Advanced search
1 file | 1.37 MB Add to list

Search for sterile neutrino mixing using three years of IceCube DeepCore data

(2017) PHYSICAL REVIEW D. 95(11).
Author
Organization
Abstract
We present a search for a light sterile neutrino using three years of atmospheric neutrino data from the DeepCore detector in the energy range of approximately 10-60 GeV. DeepCore is the low-energy subarray of the IceCube Neutrino Observatory. The standard three-neutrino paradigm can be probed by adding an additional light (Delta m(41)(2) similar to 1 eV(2)) sterile neutrino. Sterile neutrinos do not interact through the standard weak interaction and, therefore, cannot be directly detected. However, their mixing with the three active neutrino states leaves an imprint on the standard atmospheric neutrino oscillations for energies below 100 GeV. A search for such mixing via muon neutrino disappearance is presented here. The data are found to be consistent with the standard three-neutrino hypothesis. Therefore, we derive limits on the mixing matrix elements at the level of vertical bar U mu(4)vertical bar(2) < 0.11 and vertical bar U-tau 4 vertical bar(2) < 0.15 (90% C. L.) for the sterile neutrino mass splitting Delta m(41)(2) = 1.0 eV(2).
Keywords
LINE-EXPERIMENT-SIMULATOR, OSCILLATION EXPERIMENTS, TRACK RECONSTRUCTION, MODEL, FLUX

Downloads

  • 079.pdf
    • full text
    • |
    • open access
    • |
    • PDF
    • |
    • 1.37 MB

Citation

Please use this url to cite or link to this publication:

