MONOLITHIC NEAR INFRARED IMAGE SENSORS ENABLED BY QUANTUM DOT PHOTODETECTOR

IMAGE SENSORS AT IMEC

VISIBLE AND NON-VISIBLE IMAGING

(multicolor) OPD

QD, OPD

hybrid OPD

CIS

x-ray

\(\lambda \) (nm)
NEAR INFRARED RANGE

APPLICATIONS

- see-through vision
- low-light imaging
- eye-tracking
- surveillance
- automotive

- night-glow vision
- eye-safe laser
NEAR INFRARED RANGE

INTEGRATION

Hybrid / Flip-Chip
- NIR, IR
- 1 MPx
- 14 μm pixel

Monolithic
- VIS
- >>10 MPx
- 0.9 μm pixel

λ (nm)

-.2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0
NEAR INFRARED RANGE

MATERIALS

- PbS quantum dots
- polymers / small molecules (OPD)
- HgCdTe
- InGaAs
- Si

λ (nm)
NEAR INFRARED RANGE

INTEGRATION

VIS, NIR, VIS+NIR
>1 MPx
<5 µm pixel
active material
glass

top contact
TFPD stack
bottom contact
glass

top contact
TFPD stack
bottom contact
silicon

top contact
TFPD stack
bottom contact
CMOS ROIC
COLLOIDAL QUANTUM DOT ABSORBER

150 NM THICK ACTIVE LAYER
PHOTODETECTOR STACK DEVELOPMENT

TUNING OF ABSORPTION PEAK WITH QD SIZE
↓ SMALLER QD
↓ LOWER ABSORPTION PEAK
PHOTODETECTOR STACK DEVELOPMENT

EQE > 10% IN NEAR INFRARED FROM A 150 NM THIN-FILM
DARK CURRENT @ -1 V: ~ μA/CM²
DETECTIVITY: D* > 10¹¹ JONES
PHOTODETECTOR STACK DEVELOPMENT

RISE TIME (10% TO 90%): ~12.5 \mu s

FALL TIME (90% TO 10%): ~51 \mu s
PHOTODETECTOR STACK DEVELOPMENT

PHOTO/DARK RATIO IMPROVEMENT AT LOW TEMPERATURE

193K PACKAGE AN OPTION FOR SPECIFIC APPLICATIONS

- IR LED illumination
- 40 dB
- 63 dB

QDPD on glass, IR LED
PHOTODETECTOR OPTIMIZATION ON SILICON

TOP ILLUMINATION
CMOS-COMPATIBLE BOTTOM CONTACT
SEMI-TRANSPARENT TOP CONTACT
ADJUSTMENT FOR TOP ILLUMINATION

TUNING OF LAYER THICKNESSES WITH OPTICAL MODELLING

![Transmission vs Wavelength Graph](image)

- **Optimized**
- **Reference**

Wavelength (nm)
1100 1200 1300 1400 1500 1600 1700

Transmission (%)
20 30 40 50 60 70

Transfer matrix method modelling
ADJUSTMENT FOR TOP ILLUMINATION

TUNING OF LAYER THICKNESSES WITH OPTICAL MODELLING
active material
 glass

 top contact
 TFPD stack
 bottom contact
 glass

 top contact
 TFPD stack
 bottom contact
 silicon

 top contact
 TFPD stack
 bottom contact
 CMOS ROIC
OUTLOOK
FROM PIXEL STACK TO MONOLITHIC INFRARED IMAGER

• continuous screening of new materials
 • main focus on quantum dots
 • parallel tracks on OPD (polymers and small molecules)

• scaling up photodetector integration

• two options for the pixel array architecture:
 • VIS+NIR in one plane (enabled by OPD patterning)
 • monochrome NIR (towards 2 µm wavelength)

• dedicated readout circuit design and fabrication
 • to be continued at IISW2019!
THANK YOU!

PAWEL.MALINOWSKI@IMEC.BE
embracing a better life
P.E. Malinowski et al., „Monolithic Near Infrared Image Sensors Enabled by Quantum Dot Photodetector”, IISW 2017
E. Georgitzikis et al., “Determining charge carrier extraction in lead sulfide quantum dot near infrared photodetectors”, SPIE Nanoscience + Engineering 2017
D. Cheyns et al., “Infrared photodetectors based on lead-sulfide quantum dots”, MRS Spring 2017
F. De Roose et al., „A Flexible Thin-Film Pixel Array with a Charge-to-Current Gain of 59μA/pC and 0.33% Nonlinearity and a Cost Effective Readout Circuit for Large-Area X-ray Imaging”, ISSCC2016
A. Kumar et al., „High performance x-ray imaging detectors on foil using solution-processed organic photodiodes with extremely low dark leakage current,” SPIE Organic Photonics + Electronics 2015
F. De Roose et al. „Active Pixel Concepts for High-Resolution Large Area Imagers”, IISW 2015
G.H. Gelinck et al. „Flexible X-ray detector with high sensitivity using low cost, solution-processed organic photodiodes,” IISW 2015
P. E. Malinowski et al. „Organic Imager on Readout Backplane Based on TFTs With Cross-Linkable Dielectrics,” IEEE Photonics Technology Letters, 2014
P. E. Malinowski et al. „Photolithographic patterning of organic photodetectors with a non-fluorinated photoresist system,” Organic Electronics 15 (10), 2014
G. H. Gelinck et al. „X-ray imager using solution processed organic transistor arrays and bulk heterojunction photodiodes on thin, flexible plastic substrate,” Organic Electronics 14 (10), 2013
P. E. Malinowski et al. „Fully Organic Integrated Arrays on Flexible Substrates for X-Ray Imaging,” IISW 2013