s1,s2 ∈K2 and, without loss,

s1 6= 0. However, then (x+ s−2
1 y,y,z+ s−1

1 y) is also a point of the intersection, contradicting (ii). Hence c = 1. But
then ax+by = 0 and, since a 6= 0 without loss, by2 = az2, implying ab ∈K2.

Suppose now for a contradiction that K is not perfect.

We select two points (1,0,x) and (0,1,y), with x ∈K2 and y ∈K\K2, on the distinct tangent lines with equations
Y = 0 and X = 0, respectively. The only conic with equation XY = (aX +bY +Z)2 containing these points satisfies
a = x and b = y, and so has to belong to C (see (iii)), contradicting K2 3 ab = xy /∈K2. ut

A regulus of lines in a 3-dimensional projective space over the field K is the set of generators of one type of a
hyperbolic quadric. The complementary regulus is the set of generators of the other type. An elementary (and easy
to prove) property is that every plane containing an element of a regulus also contains a unique element of the
complementary regulus. We will frequently use this property without notice.

Lemma 7.1.06 Let Π be a projective plane and PG(4,K) a projective 4-space. Suppose that each point of Π is
identified with a line of PG(4,K) and that the set of points of each line of Π corresponds bijectively to the set of
lines of a regulus of lines in some 3-space of PG(4,K). Then all such 3-spaces coincide, and hence all lines of
PG(4,K) corresponding to points of Π are contained in some common 3-space PG(3,K).

Proof For ease of notation we will call the lines of PG(4,K) which are identified with points of Π briefly
Π -lines, the reguli corresponding to the lines of Π are briefly called Π -reguli.

Suppose at least two Π -reguli are contained in a common 3-space. Since any Π -regulus is contained in the 3-space
generated by any pair of its Π -lines, and every Π -line is contained in a Π -regulus sharing a Π -line with each of
the two given Π -reguli in the 3-space, it is clear that all Π -reguli are contained in that common 3-space. Hence we
may assume for a contradiction that distinct Π -reguli generate distinct 3-spaces of PG(4,K). Let Σ be one such
3-space, and let R be the corresponding regulus. No Π -line not belonging to R is contained in Σ , hence every such
Π -line E intersects Σ in a unique point pE , and this point is not on any line of R. Fix such E and pE . Consider an
arbitrary line L of R. Let K be the unique line of the complementary regulus of the Π -regulus R∗ containing L and
E passing through pE . Then K intersects L, say in the point x, and hence K is contained in Σ . Clearly, K does not
intersect any member of R \ {L}, and hence K is a tangent line to the quadric Q defined by R. Now, since Π is a
projective plane, every Π -line distinct from E is contained in a Π -regulus containing E and a line of R. Hence we
conclude that the set I of intersection points with Σ of the Π -lines not in R coincides with the set of points on the
tangent lines of Q through pE except for the points of Q itself. If charK 6= 2, then the hyperbolic quadric Q defined
by R is the absolute geometry of an orthogonal polarity and so this set I is a cone with vertex pE where one conic
(corresponding to the intersection of that cone with Q) is removed; since pE was arbitrary, and since that cone
has a unique vertex, this is a contradiction. If charK = 2, then Q is a subset of the set of absolute points of some
symplectic polarity and hence I is the set of points of a plane π with one conic removed; this conic has nucleus pE
since every line through pE in π must have a unique point not contained in I. Again, since pE was arbitrary, every
other point is also the nucleus of the conic, a contradiction. ut

The next lemma shows that the hypothesis in Lemma 7.1.06 is untenable.
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Lemma 7.1.07 Let Π be a projective plane and PG(3,K) a projective 3-space. Suppose each point of Π is asso-
ciated with a line of PG(3,K). Then it is impossible that the set of points of each line of Π corresponds bijectively
to the lines of a regulus of lines in PG(3,K).

Proof This time K cannot be finite as there are not enough mutually disjoint lines in PG(3,K) (if |K|= q, then
PG(3,K) has at most q3+q2+q+1

q+1 = q2 +1 mutually disjoint lines, whereas we need q2 +q+1 such lines if Π is of
order q; note that Π necessarily has order q as each regulus contains q+1 lines). We use the same terminology as
in the previous proof.

Let α be a plane of PG(3,K) through some Π -line L. We intersect every other Π -line with α and obtain a set of
points A with the following properties.

(1) Each Π -regulus through L is mapped onto a line of α distinct from L (i.e., the transversal to the Π -regulus in
the plane α); since these lines cannot have intersection points off L, all these lines intersect in a fixed point
p ∈ L. We call such a line a ∗−Π -line.

(2) The Π -reguli not through L correspond to conics of α completely contained in A and each ∗−Π -line in-
tersects each such conic in a unique point; hence p is the nucleus of each such conic. We call such a conic a
∗−Π -conic.