MLA
Aartsen, MG, et al. “Search for Sterile Neutrino Mixing Using Three Years of IceCube DeepCore Data.” PHYSICAL REVIEW D, vol. 95, no. 11, 2017, doi:10.1103/PhysRevD.95.112002.
APA
Aartsen, M., Ackermann, M., Adams, J., Aguilar, J., Ahlers, M., Ahrens, M., … Zoll, M. (2017). Search for sterile neutrino mixing using three years of IceCube DeepCore data. PHYSICAL REVIEW D, 95(11). https://doi.org/10.1103/PhysRevD.95.112002
Chicago author-date
Aartsen, MG, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, I Al Samarai, et al. 2017. “Search for Sterile Neutrino Mixing Using Three Years of IceCube DeepCore Data.” PHYSICAL REVIEW D 95 (11). https://doi.org/10.1103/PhysRevD.95.112002.
Chicago author-date (all authors)
Aartsen, MG, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, I Al Samarai, D Altmann, K Andeen, T Anderson, I Ansseau, G Anton, M Archinger, C Argelles, J Auffenberg, S Axani, X Bai, SW Barwick, V Baum, R Bay, JJ Beatty, J Becker Tjus, K-H Becker, S BenZvi, D Berley, E Bernardini, DZ Besson, G Binder, D Bindig, E Blaufuss, S Blot, C Bohm, M Boerner, F Bos, D Bose, S Boeser, O Botner, J Braun, L Brayeur, H-P Bretz, S Bron, A Burgman, T Carver, M Casier, E Cheung, D Chirkin, A Christov, K Clark, L Classen, S Coenders, GH Collin, JM Conrad, F Cowen, R Cross, M Day, JPAM de Andre, C De Clercq, E del Pino Rosendo, H Dembinski, Sam De Ridder, P Desiati, KD de Vries, G de Wasseige, M de With, T DeYoung, JC Diaz-Velez, V di Lorenzo, H Dujmovic, JP Dumm, M Dunkman, B Eberhardt, T Ehrhardt, B Eichmann, P Eller, S Euler, A Evenson, S Fahey, AR Fazely, J Feintzeig, J Felde, K Filimonov, C Finley, S Flis, C-C Foesig, A Franckowiak, E Friedman, T Fuchs, TK Gaisser, J Gallagher, L Gerhardt, K Ghorbani, W Giang, L Gladstone, T Glauch, T Gluesenkamp, A Goldschmidt, JG Gonzalez, D Grant, Z Griffith, C Haack, A Hallgren, F Halzen, E Hansen, T Hansmann, K Hanson, D Hebecker, D Heereman, K Helbing, R Hellauer, S Hickford, J Hignight, GC Hill, KD Hoffman, R Hoffmann, K Hoshina, F Huang, M Huber, K Hultqvist, S In, A Ishihara, E Jacobi, GS Japaridze, M Jeong, K Jero, BJP Jones, W Kang, A Kappes, T Karg, A Karle, U Katz, M Kauer, A Keivani, JL Kelley, A Kheirandish, J Kim, M Kim, T Kintscher, J Kiryluk, T Kittler, SR Klein, G Kohnen, R Koirala, H Kolanoski, R Konietz, L Koepke, C Kopper, S Kopper, DJ Koskinen, M Kowalski, K Krings, M Kroll, G Krueckl, C Krueger, J Kunnen, S Kunwar, N Kurahashi, T Kuwabara, A Kyriacou, Mathieu Labare, JL Lanfranchi, MJ Larson, F Lauber, D Lennarz, M Lesiak-Bzdak, M Leuermann, L Lu, J Lunemann, J Madsen, G Maggi, KBM Mahn, S Mancina, M Mandelartz, R Maruyama, K Mase, R Maunu, F McNally, K Meagher, M Medici, M Meier, T Menne, G Merino, T Meures, S Miarecki, J Micallef, G Momente, T Montaruli, M Moulai, R Nahnhauer, U Naumann, G Neer, H Niederhausen, SC Nowicki, DR Nygren, A Obertacke Pollmann, A Olivas, A O’Murchadha, T Palczewski, H Pandya, DV Pankova, P Peiffer, Oe Penek, JA Pepper, C Perez de los Heros, D Pieloth, E Pinat, PB Price, GT Przybylski, M Quinnan, C Raab, L Raedel, M Rameez, K Rawlins, R Reimann, B Relethford, M Relich, E Resconi, W Rhode, M Richman, B Riedel, S Robertson, M Rongen, C Rott, T Ruhe, Dirk Ryckbosch, D Rysewyk, L Sabbatini, SE Sanchez Herrera, A Sandrock, J Sandroos, S Sarkar, K Satalecka, P Schlunder, T Schmidt, S Schoenen, S Schoeneberg, L Schumacher, D Seckel, S Seunarine, D Soldin, M Song, GM Spiczak, C Spiering, J Stachurska, T Stanev, A Stasik, J Stettner, A Steuer, T Stezelberger, RG Stokstad, A Stossl, R Stroem, NL Strotjohann, GW Sullivan, M Sutherland, H Taavola, I Taboada, J Tatar, F Tenholt, S Ter-Antonyan, A Terliuk, G Tesic, S Tilav, PA Toale, MN Tobin, S Toscano, D Tosi, M Tselengidou, CF Tung, A Turcati, E Unger, M Usner, J Vandenbroucke, N van Eijndhoven, Sander Vanheule, M van Rossem, J van Santen, M Vehring, M Voge, E Vogel, Matthias Vraeghe, C Walck, A Wallace, M Wallraff, N Wandkowsky, A Waza, Ch Weaver, MJ Weiss, C Wendt, S Westerhoff, BJ Whelan, S Wickmann, K Wiebe, CH Wiebusch, L Wille, DR Williams, L Wills, M Wolf, TR Wood, E Woolsey, K Woschnagg, DL Xu, XW Xu, Y Xu, JP Yanez, G Yodh, S Yoshida, and M Zoll. 2017. “Search for Sterile Neutrino Mixing Using Three Years of IceCube DeepCore Data.” PHYSICAL REVIEW D 95 (11). doi:10.1103/PhysRevD.95.112002.
Vancouver
1.
Aartsen M, Ackermann M, Adams J, Aguilar J, Ahlers M, Ahrens M, et al. Search for sterile neutrino mixing using three years of IceCube DeepCore data. PHYSICAL REVIEW D. 2017;95(11).
IEEE
[1]
M. Aartsen et al., “Search for sterile neutrino mixing using three years of IceCube DeepCore data,” PHYSICAL REVIEW D, vol. 95, no. 11, 2017.
@article{8565615,
  abstract     = {{We present a search for a light sterile neutrino using three years of atmospheric neutrino data from the DeepCore detector in the energy range of approximately 10-60 GeV. DeepCore is the low-energy subarray of the IceCube Neutrino Observatory. The standard three-neutrino paradigm can be probed by adding an additional light (Delta m(41)(2) similar to 1 eV(2)) sterile neutrino. Sterile neutrinos do not interact through the standard weak interaction and, therefore, cannot be directly detected. However, their mixing with the three active neutrino states leaves an imprint on the standard atmospheric neutrino oscillations for energies below 100 GeV. A search for such mixing via muon neutrino disappearance is presented here. The data are found to be consistent with the standard three-neutrino hypothesis. Therefore, we derive limits on the mixing matrix elements at the level of vertical bar U mu(4)vertical bar(2) < 0.11 and vertical bar U-tau 4 vertical bar(2) < 0.15 (90% C. L.) for the sterile neutrino mass splitting Delta m(41)(2) = 1.0 eV(2).}},
  articleno    = {{112002}},
  author       = {{Aartsen, MG and Ackermann, M and Adams, J and Aguilar, JA and Ahlers, M and Ahrens, M and Al Samarai, I and Altmann, D and Andeen, K and Anderson, T and Ansseau, I and Anton, G and Archinger, M and Argelles, C and Auffenberg, J and Axani, S and Bai, X and Barwick, SW and Baum, V and Bay, R and Beatty, JJ and Becker Tjus, J and Becker, K-H and BenZvi, S and Berley, D and Bernardini, E and Besson, DZ and Binder, G and Bindig, D and Blaufuss, E and Blot, S and Bohm, C and Boerner, M and Bos, F and Bose, D and Boeser, S and Botner, O and Braun, J and Brayeur, L and Bretz, H-P and Bron, S and Burgman, A and Carver, T and Casier, M and Cheung, E and Chirkin, D and Christov, A and Clark, K and Classen, L and Coenders, S and Collin, GH and Conrad, JM and Cowen, F and Cross, R and Day, M and de Andre, JPAM and De Clercq, C and del Pino Rosendo, E and Dembinski, H and De Ridder, Sam and Desiati, P and de Vries, KD and de Wasseige, G and de With, M and DeYoung, T and Diaz-Velez, JC and di Lorenzo, V and Dujmovic, H and Dumm, JP and Dunkman, M and Eberhardt, B and Ehrhardt, T and Eichmann, B and Eller, P and Euler, S and Evenson, A and Fahey, S and Fazely, AR and Feintzeig, J and Felde, J and Filimonov, K and Finley, C and Flis, S and Foesig, C-C and Franckowiak, A and Friedman, E and Fuchs, T and Gaisser, TK and Gallagher, J and Gerhardt, L and Ghorbani, K and Giang, W and Gladstone, L and Glauch, T and Gluesenkamp, T and Goldschmidt, A and Gonzalez, JG and Grant, D and Griffith, Z and Haack, C and Hallgren, A