(3) Each pair of ∗−Π -conics intersect in a unique point.
(4) Through each pair of points on distinct ∗−Π -lines passes a unique ∗−Π -conic.

Since nuclei exist by (2),the field K has characteristic 2, and as L is a line through the nucleus external to every
∗−Π -conic, K is not perfect. This contradicts Lemma 7.1.05. ut

Lemma 7.1.08 Let Π be a linear space and PG(4,K) a projective 4-space. Suppose each point of Π is identified
with a line of PG(4,K) and suppose that the set of points of any line of Π corresponds bijectively either to the set
of lines of a regulus of lines in some 3-space of PG(4,K), or to the set of lines of a partial planar line pencil (i.e.,
a set of concurrent coplanar lines of size at least 3). If the elements of Π span PG(4,K), then Π is not a projective
plane.

Proof Suppose, by way of contradiction, that Π is a projective plane. We call a partial planar line pencil corre-
sponding to a line of Π briefly a Π -pencil, and use the terminology of the previous proofs concerning Π -lines and
Π -reguli. The vertex of a Π -pencil is the common point of its members.

Note that by Lemma 7.1.06, there is at least one Π -pencil. Also, if no Π -reguli exist, then the Π -lines are either
contained in a plane of PG(4,K) (if there exist two Π -pencils with distinct vertices), or in a solid of PG(4,K) (if
all Π -pencils have the same vertex), a contradiction.

So there exists a Π -regulus R and a Π -pencil P, sharing a line L. Let x be the vertex of P. Clearly, if P is contained
in the 3-space Σ generated by R, then all Π -lines are contained in Σ . Hence, by hypothesis, we may assume that
P intersects Σ in L. It follows that every member of P \ {L} is skew to every member of R \ {L}. Consider two
distinct members M1,M2 ∈ P \ {L} and two distinct members K1,K2 ∈ R \ {L}. Let L′ be the unique line of the
complementary regulus to R through x. Then both K1 and K2 intersect L′ and so the 3-spaces generated by K1
and M1, and by K2 and M2 intersect in a plane containing the line L′. It follows that L′ intersects the Π -line K
corresponding to the point of Π associated with the line common to the two Π -reguli determined by K1,M1 and
K2,M2. Hence K intersects a member M of R on the line L′, but not in x. Consequently, the line of Π through the
points of Π associated with K and M corresponds to a Π -pencil, which has no element in common with P. This
contradicts the fact that Π is a projective plane. ut
In the next lemma we exclude the case where symplecta correspond to both quads and 5-spaces.
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Lemma 7.1.09 Suppose that some symplecton S of Γ is contained in a quad Q of ∆ . Then, each symplecton of Γ

is contained in a quad of ∆ .

Proof Assume for a contradiction that there is a symplecton S′ contained in a 5-space W (and note that S 6= S′ as
S′ cannot be contained in W ∩Q). Since, by Fact 5.1.05, the graph on the symplecta of Γ with adjacency “meeting
in a plane” is connected, we may assume that S and S′ share a plane π . This implies that Q and W are incident in
∆ (this is the dual of the fact that, if a point is incident with a plane, and a 5-space is incident with that plane, then
that point and 5-space are mutually incident) and hence intersect in a 4′-space U . Let x ∈U be the image of U with
respect to the symplectic polarity ρ induced on W by S′. Since π ⊆U , it follows that x =Uρ ⊆ πρ = π . Let L be
a line in π not containing x and let p ∈ L. The residue in Γ of {p,L} is a projective plane Π ′, with point set the set
of planes of Γ through L and line set the symplecta of Γ through L. Now, Π ′ is contained in the residue R of the
flag {p,L} in ∆ . That residue is a projective 4-space PG(4,K) with point set the 5-spaces through L, line set the
planes through L, plane set the set of 4-spaces through L and set of hyperplanes the quads through L.

The planes of Γ in S′ through L are contained in a common 3-space V which is not contained in Q, by our choice
of L 63 x. Since V can be regarded as a flag consisting of the 5-space W and a 4-space U ′, we see that the set of
planes of Γ through L in S′ corresponds to a set P of the lines of PG(4,K) through a point (corresponding to W )
inside a plane (corresponding to U ′). Hence the lines of Π ′ that correspond to 5-spaces form complete planar line
pencils of PG(4,K) (i.e., the set of all lines through a given point inside a given plane). We now turn to Q.

In Q, the symplecton S is embedded as an orthogonal polar space. The latter contains subspaces isomorphic to
parabolic quadrics of type B3. Since, by Lemma 7.1.03, the characteristic of K is equal to 2, these are obtained
automatically if we consider the subbuilding Γ ′ of Γ defined from Γ by viewing Γ as a building of mixed type
F4(K,K) and then Γ ′ is a subbuilding of type F4(K,K2). The latter is exactly the dual of the former (see Theorem
10.2 of [24]). Hence a symplecton in the latter is isomorphic to a parabolic quadric of type B3. Now, the residue of
{p,L} inside Q consists of the set of planes through L contained in a fixed parabolic subquadric of Witt index 3;
hence in the 4-space PG(4,K), we have a set of lines in a hyperplane, so in a 3-space VQ, defined by Q, as is apparent
from the diagram. The structure of the residue of {p,L} in Q is visible in VQ through the Klein correspondence:
The points of that residue correspond to lines of VQ, and the points of the residue of {p,L,S} in Γ form a parabolic
quadric of type B1, i.e., a conic, and consequently through the Klein correspondence this is a regulus R in VQ.

Now we restrict the projective plane Π ′ to Γ ′ and obtain a projective plane Π represented in PG(4,K) as follows:
its points are certain lines of PG(4,K) and its lines are certain reguli and partial planar line pencils. Since V is not
contained in Q, we see that the elements of Π span PG(4,K). But then Lemma 7.1.08 implies that this leads to a
contradiction. ut
We finally also rule out the case where all symplecta of Γ are contained in quads of ∆ .

Lemma 7.1.010 No symplecton of Γ is contained in a quad of ∆ .

Proof Suppose that some symplecton is contained in a quad. Then, by Lemma 7.1.09, each symplecton corre-
sponds to a quad. As in the third paragraph of the proof of Lemma 7.1.09, this gives rise to a projective plane Π

represented in PG(4,K) as follows. The points of Π are lines of PG(4,K), and the lines of Π are reguli. But then
Lemmas 7.1.06 and 7.1.07 yield a contradiction. ut
We conclude that every Γ -symplecton is contained in a 5-space of ∆ . This concludes the proof of Proposi-
tion 7.1.04. As a consequence, we have the following corollary.

Corollary 7.1.011 Hyperbolic lines of Γ are full lines of ∆ .

Proof Each hyperbolic line of Γ is contained in a symplecton. ut
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7.2 The relation of Γ with the quads of ∆

In this subsection we show that quads of ∆ have only two possible positions with respect to the embedded geometry
Γ , and the precise position depends on the geometric hyperplane of the quad induced by the point set of Γ . The
analysis of the quads will be fundamental and crucial for the construction of the corresponding symplectic polarity.

We start with a lemma analysing the collinearity in ∆ between points of Γ .

Lemma 7.2.01 Let x,y be two distinct points of Γ . Then x and y are collinear in ∆ if, and only if, they are collinear
or symplectic in Γ .

Proof In view of Corollary 7.1.011, we only have to prove that if x and y are neither collinear nor symplectic in
Γ , then they are not collinear in ∆ .

First suppose that x and y are special. By Corollary 5.1.02, there exists a symplecton S containing x and x on y.
Then y is close to S, and so the set of points of S collinear or symplectic to y is a 3-space W . If x were also collinear
with y in ∆ , then we would have found a 4-space (generated by x and W ) inside the 5-space S collinear with y,
contradicting Fact 4.2.010.

Now suppose that x and y are opposite points in Γ . We can select a symplecton S through x far from y. Let u be
the unique point of S symplectic to y. Then all points of S equal or Γ -collinear with u form a 4-space W ⊆ S and
they are not ∆ -collinear with y (except for u) by the first part of the proof. If x and y were ∆ -collinear, then by
Fact 4.2.010, y would be ∆ -collinear with all points of a 3-space of S, and hence with all points of a plane of W , a
contradiction. ut

Lemma 7.2.02 Let x be an arbitrary point of Γ . Then the line pencil through x in Γ coincides with the line pencil
through x in ∆ of a certain quad Q through x, i.e. x⊥Γ = x⊥∆ ∩Q. Moreover, there is only one quad Q having this
property.

Proof Let L1,L2 be any two lines of Γ through x not contained in a symplecton. If p1 ∈ L1\{x} and p2 ∈ L2\{x},
then {p1, p2} is a special pair. By Lemma 7.2.01 and Fact 4.2.01, there is a unique quad Q containing p1 and p2.
By Fact 4.2.03, Q contains x and hence it contains L1 and L2. Let L be any line of Γ through x such that L and Li,
i = 1,2, are contained in a symplecton of Γ . Then clearly L1 and L are contained in a plane of ∆ , just like L2 and
L. Using Fact 4.2.03 again, we see that L has to be contained in Q.

Now note that Lemma 5.4.01 states that Nx, furnished with all its subsets of lines intersecting an ordinary or a
hyperbolic line contained in x⊥Γ \ {x}, has the structure of a polar space P of type D4. The above property now
translates to the following. The lines L1,L2 correspond to non-collinear points `1, `2 of P, and L to a point ` of P
collinear with both these points. The points of P collinear with both `1 and `2 form a polar space of rank 3, and its
set of points collinear with any other (fixed) point z of P forms a geometric hyperplane of it (or coincides with it).
By Lemma 5.2.03, z is collinear with two non-collinear points that are collinear with both `1, `2. Translated back
to ∆ , this means that every line of Γ through x is indeed contained in Q.

Now, since planes of Γ are full planes of ∆ by Lemma 7.1.01, and since hyperbolic lines of Γ are full lines of ∆

by Corollary 7.1.011, one sees that the embedding of the polar space of type D4 obtained by considering the lines
through x in Γ , in the polar space of type D4 obtained by considering the lines of ∆ through x in Q (which is a
polar space of type D5), is full, and hence it is a bijection.
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Also, by Fact 4.2.02 and Lemma 5.4.01, the quad containing x⊥Γ , i.e. Q, is unique. This completes the proof of the
lemma. ut

From now one we denote the unique quad Q, only depending on x ∈ Γ , of the previous lemma by Qx.

For two points x,y ∈ ∆ that are not ∆ -collinear, we denote by Q(x,y) the unique quad containing x,y. Note that, if
x and y are special in Γ , then Q(x,y) = Qxony.

Lemma 7.2.03 If x and y are two opposite points of Γ , then the quad Q(x,y) intersects Γ precisely in Ê(x,y).

Proof Every point of Ê(x,y) belongs to Q(x,y) by the definition of Ê(x,y), Lemma 7.2.01 and Corollary 4.2.04.
Now let z belong to Γ and to Q(x,y). Since Ê(p,q) is a polar space relative to its hyperbolic lines we can find two
opposite (in Γ ) points p,q ∈ Ê(x,y) both ∆ -collinear with z, and so z ∈ Ê(p,q) = Ê(x,y) by Proposition 5.2.015.

ut

An immediate consequence of the previous lemma is the following.

Corollary 7.2.04 Each extended equator geometry of Γ is contained in a unique quad.

Lemma 7.2.05 If x is a point of Γ , then the quad Qx intersects Γ precisely in x⊥Γ . In particular, for two points
u,v of Γ we have u ∈ Qv if, and only if, v ∈ Qu.

Proof In view of Lemma 7.2.02, we only need to show that no point of Qx not ∆ -collinear with x belongs to Γ .
Suppose, by way of contradiction, that a point u∈Qx not ∆ -collinear with x belongs to Γ . Since Qx is a polar space,
every line of Γ through x contains a unique point ∆ -collinear with u. Hence, as x is not symplectic to u, the pair
{x,u} is special by the last assertion of Lemma 5.1.07. So there is exactly one point Γ -collinear with both x and u.
Let v be a point Γ -collinear with x and symplectic to u. As Nx has the structure of a D4 (see Lemma 5.4.01), we can
take a second point w ∈ x⊥Γ ∩u⊥⊥ with {v,w} a special pair (by selecting the line xw opposite xv and w 6= x on u).
The symplecton S(u,v) is far from w since {v,w} is a special pair and x = w on v does not belong to S(u,v) (as
otherwise x would be ∆ -collinear to u). But then v should be Γ -collinear with u by Fact 5.1.05, a contradiction.

The last assertion follows from the fact that u ∈ Qv if, and only if, u ∈ v⊥Γ . The latter is equivalent to v ∈ u⊥Γ and
finally to v ∈ Qu. ut

By the dual of ∆ , we mean the point-line geometry obtained from ∆ as a building by switching the roles of points
and quads, and of lines and 4-spaces (not contained in a 5-space, so elements of type 5, see Subsection 4.1). Hence
the points of the dual of ∆ , as a point-line geometry, are the quads of ∆ , the lines are the 4-spaces not contained in
a 5-space, and incidence is symmetrized containment. The principal of duality in buildings of type E6, as shown by
the existence of a symplectic polarity, see Theorem 6.7.02 (see also [22]), implies that the dual of ∆ is isomorphic
to ∆ itself.

Lemma 7.2.06 The map x 7→ Qx defines a full embedding of Γ in the dual of ∆ .

Proof The injectivity of the map x 7→ Qx follows from Lemma 7.2.05 and the fact that, for each point x ∈ Γ and
for each point y ∈ x⊥Γ , y 6= x, there exists a point z ∈ x⊥Γ not collinear to y (as the residue of Γ in x is not a linear
space, but a dual polar space).
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Let L be a line of Γ . For x,y ∈ L, by Lemma 7.2.02, the quads Qx and Qy share the points of Γ which are Γ -
collinear with L. Furthermore, by Fact 4.2.02 and Lemma 6.4.01, Qx ∩Qy coincides with the 4-space W = L⊥Γ .
So, W ⊆ z⊥Γ ⊆ Qz, for each z ∈ L. This shows that we have an embedding. Now we show fullness.

Let Q be any quad containing W , Q 6= Qx. We show that Q = Qt for some t ∈ L, thus completing the proof of the
lemma. Let u ∈ Γ be a point of Qx that is Γ -collinear with x and symplectic to y in Γ . Then clearly each plane
of Γ through L inside the symplecton S(y,u) contains a line of points Γ -collinear with u; so Qu intersects W in at
least two points, hence, again by Fact 4.2.02, Qu ∩Q is a 4-space V . We see that V 6= W , as otherwise all points
of W would be Γ -collinear with u; but y /∈ u⊥Γ , a contradiction. So V and W are distinct 4-spaces inside the quad
Q having at least two points in common. Since they both occur as the intersection of quads, they belong to the
same system of maximal singular subspaces of Q (they have both type 5 in the building of type E6, with Bourbaki
labelling) and hence they intersect in a plane and so there is some point v ∈V \W collinear with u.

Then uv is a line of Γ by Lemma 7.2.02. Since v /∈W , there is some point w ∈W not ∆ -collinear with v. But since
w∈W , the point w belongs to Γ . By Lemma 7.2.01, w is either special to or opposite v. But since v∈Q and L⊆Q,
at least one point of L is ∆ -collinear with v. It follows that w is not opposite v. Hence w is special to v. But then, if
t = v on w, since Qt is the unique quad through w and v, we have Qt = Q. Lemma 7.2.05 implies that t is ∆ -collinear
with all points of W , hence t ∈W . But t is also Γ -collinear with all points of W . We claim that this implies that
t ∈ L. Indeed, if not, then consider a plane α of Γ through L not containing t. Then t is collinear with all points of
α , contradicting Fact 5.1.05 by including α in a symplecton. The claim and the lemma are proved. ut

We will call the above embedding of Γ in the dual of ∆ briefly the dual embedding. This gives us yet another
embedding of Γ in a building of type E6. Note that, as a consequence, Lemmas 7.2.01, 7.2.02, 7.2.03 and 7.2.05,
and Corollary 7.2.04, also hold for this embedding, the only difference being that we have denoted the points x of
Γ as Qx instead of just x when seen in ∆ .

Lemma 7.2.07 Let x and y be opposite points of Γ . Then Qx ∩Qy = {s}, with s a point of ∆ \Γ , and s ∈ Qu for
each point u ∈ Q(x,y)∩Γ , i.e., {s}=

⋂
u∈Ê(x,y) Qu.

Proof By Lemmas 7.2.01 and 7.2.06, Qx and Qy are non-collinear points in the dual embedding. Denote the
unique quad through them in the dual embedding by Qs, where, dually, s is the unique point in Qx∩Qy. Moreover,
Qs contains all points Qt with Qt ∈ Ê(Qx,Qy) by Lemma 7.2.03, i.e. all points Qt with t ∈ Ê(x,y), as this is a notion
in Γ independent of any embedding (in particular Ê(Qx,Qy) = {Qz : z ∈ Ê(x,y)}). Note that the points in the quad
Qs correspond to all quads through s, so in particular, s ∈ Qu for u ∈ Q(x,y)∩Γ = Ê(x,y), the latter equality also
by Lemma 7.2.03. The assertion follows. ut

Definition 7.2.08 (Tangent and Secant Quads) If x∈Γ , then Qx is called a tangent quad. If x,y∈Γ are opposite,
then Q(x,y) is called a secant quad.

Lemma 7.2.09 Every quad of ∆ is either tangent or secant.

Proof We first show the assertion for quads containing at least one point of Γ . So let Q be a quad and x ∈ Q
a point of Γ . By Lemma 7.2.02 applied to the dual embedding, cf. Lemma 7.2.06, every quad meeting Qx in a
4-space through x is of the form Qy, where y ∈ Γ is a point Γ -collinear with x. Hence, by Fact 4.2.02, we may
assume that Q intersects Qx in just {x}. We show that in this case Q is a secant quad.
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Towards this, we first show how to select a special pair {y1,y2} ⊆ x⊥Γ such that Qyi ∩Q is a 4-space Wi through
x. Dualizing the latter condition (hence considering the dual embedding) yields points y1 and y2 that are both ∆ -
collinear with a point q (corresponding to Q) in Qx (as x ∈ Q) with q and x not ∆ -collinear (as Qx ∩Q is not a
4-space). Hence we select y1 and y2 as points of Γ both collinear to x, special to each other and both ∆ -collinear
with q. Since yi ∈ Qx, we have yi /∈ Q, i = 1,2, and so we see that, inside Qyi , yi is Γ -collinear with all points
of a 3-space Vi ⊆Wi of ∆ . From Qy1 ∩Qy2 = {x} and y1 ⊥Γ x ⊥Γ y2 we infer that V1 ∩V2 = {x}. All points of
V1 ∪V2 belong to Γ , by Lemma 7.2.02. The subspaces V1 and V2 cannot be contained in a common subspace, as
that subspace would have dimension at least 6, a contradiction. So we can select points ui ∈ Vi, i = 1,2, with u1
not ∆ -collinear with u2. But u1,u2 ∈ Q∩Γ , and so Q = Q(u1,u2). Note that this is necessarily a secant quad, as
otherwise u1 and u2 would be special and u1 on u2 would be Γ -collinear with all points of V1∪V2, in particular, with
x and hence contained in Qx. But a point of Qx is only Γ -collinear with at most a 3-space of Q, a contradiction.

Now we show that every quad contains at least one point of Γ . Suppose for a contradiction that the quad Q does
not contain any point of Γ . Since the graph on the quads with adjacency defined as ‘intersecting in a 4-space’ is
connected (it has diameter 2, which is seen from Lemma 7.2.06 and Fact 4.2.01), we may assume that Q is adjacent
with a quad of the form Qx or Q(x,y). In both cases, the intersection with Γ is a geometric hyperplane, and the
intersection with Q is a 4-space. Hence the result. ut

7.3 Construction of the polarity of ∆ fixing Γ ; end of the proof of Theorem 3

By the dual of Lemma 7.2.09, every point p of ∆ either belongs to Γ or is the only point incident with the quads
Qx for each x in a certain extended equator geometry Ê, i.e. {p} =

⋂
x∈Ê Qx. Note that, if Ê = Ê(x,y), then p

is determined as Qx ∩Qy (cf. Lemma 7.2.07). We say that p is the point associated with Ê and vice versa. The
forgoing arguments and Lemma 7.2.07 show that this association is a bijection between the complement of Γ in ∆

and the set E of all extended equator geometries.

Definition 7.3.01 (Polarity) We now define a map θ from the point set of ∆ to the set of quads of ∆ and from the
set of quads of ∆ to the set of points of ∆ as follows. We define the image under θ of a point x of Γ as the quad Qx
and vice versa; the image under θ of the point associated (cf. the previous paragraph) with the extended equator
geometry Ê(x,y) is defined as the quad Q(x,y) and vice versa.

The next proposition completes the proof of Theorem 3. We need the following lemma for its proof.

Lemma 7.3.02 Let Q be a quadric of type D5 and let E be a subquadric of type B4 obtained in the standard way
by intersecting an embedding of Q in PG(9,K) with a hyperplane. Then there is a (unique) natural pairing σ of
the points of Q\E such that, if x ∈ Q\E, and V,W are two 4-spaces of Q of the same type through x intersecting
in just x, then xσ =V ′∩W ′, where V ′ and W ′ are the unique 4-spaces in Q of the opposite type through V ∩E and
W ∩E, respectively.

Proof If Q has equation X−1X1+X−2X2+X−3X3+X−4X4+X−5X5 = 0, and E is obtained by intersecting Q with
the hyperplane with equation X−5 =X5, then the pairing σ is given by mapping (x−5,x−4,x−3,x−2,x−1,x1,x2,x3,x4,x5)
to (x5,x−4,x−3, . . . ,x3,x4,x−5). It is easy to show and calculate that this pairing satisfies the conditions, and that it
is unique. ut

Proposition 7.3.03 The map θ is a polarity of ∆ whose absolute structure is Γ .
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Proof We first show that θ preserves incidence among the points and the quads. Let x be a point contained in a
quad Q of ∆ . There are four cases.

(i) x ∈ Γ and Q is tangent, say Q = Qy, y ∈ Γ . In this case, x and y are Γ -collinear as x ∈ Qy ∩Γ = y⊥Γ by
Lemma 7.2.05, and hence the same lemma implies Qθ

y = y ∈ Qx = xθ .
(ii) x ∈ Γ and Q is secant, say Q = Q(y,z), with y,z opposite points of Γ . By Lemma 7.2.03, x ∈Q∩Γ = Ê(y,z).

So, Qθ ∈ xθ = Qx by the definition of Qθ .
(iii) x ∈ ∆ \Γ and Q is tangent. The dual of the previous case holds.
(iv) x ∈ ∆ \Γ and let Q = Q(y,z) be a secant quad, with y,z opposite points of Γ . Let t be Qθ . Then {t} =

Qy∩Qz =
⋂

u∈Ê(y,z) Qu. For each u ∈ Ê(y,z), we have t ∈ Qu and as t /∈ Γ by Lemma 7.2.07, it follows from
Lemma 7.2.02 that t and u are not ∆ -collinear. Hence, t is opposite Q, as otherwise Fact 4.2.03 would imply
that t is ∆ -collinear with a point of Ê(y,z), which is not the case.
We may choose y and z in Q such that they are both ∆ -collinear with x. Consider the pairing σ of Lemma 7.3.02.
Then also xσ is ∆ -collinear with both y,z. By Fact 4.2.03, Qy ∩ (xσ )⊥∆ is a 4′-space Vy of Qy. The point t
belongs to Qy (as y ∈Q), but t /∈Vy as t is not ∆ -collinear with xσ , being opposite Q. So t⊥∆ ∩Vy is a 3-space
Wy contained in Q(t,xσ ) by Corollary 4.2.04. Hence Q(t,xσ )∩Qy is the 4-space Uy generated by t and Wy.
The space Vy and the point xσ are contained in a unique 5-space Ty. Likewise, Q(t,xσ )∩Qz is a 4-space Uz
containing t, and Wz,Vz,Tz are defined analogously.
Consider an arbitrary point u ∈Wy. Since u ∈ Qy∩ y⊥∆ , Lemma 7.2.02 implies u ∈ Γ . Since the Qw, w ∈ Γ ,
form a dual embedding, there is a unique point w on the line uy such that Qw intersects Q in a 4-space Y (this
follows from the fact that, in the dual of ∆ , y is a polar space with point set the original quads through y and
line set the original 4-spaces containing y, with natural incidence). The subspace Y does not contain xσ as xσ

is ∆ -collinear with w and, by Lemma 7.2.02 again, this would force xσ to belong to Γ .
Now we claim that w = u. Indeed, suppose not. As w ∈ Vy \Wy, the points w and t are not ∆ -collinear. The
subspace Y intersects Γ in a 3-space Y ′ consisting of the points of Y collinear with w by Lemma 7.2.05. Let
a be a point in Y ′ distinct from y. Since a ∈ Q∩Qw, we know that Qa contains Qθ = t and w. However, this
implies that Qa coincides with Q(w, t), which is equal to Qy, a contradiction. Hence w = u.
As u is ∆ -collinear to Y ′ and xσ , it is ∆ -collinear to the 4′-space Y ′′ of Q generated by xσ and Y ′. Likewise,
we can select a point v ∈Wz, and choose u,v not ∆ -collinear (this is possible as otherwise Wz and Wy would
generate a 6-space in ∆ ). There is a corresponding 4-space Z = Q∩Qv in Q intersecting Γ in a 3-space Z′

which, together with xσ , generates a 4′-space Z′′. Now suppose Y ′∩Z′ is not empty. Then Y ′′ and Z′′, which
by definition also contain xσ , are two 4′-spaces intersecting in at least a line, hence Y ′′∩Z′′ is at least a plane;
so Y ′∩Z′ is at least a (hyperbolic) line, implying that u and v are ∆ -collinear, a contradiction. Hence Y ′ and
Z′ are disjoint and it follows from Lemma 7.3.02 that Z and Y intersect in x. Hence x ∈ Qu∩Qv. From (iii) it
follows that xθ contains u and v and therefore, as those points are not collinear, xθ = Q(u,v). But then t ∈ xθ

as Q(u,v) = Q(t,xσ ). So Qθ ∈ xθ , as required.

It is trivial to check that θ has order 2. Now ∆ -collinear points are mapped onto quads that share a 4-space, since,
if two points are ∆ -collinear they are contained in at least two quads, and so the images contain at least two points.
It follows that θ is a collineation from ∆ onto its dual, hence a polarity. Clearly Γ is its absolute structure. ut
Proof of Theorem 3. Let Γ and ∆ be as in the theorem. Then by Corollary 7.1.02 they are defined over the same
field K. By Proposition 7.3.03, Γ arises from a polarity of ∆ , which is symplectic by definition (since Γ has
symplectic residues). ut
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Index of Symbols

p.8,11,14 x⊥ the “perp” of the point x: all points equal or collinear to x
p.10 ∆ building of type E6 or it natural point-line geometry
p.11 θ a symplectic polarity in ∆

p.13 Γ building of type F4 or the corresponding symplectic metasymplectic parapolar space
p.13 x⊥ y the point x is collinear to the point y
p.13 x⊥⊥ y the point x is symplectic to the point y
p.13 x♦y the unique symplecton through the symplectic points x and y
p.14 x on y the unique point collinear to both x and y when {x,y} is a special pair
p.14 x⊥⊥ all points equal or symplectic to the point x
p.14 h(x,y) the hyperbolic line containing the symplectic pair {x,y} of points
p.14 S(h) the unique symplecton containing the hyperbolic line h
p.15 Sp the family of symplecta containing the point p
p.15 E(p,q) the equator geometry of the pair {p,q} of opposite points
p.16 Ê = Ê(p,q) the extended equator geometry of the pair {p,q} of opposite points
p.21 T̂ = T̂ (p,q) the tropic circle geometry of the pair {p,q} of opposite points
p.21 β (x) the unique hyperbolic solid in Ê(p,q) collinear to x ∈ T̂ (p,q)
p.22 β (U) the unique point collinear to the hyperbolic solid U
p.24 Θ(T̂ (p,q)) the imaginary completion of T̂ (p,q) to a half spin D5

p.24 Ĥ(p,q) the set of point collinear or equal to at least one point of Ê(p,q)
p.24 Nx the set of lines through the point x
p.25 D4(Nx) the point-line geometry of type D4 defined on Nx
p.28 P the point set of the point-line E6-geometry defined from Γ

p.28 L the line set of the point-line E6-geometry defined from Γ

p.28 E the family of new points of (P,L ), i.e., the family of extended equator geometries of Γ

p.28 F the family of new lines of (P,L ), i.e., those containing members of E
p.28 Te the tropic circle geometry corresponding to the extended equator geometry e
p.31 Σ(p) the quad of (P,L ) corresponding to the point x
p.37 Σ(Ê(p,q)) the quad of (P,L ) corresponding to the new point Ê(p,q)
p.37 Q the family of quads of (P,L )
p.38 U the family of maximal singular 4-spaces of (P,L )
p.38,39 U(L) the projective 4-space associated to the line L of (P,L )
p.42 V+,V− twin hyperbolic cones
p.43 M the family of singular 5-spaces of (P,L )
p.43 T the family of singular planes of (P,L )
p.43 E the geometry of type E6 defined from Γ

p.43 ∗ the incidence relation of E
p.45 U (Σ) the subset of elements of U incident with the quad Σ

p.45 M (Σ) the set of 4-spaces of the quad Σ obtained by intersecting Σ with the members of M that are incident with Σ

p.50 x⊥Γ ,x⊥∆ the perp of x in Γ and ∆ , respectively
p.55 Qx the unique quad in ∆ containing all lines of Γ through x
p.56 Q(x,y) the unique quad of ∆ containing the non-collinear points x and y



Index of Notions

4′-spaces, 7
∆ -collinear, 50
Γ -collinear, 50
Π -lines, 52
Π -regulus, 52

absolute element, 5

centre of a full pencil, 28
chamber, 8
close (point and symplecton), 14
collinear, 14
complementary regulus, 52

deep point, 24
dual embedding, 57

equator geometry, 15
extended equator geometry, 16

far (point and symplecton, 14
flag, 8
full pencil, 28

geometric line, 15

hyperbolic B3, 33
hyperbolic D3-cone, 33
hyperbolic D4, 33
hyperbolic cone, 42
hyperbolic line, 14
hyperbolic plane, 18
hyperbolic solid, 18
hyperbolic space, 18
hyperbolic subspace, 18

imaginary completion, 24
imaginary point, 24

neighbors, 9
new lines, 28
new points, 28

opposite, 8, 10, 14

partial linear space, 28
point-line E6-geometry, 28
point-line-embedded, 5
principle of duality, 8

quad, 4, 7, 37

regulus of lines, 52
residue, 10, 13

secant quad, 57
singular geometric hyperplane, 6
singular subspace, 6
special pair of points, 14
standard B3, 30
standard D4, 30, 33
subspace, 6
Symplectic metasymplectis parapolar space, 4
symplectic pair of points, 13
symplectic polarity, 4
symplecton, 13

tangent quad, 57
thick, 14
tropic circle geometry, 21
twin, 42

References

1. P. Abramenko & K. S. Brown, Buildings: Theory and Applications, Graduate Texts in Mathematics 248, Springer, New York, 2008.
xxii+747pp.

2. A. E. Brouwer & A. M. Cohen, Some remarks on Tits geometries (with an appendix by J. Tits), Indag. Math. 45 (1983), 393–402.
3. A. E. Brouwer, A. M. Cohen & A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, New York, 1989.
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23. J. Tits, Sur la trialité et certains groupes qui s’en déduisent, Inst. Hautes Études Sci. Publ. Math. 2 (1959), 13–60.
24. J. Tits, Buildings of Spherical Type and Finite BN-Pairs, Springer Lecture Notes Series 386, Springer-Verlag, 1974.
25. J. Tits, A local approach to buildings, in The Geometric Vein. The Coxeter Festschrift (ed. D. Chandler et al.), Springer-Verlag (1981),

519–547.
26. J. van Bon, H. Cuypers & H. Van Maldeghem, Hyperbolic lines in generalized polygons, Forum Math. 8 (1994), 343–362.
27. H. Van Maldeghem, A geometric characterisation of the perfect Ree-Tits octagons, Proc. London Math. Soc. (3) 76 (1998), 203–256.
28. H. Van Maldeghem, Generalized Polygons, Birkhaeuser, 1998.
29. H. Van Maldeghem, Symplectic polarities in buildings of type E6, Des. Codes Cryptogr. 65 (2012), 115–125.
30. O. Veblen and J. Young, Projective Geometry, Vols I, II, Blaisdell Publishing Co. Ginn and Co., New York-Toronto-London, 1965