and Halzen, F and Hansen, E and Hansmann, T and Hanson, K and Hebecker, D and Heereman, D and Helbing, K and Hellauer, R and Hickford, S and Hignight, J and Hill, GC and Hoffman, KD and Hoffmann, R and Hoshina, K and Huang, F and Huber, M and Hultqvist, K and In, S and Ishihara, A and Jacobi, E and Japaridze, GS and Jeong, M and Jero, K and Jones, BJP and Kang, W and Kappes, A and Karg, T and Karle, A and Katz, U and Kauer, M and Keivani, A and Kelley, JL and Kheirandish, A and Kim, J and Kim, M and Kintscher, T and Kiryluk, J and Kittler, T and Klein, SR and Kohnen, G and Koirala, R and Kolanoski, H and Konietz, R and Koepke, L and Kopper, C and Kopper, S and Koskinen, DJ and Kowalski, M and Krings, K and Kroll, M and Krueckl, G and Krueger, C and Kunnen, J and Kunwar, S and Kurahashi, N and Kuwabara, T and Kyriacou, A and Labare, Mathieu and Lanfranchi, JL and Larson, MJ and Lauber, F and Lennarz, D and Lesiak-Bzdak, M and Leuermann, M and Lu, L and Lunemann, J and Madsen, J and Maggi, G and Mahn, KBM and Mancina, S and Mandelartz, M and Maruyama, R and Mase, K and Maunu, R and McNally, F and Meagher, K and Medici, M and Meier, M and Menne, T and Merino, G and Meures, T and Miarecki, S and Micallef, J and Momente, G and Montaruli, T and Moulai, M and Nahnhauer, R and Naumann, U and Neer, G and Niederhausen, H and Nowicki, SC and Nygren, DR and Obertacke Pollmann, A and Olivas, A and O'Murchadha, A and Palczewski, T and Pandya, H and Pankova, DV and Peiffer, P and Penek, Oe and Pepper, JA and Perez de los Heros, C and Pieloth, D and Pinat, E and Price, PB and Przybylski, GT and Quinnan, M and Raab, C and Raedel, L and Rameez, M and Rawlins, K and Reimann, R and Relethford, B and Relich, M and Resconi, E and Rhode, W and Richman, M and Riedel, B and Robertson, S and Rongen, M and Rott, C and Ruhe, T and Ryckbosch, Dirk and Rysewyk, D and Sabbatini, L and Sanchez Herrera, SE and Sandrock, A and Sandroos, J and Sarkar, S and Satalecka, K and Schlunder, P and Schmidt, T and Schoenen, S and Schoeneberg, S and Schumacher, L and Seckel, D and Seunarine, S and Soldin, D and Song, M and Spiczak, GM and Spiering, C and Stachurska, J and Stanev, T and Stasik, A and Stettner, J and Steuer, A and Stezelberger, T and Stokstad, RG and Stossl, A and Stroem, R and Strotjohann, NL and Sullivan, GW and Sutherland, M and Taavola, H and Taboada, I and Tatar, J and Tenholt, F and Ter-Antonyan, S and Terliuk, A and Tesic, G and Tilav, S and Toale, PA and Tobin, MN and Toscano, S and Tosi, D and Tselengidou, M and Tung, CF and Turcati, A and Unger, E and Usner, M and Vandenbroucke, J and van Eijndhoven, N and Vanheule, Sander and van Rossem, M and van Santen, J and Vehring, M and Voge, M and Vogel, E and Vraeghe, Matthias and Walck, C and Wallace, A and Wallraff, M and Wandkowsky, N and Waza, A and Weaver, Ch and Weiss, MJ and Wendt, C and Westerhoff, S and Whelan, BJ and Wickmann, S and Wiebe, K and Wiebusch, CH and Wille, L and Williams, DR and Wills, L and Wolf, M and Wood, TR and Woolsey, E and Woschnagg, K and Xu, DL and Xu, XW and Xu, Y and Yanez, JP and Yodh, G and Yoshida, S and Zoll, M}},
  issn         = {{2470-0010}},
  journal      = {{PHYSICAL REVIEW D}},
  keywords     = {{LINE-EXPERIMENT-SIMULATOR,OSCILLATION EXPERIMENTS,TRACK RECONSTRUCTION,MODEL,FLUX}},
  language     = {{eng}},
  number       = {{11}},
  pages        = {{13}},
  title        = {{Search for sterile neutrino mixing using three years of IceCube DeepCore data}},
  url          = {{http://dx.doi.org/10.1103/PhysRevD.95.112002}},
  volume       = {{95}},
  year         = {{2017}},
}

Altmetric
View in Altmetric
Web of Science
Times cited: