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Abstract 

Research on the structure of psychometric intelligence has used hierarchical models like the 

higher-order and the bi-factor model and has studied the hierarchical relationship between factors 

within these models. In contrast, research on the structure of personality has not only used 

hierarchical models but has also studied hierarchies of factor solutions. We clarify the theoretical 

and conceptual differences between hierarchical models and the solutions-hierarchy approach 

used in the field of personality research, and suggest that the solutions-hierarchy perspective can 

provide a novel perspective for intelligence research. We used the solutions-hierarchy approach 

to study four correlation matrices (N = 230 to 710; 38 to 63 tests), and a large dataset (N = 

16,823; 44 tests). Results provided (a) insights into relationships between intelligence constructs 

across the hierarchy of factor solutions, and (b) evidence that intelligence has a 1–2–3–5 

hierarchy of factor solutions with a g factor at the top, gc and gf factors at the second level, a 

speed–reasoning–knowledge taxonomy at the third level, and possibly a speed-reasoning–

fluency–knowledge–memory/perception taxonomy at the fifth level.  

Keywords: Intelligence, cognitive abilities, hierarchies, structure, dimensionality 
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Hierarchies of Factor Solutions in the Intelligence Domain: Applying Methodology from 

Personality Psychology to Gain Insights Into the Nature of Intelligence 

Researchers have long been engaged in efforts to find taxonomies for the major domains of 

human individual differences. Although a consensus on the structure of a domain of individual 

differences is not necessarily a prerequisite for scientific progress, knowledge on the structure of 

a domain of individual differences is commonly helpful for integrating findings within a field and 

for developing a shared scientific language (e.g., Goldberg, 1993; Goldstein, Zedeck, & 

Goldstein, 2002; John, Naumann & Soto, 2008).  

Research on the structure of psychometric intelligence started in the first half of the last 

century (e.g., Spearman, 1904, 1927; Thurstone, 1938a, 1938b). In the following decades, 

researchers developed a variety of different taxonomies (see Carroll, 1993, for an overview). 

Over time, most researchers reached a consensus on the idea that an optimal taxonomy for the 

intelligence domain should be a hierarchical structure with one or more broad abilities at the apex 

of the hierarchy and one or more levels of narrower abilities arranged below the broad abilities 

(Lubinski, 2004). This progress notwithstanding, research on the structure of psychometric 

intelligence is still an active field of research and researchers have continued to investigate the 

characteristics of the factors at each level of the hierarchy (Carroll, 2003; Goldstein et al., 2002; 

Johnson & Bouchard, 2005; McGrew, 2009).  

A notable difference between studies on the structure of intelligence and recent studies on 

the general structure of personality is that personality researchers frequently use some techniques 

and conceptualizations of hierarchy that have not yet been employed in intelligence research. 

Intelligence research typically relies on two types of hierarchical factor models: The higher-order 

model and the bi-factor (also known as the nested-factors and the hierarchical) model (e.g., 

Jensen & Weng, 1994; Yung, Thissen, & McLead, 1999). Personality researchers have also used 
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these hierarchical models but have additionally used a conceptually different approach that 

focuses on studying hierarchies of factor solutions (Ashton, Lee, & Goldberg, 2004; de Raad & 

Barelds, 2008; Markon, 2009; Markon, Krueger, & Watson, 2005; Saucier, 2009; Saucier & 

Goldberg, 2001; Zuckerman, Kuhlman, & Camac, 1988). This solutions-hierarchy approach 

entails a different conceptualization of hierarchy and is frequently used by personality researchers 

when the focus is on understanding and describing the structure of large datasets. The solutions-

hierarchy approach is also sometimes referred to as top-down factor analysis in the personality 

literature (Ashton, Lee, & Goldberg, 2004; Goldberg, 2006; Waller, 2007).  

In this article, we seek to build on personality research and suggest that the methodology 

frequently used in research on the structure of personality—studying hierarchies of factor 

solutions—also has implications for research on the structure of intelligence, and we believe that 

it is important to investigate these implications. We begin this article by clarifying the theoretical 

and conceptual differences between the hierarchical factor models commonly used in intelligence 

research, and the characteristics of solutions-hierarchy approach used in personality research. We 

follow up this conceptual section with analyses of five large datasets on intelligence using the 

solutions-hierarchy approach. Our article contributes to the literature by (a) clarifying different 

conceptualizations of hierarchy, by (b) establishing a conceptual link between research on the 

structure of personality and research on the structure of intelligence, and by (c) complementing 

existing studies and reviews on the structure of intelligence (e.g., Carroll, 1993).  

Extant Conceptualizations of Hierarchy in Intelligence Research 

The Higher-Order Model 

One conceptualization of hierarchy that is frequently used in intelligence research is the 

higher-order model (e.g., Jensen & Weng, 1994; Yung et al., 1999). Figure 1a shows a simple 

higher-order model. In this model, a broad second-order general factor influences three narrower 
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abilities which in turn influence the measurement indicators or tests. One important assumption 

of this model is the idea that the second-order general factor causally influences the narrower 

abilities. Another characteristic assumption of the model is that the second-order general factor is 

not directly associated with the manifest tests or measurement indicators at the lowest level. The 

effect of the second-order general factor on the tests is mediated by the narrower (or first-order) 

factors. As a result, the second-order factor in the higher-order model has shared variance with 

the narrower abilities and this shared variance between the two is assigned to the higher-order 

factor as the causal source of this variance. The second-order factor also does not share variance 

with the measurement indicator (the test) that is not also shared between narrower abilities and 

the measurement indicator.  

The higher-order model developed from scientific debate between Louis Thurstone (1939; 

Thurstone & Thurstone, 1941) and Charles Spearman (1939). Spearman had long argued that the 

general factor extracted from a large intelligence test battery is a sort of mental energy that is 

responsible for correlations between tests (Spearman, 1904). In his original two-factor model, 

Spearman used only one latent variable for the general factor and suggested that the variance in 

each intelligence test consists of variance due to the general factor g and a specific component 

that is unique to the specific test. Spearman’s two-factor theory is similar to a one-factor model 

(Harman, 1976; Jensen & Weng, 1994). Thurstone, in contrast, developed a multidimensional 

view of intelligence and preferred to extract oblique (correlated) factors from intelligence data. 

Spearman (1939) reanalyzed one of Thurstone’s datasets using his two-factor theory. In this 

reanalysis, Spearman first reduced the number of indicators by aggregating tests that he 

considered to be similar and only then applied two-factor theory and concluded that the general 

factor from two-factor theory explained almost all of the correlations in the data between the test 

aggregates. This approach likely inspired Thurstone to develop the higher-order model by 
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extracting a second-order factor from the correlations of his oblique factors in his later work 

(Thurstone & Thurstone, 1941). The higher-order model can thus be seen as a compromise 

between Thurstone’s work and Spearman’s original idea that the shared variance between a 

battery of intelligence tests is caused by a general factor, or g (Jensen & Weng, 1994; Lang, 

Kersting, Hülsheger, & Lang, 2010).  

A limitation of the higher-order model is the fact that the possible levels of hierarchy is 

restricted in practice. The reason is that higher-order factors are only extracted based on variance 

at the hierarchical level just below the level of interest (cf. Figure 1a). In practice, this 

characteristic of the model restricts the possible number of hierarchical structures. Carroll (1993), 

who conducted a large and comprehensive review of the intelligence literature using the higher-

order model noted: “One is fortunate to obtain as many as three second-order factors, and this is 

the minimum number required to support an analysis for a single factor at the third order.” (pp. 

579). 

The Bi-Factor Model 

The bi-factor model (Holzinger & Harman, 1938; Holzinger & Swineford, 1937)—also 

known as the nested-factors model (Mulaik & Quartetti, 1997) or the hierarchical model (Yung, 

Thissen, & McLeod, 1999)—offers a second perspective on the status of broad and narrower 

abilities that is frequently employed in the intelligence literature. This bi-factor conceptualization 

is distinct the higher-order model and builds on the idea that broad and narrower abilities only 

differ in breadth and not in subordination (Humphreys, 1981). The term “bi-factor” derives from 

the idea that each measurement indicator (i.e., the tests) has more than one (typically two but 

more is possible, cf. Mulaik & Quartetti, 1997) direct loadings—typically on a general and a 

narrow factor. Figure 1b illustrates this conceptualization of the bi-factor model. Figure 1b also 

shows that there is no correlation or direct path between the broad factor and the narrower 
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abilities such that these factors are disjunct (i.e., orthogonal). Some methods employed in 

research using the bi-factor model explicitly require an orthogonal general factor (Jennrich & 

Bentler, 2012). Other methods do not explicitly require the general factor to be orthogonal but in 

practice estimation with a general factor that is not orthogonal to other factors is difficult (Mulaik 

& Quartetti, 1997; Rindskopf & Rose, 1988) such that an orthogonal general factor is used in all 

research that we are aware of.  

The fact that the hierarchical levels are disjunct in the model effectively divides the shared 

variance between the broad and the narrower factors to either the broad or the narrower factors 

such that not all shared variance between the general factor and the narrower abilities in the 

model is attributed to the general factor. The bi-factor perspective consequently does not make 

the assumption that the general factor has a causal effect on the narrower cognitive abilities. 

Instead, the broad and narrower factors differ only in breadth (and not in subordination like in the 

higher-order model). The general factor consequently has shared variance with the test itself that 

it does not also share with the narrower abilities.  

A limitation of the bi-factor model is the fact that the model effectively eliminates shared 

variance between g and the narrower-factors by orthogonalizing the levels. Removing shared 

variance through orthogonalization may frequently be desirable in applications (Carroll, 1993), 

and was especially desirable in studies on predictive validity before methodological techniques 

were developed that can incorporate shared variance between different levels of the hierarchy 

(Lang et al., 2010; Krumm, Schmidt-Atzert, & Lipnevich, 2014). When researchers study the 

hierarchical structure of a construct, however, it may be theoretically desirable to use factor 

scores that reflects the nature of the data and theoretical assumptions. Orthogonalizing the levels 

then can be a theoretical limitation as shared variance between the different levels of the 

hierarchy is a core element of intelligence data (Jensen, 1998; Revelle & Wilt, 2013). In studies 
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on the hierarchical structure of intelligence, orthogonalizing the levels is also an empirical 

restriction as it effectively limits the number of possible levels to three (commonly only two; cf. 

Mulaik & Quartetti, 1997).  

Hierarchies of Factor Solutions 

Research on hierarchies of factor solutions (Goldberg, 2006) is fundamentally based on 

exploratory factor analysis procedures with which most researchers are familiar. To derive a 

hierarchy of factor solutions, researchers start by extracting a solution with one (unrotated) factor 

and by calculating factor scores for this factor. In the next step, a two-factor solution is extracted 

and rotated, and factor scores as well as the correlations between these factor scores and the 

factor scores for the initial one factor solution are calculated. The procedure continues by 

extracting the rotated three factor solution, calculating factor scores for the three-factor solution, 

and by calculating correlations between the factor scores from the three-factor solution and the 

factor scores from the two factor solution. This routine continues for subsequent solutions with 

more factors.  

As a refinement of the method, Waller (2007) has shown that it is possible to calculate the 

correlations between components or factors from different levels of the hierarchy without 

calculating the corresponding component scores or factor scores. Thereby, problems that might 

occur when factor scores are to be calculated (Beauducel, 2007) can be avoided (Waller, 2007).  

In theory, a hierarchy of factor solutions allows for a number of factorial representations 

that is equal to the number of variables. However, because the major goal of factor analysis is to 

develop an adequate and parsimonious description of a domain of interest, the procedure will 

commonly stop much earlier.  

One basic criterion for stopping is when no variables have their highest loadings on a 

factor. In this case, Goldberg (2006) advised researchers to stop at the level above that one. The 
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reason for this recommendation is that factors without primary loadings are difficult to interpret 

and are commonly considered to be residual factors.  

A second possible criterion for stopping is to rely on the standard approach used in 

exploratory factor analysis and examine the eigenvalue plot. In examining eigenvalue plots, the 

goal is to determine how many factors in a given covariance matrix are meaningfully different 

from random noise. The most common tools for evaluating eigenvalues are Cattell’s graphical 

scree test (Cattell, 1966) and J. L. Horn’s parallel analysis procedure (J. L. Horn, 1965b). The 

graphical scree test suggests that eigenvalue plots typically contain a marked decrease or cliff 

between the meaningful factors and the random factors. Horn’s parallel analysis procedure 

simulates random eigenvalues using the properties of the data so that one can compare the actual 

eigenvalues with random eigenvalues. 

A third criterion for stopping can be used when researchers simultaneously examine several 

datasets in the same research domain. A criterion for stopping in this context is when a solution 

does not replicate across datasets to a notable degree. Researchers can then confidentially assume 

that dataset-specific characteristics dominate in the factors solutions. For instance, research on 

the structure of personality has yielded no evidence that factors from solutions with more than six 

factors constantly replicate across languages and samples (e.g., Ashton, Lee, & Goldberg, 2004; 

Ashton, Lee, Perugini et al., 2004). Most researchers studying several datasets in the same 

research domain examine eigenvalue plots as a first rough indication on the number of potentially 

meaningful factors in a dataset. The eigenvalue information, however, is rarely used to ultimately 

decide on the appropriateness of a taxonomy. For instance, in an analysis of 1,710 English 

personality adjectives or items, Ashton, Lee, and Goldberg (2004) decided to extract five or six 

factors even though the eigenvalue plot suggested the extraction of seven factors. Ashton, Lee, 

and Goldberg based this decision on the substantive interpretation of the solutions they extracted 
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and the fact that solutions in other languages supported either five or six factors. 

Hierarchies of factor solutions can be studied using either orthogonal or oblique rotations 

and either using principal components or factor analysis procedures (Goldberg, 2006; Waller, 

2007). In the context of personality research, researchers commonly use principal components 

and orthogonal rotation procedures yielding uncorrelated components at each level of the 

hierarchy (Goldberg, 2006). The use of orthogonal rotations is based on the observation that 

many personality dimensions show only small intercorrelations. For the purpose of intelligence 

research, we suggest using oblique rotations because correlations between factors are likely 

important in intelligence research. There is strong evidence that intelligence measures are 

commonly correlated―frequently to a considerable degree (e.g., Jensen, 1998; Revelle & Wilt, 

2013). In addition, we propose that factor analysis instead of principal components is generally 

more appropriate because factor analysis takes measurement error into account (Gorsuch, 1983) 

and this may be relatively more important when indicators are correlated. Researchers have long 

used principal components instead of factor analysis for estimating hierarchies of factor solutions 

because the estimation of correlations between factors of solutions with different numbers of 

factors had long been problematic statistically (e.g. Grice, 2001). As already noted, Waller (2007) 

has recently solved this issue by showing how researchers can estimate the correlation matrix 

between the oblique latent factors for solutions at two different levels of a hierarchy of factor 

solutions using the rotation matrices for the two levels (see p. 749). Waller’s procedure allows 

researchers to estimate the correlations between the true latent factors and does not require them 

to use approximations of the true correlation matrix calculated from factor scores (for principal 

components, the matrix estimated using the rotation matrices and Waller’s procedure is identical 

to the matrix estimated using component scores cf. Grice, 2001).  

There are important differences between the solutions-hierarchy approach and the two 
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types of hierarchical models. A potential advantage of the solutions-hierarchy approach is that the 

extraction of factors at the different hierarchical levels is not influenced by decisions of the 

researcher regarding the extraction of factors at the other hierarchical levels. The reason is that 

the extraction of factors at each level is directly based on the manifest indicator variables 

(personality adjectives or personality-related statements in personality research and cognitive 

ability tests in cognitive ability research). In contrast, in the higher-order and bi-factor models, 

the extraction of broader factors is influenced by decisions on extraction of narrower factors. In 

the higher-order model, the factors higher in the hierarchy are based on the intercorrelations 

among the lower order factors and not directly on the manifest variables. Variance that the lower-

order factors do not capture can also not be captured by the higher-order factors in the model. In 

the bi-factor model the extraction of broad factors depends on decisions on the narrower factors 

because the variance in the manifest variables is distributed among the broad and the narrower 

factors. Consequently, when the number of narrow factors is reduced in a bi-factor model, some 

variance that has been represented by the narrow factors before can be represented by the broader 

factor (and vice versa). Figure 1c illustrates the nature of hierarchies of factor solutions. As 

shown in Figure 1c, all factors are directly estimated based on the measurement indicator 

variables. Furthermore, all factors are correlated with each other. Consequently, g and the 

narrower factors share variance with all other factors and the test itself.  

In summary, the solutions-hierarchy approach has reached considerable sophistication and 

when used with oblique rotations it allows researchers to not only estimate a hierarchical 

structure with correlations between factors at different levels of the hierarchy but also between 

factors within each level of the hierarchy. The solutions-hierarchy approach avoids two specific 

restrictions of the hierarchical models typically used in intelligence research (orthogonal factors 

for the bi-factor, and the assumptions of causal higher-order factors in the higher-order model).  
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Intelligence Taxonomies and Previous Research Syntheses 

Existing syntheses of the intelligence literature have relied on higher-order approaches or 

bi-factor models (e.g., Carroll, 1982, 1993, 2003; French, Ekstrom, & Price, 1963; McGrew, 

2009). These overall literature reviews and other more specific studies have led to the 

development of a variety of intelligence taxonomies. To provide theoretical guidance for our 

investigation, we conducted a literature review of the cognitive ability literature that allowed us 

to develop hypotheses and expectations regarding the emergence of the broader factors at each 

level of the hierarchical structure extracted by the solutions-hierarchy method. The results of this 

literature review are shown in Table 1. Because we were primarily interested in parsimonious and 

replicable taxonomies that could be broadly applied to a variety of datasets, we focused our 

analyses to solutions with a limited number of factors that could realistically be expected to be 

replicable across different datasets and different sets of variables.  

The Present Investigation 

The overarching goal of the present investigation was to study the structure of intelligence 

using hierarchies of factor solutions. We focused on five datasets that were designed to cover a 

broad and representative range of ability measures. We then estimated hierarchies of factor 

solutions and studied which factors emerged at each level of the hierarchical structure of the 

solutions in each dataset. In so doing, we were interested (a) to what degree solutions in the 

datasets were similar to theoretical ideas in the reviewed cognitive ability literature and (b) to 

what degree solutions in different datasets were similar to each other. In addition to these 

research questions, we also studied how factors from solutions at different levels of the hierarchy 

(different numbers of factors) were related to each other.  

Method 
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Datasets 

We searched for datasets that had a sample size larger than 200, included a broad range of 

intelligence tests, and were originally assembled for the purpose of conducting an exploratory 

investigation of the general factor structure of intelligence (and not a specific domain of 

intelligence or cognitive abilities) in literature reviews (Carroll, 1993) and in databases of 

psychological literature (e.g., PsychINFO, Google Scholar, and WorldCat). This search yielded 

six datasets that fulfilled these criteria. For one dataset, no correlation matrices or raw data could 

be obtained (Jäger, 1967), and for one dataset only a correlation matrix of composite scores 

combining several cognitive abilities was available (Hakstian & Cattell, 1974). For four datasets, 

a product-moment correlation or covariance matrix of the cognitive ability tests was available. 

These datasets were THUR41 (Thurstone & Thurstone, 1941), HORN65 (J. L. Horn, 1965b), 

SCHO76 (Scholl, 1976), and WOTH (Wothke et al., 1990).  

We additionally had access to an extended version of a previously published dataset 

(BEAU02; Beauducel & Kersting, 2002). This extended dataset included the published data as 

well as additional data. The additional data included two additional tests, and 7,303 additional 

participants such that the study population included a total of 16,823 persons. The two additional 

tests were a dictation test assessing the ability to write down spoken text without orthographic 

errors, and a clerical work-sample test asking participants to determine postal rates based on a 

couple of different information parameters. 

Table 2 provides details on the five datasets. We do not suggest that these datasets cover 

the universe of possible data sets. However, the datasets are a relevant subset of the relevant 

intelligence literature allowing for substantial investigation of the unrestricted nested-factors 

model. 
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Analytical Strategy and Statistical Analyses 

We examined the hierarchy of factor solutions using the procedures described in Goldberg 

(2006) and Waller (2007). As discussed previously, we relied on factor analysis and oblique 

rotation. Specifically, we used principal axis factor analysis. All solutions with more than one 

factor were promax-rotated (m = 3).  

To study the relations between the solutions at the different levels of each dataset, we 

estimated the correlations between the factors using the procedures described in Waller (2007). 

We therefore relied on a modified version of Waller’s (2007) syntax for the R programming 

environment (R Development Core Team, 2010). Waller’s program was originally developed for 

orthogonal (varimax) rotation. We therefore modified the program for the use with promax 

rotation and factor analysis. Subsequently, we graphed the findings by translating the results of 

the solutions-hierarchy approach into a graph in the dot language (AT&T Labs Research and 

Contributors, 2011).  

We extracted solutions until the majority of the factors did not replicate across datasets 

anymore. Although we relied on the replication criterion, we also obtained eigenvalues for all 

five datasets as useful descriptive information on the number of potentially meaningful factors in 

the samples and as evidence on how dominant the first factor (g) was in each of the matrices (see, 

e.g., Ashton et al., 2004). To foster the interpretation of the eigenvalues, we examined Cattell’s 

graphical scree test (Cattell, 1966) and J. L. Horn’s parallel analysis procedure (J. L. Horn, 

1965b). The parallel analysis procedure simulates random eigenvalues using the properties of the 

data so that one can compare the actual eigenvalues with random eigenvalues. 

Results 

Eigenvalues and Scree Plots 

Figure 2 provides eigenvalues and simulated random eigenvalues from the parallel analysis 
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procedure for all five datasets. As indicated by Figure 2, there was evidence for a strong first 

factor in all eigenvalue plots.  

The total number of factors to extract based on the graphical scree criterion (first marked 

eigenvalue increase) differed considerably across the five datasets. The scree criterion suggested 

that there were three or five factors in the THUR41 data, four factors in the HORN65 data, four 

factors in the SCHO76 data, two or six factors in the BEAU02 data, and two, three, or four 

factors in the WOTH90 data. 

The number of extracted factors also differed when we used parallel analysis instead of the 

graphical scree procedure. As indicated by Figure 2, the simulated random eigenvalues derived 

by the parallel analysis procedure suggested that there were four factors in the THUR41, 

SCHO76, and WOTH90 datasets, three factors in the HORN65 data, and seven factors in the 

BEAU02 dataset.  

Hierarchy of Intelligence Factor Solutions 

Figure 3 to Figure 7 provide the graphical summaries of the solution-hierarchy analyses and 

show content descriptions as well as correlations between the factors at adjacent levels of the 

factor hierarchies for each dataset. In the graphs, the boxes represent the factors. The two-digit 

factor numbers refer to the overall number of factors in the solution from which the factor is 

derived (first digit), and the number of the factor in the solution (second digit). Correlations 

higher than .50 are shown with solid lines. For factors having no correlations higher than .50 to 

the next level, the highest correlation is shown using a dashed line.  

First-Unrotated Factor. We started by examining the content of the first unrotated factors 

(FUF). These analyses revealed that tests with high loadings did not only included tests 

commonly considered to be good indicators of g in the literature but also speed and fluency tests. 

The FUF was consequently quite diverse and broad in our datasets featuring large and diverse 
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samples of cognitive ability tests.  

Two-Factor Solutions. At the second level of hierarchy, three of the five datasets 

(THUR41, HORN65, and BEAU02) showed two factors which were reminiscent of a classic gf–

gc structure with a general crystallized factor (gc) capturing acquired skills, knowledge, and 

experience as well as a general fluid factor (gf) tapping logical thinking and problem-solving 

abilities in novel situations. The gf and gc factors all showed considerable correlations with the 

FUF or g (see Figure 3 to Figure 7). In one dataset, gc had a stronger relation to g than gf 

(THUR41). In the two other datasets, gf was more strongly related to g than gc (HORN65, 

BEAU02). The relationships between g and gf as well as g and gc were frequently substantial but 

there was no correlation higher than r = .74.  

The two datasets that did not clearly find a classic gf–gc structure showed different 

deviations from the gc–gf structure. In the SCHO76 data, the deviations from the gf–gc structure 

were relatively modest. In this dataset, verbal fluency tasks (Flu) combined with knowledge-

related tasks (Kn) to form a strongly verbally-characterized gc factor. The assignment of verbal-

fluency tasks on gc has been proposed in the literature before. For instance, Carroll’s three-

stratum theory (1993) conceptualizes verbal fluency as a subcomponent of gc. The underlying 

idea is that verbal fluency tasks commonly require that person’s retrieve a substantive variety of 

vocabulary from (crystallized) long-term memory. However, in the SCHO76 data, also fluency 

tasks that require only very basic processing of verbal material load on the gc factor so that the 

combined factor in this datasets is broader than the gc factor expected by gf–gc theory and its 

modifications (e.g., Hakstian & Cattell, 1974; J. L. Horn & Cattell, 1966).  

The deviations from the gc-gf structure in the other dataset, the WOTH90 data, were more 

substantial. In this dataset, one factor captured all types of strongly speeded tasks including 

simple speeded fluency tests (Spe-Flu), and the other factor included all less speeded reasoning 
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(Re) and knowledge (Kn) tasks. This structure is most reminiscent of Ackerman’s (1988) 

differentiation between level/power and speed abilities in his extended version of Guttmann’s 

radex model (Guttmann, 1965). Overall, it should be noted that there are substantial differences 

between the gc-gc factors in the different data sets and that also the correlation of gf, gc, and g 

shows considerable variation across data sets. 

Three-Factor Solutions. There was considerable agreement on the third level of the 

hierarchy. In all five datasets, a basic three-factor structure emerged that consisted of one factor 

with basic speed abilities (Spe), one factor with reasoning tasks (Re), and one factor with 

knowledge tasks (Kn). The speed factor was characterized by tasks that require people to perform 

simple overlearned operations quickly. The reasoning factor was characterized by tasks that 

require the deep processing of complex figural, verbal, and numerical tasks. Finally, the 

knowledge factor contained tasks that asked for factual knowledge from long-term memory and 

was very closely related to the gc factors from the two-factor solutions but did not contain verbal 

tasks that also required reasoning. Although we found this basic structure in all five datasets, 

there were nevertheless differences in the exact nature of these factors. Especially, the datasets 

differed in how fluency (Flu), memory (Me), and perceptual speed tasks (Perc) were assigned to 

the three factors.  

Four-Factor Solutions. At the fourth level, the speed-reasoning-knowledge taxonomy 

from the third level remained intact in all solutions. The new fourth factor that emerged differed 

between the datasets. In three datasets (HORN65, THUR41, and WOTH90), a new separate 

fluency factor emerged. In the other two datasets (SCHO76, and BEAU02), the four-factor 

solution included a separate memory factor in addition to the speed-reasoning-knowledge 

taxonomy.  

Five-Factor Solutions. At the fifth level, four datasets included four core factors: speed, 
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reasoning, knowledge, and fluency. The exception was the SCHO76 data in which knowledge 

and fluency could not be separated. In addition, there was evidence for a memory-perception 

factor. The empirical picture this factor was more difficult to interpret because not all datasets 

included a considerable range of memory and perception tasks. In two datasets (SCHO76, 

BEAU02), the memory factors from the four-factor solutions continued to exist. These datasets 

contained a range of memory tasks but not prototypical perceptual tasks. The perceptual tasks in 

these datasets also involved either speed or reasoning and consequently loaded on these factors. 

In one dataset (THUR41), a perception factor emerged. This dataset included a limited number of 

memory tasks but a considerable range of perceptual tasks that were not primarily characterized 

by speed or reasoning. Finally, in the only dataset containing both a considerable range of 

memory and perception tasks, we found a combined perception-memory factor at the fifth level 

(WOTH90).  

Six, Seven, and Eight Factors. While the present set of analyses suggests that there is 

considerable agreement at the first five levels of the solution hierarchy, we found considerably 

less convergence at subsequent levels and a variety of specific factors. These factors included 

combinations of naming speed (Nam-Spe), calculation (Cal), 2D rotation (2D-Rot), visual 

rotation in general (VisRot), counting (Cou), word fluency (WoFlu), ideational fluency (IdeFlu), 

general ideational (Id), and mathematical (Math) abilities.  

The only finding that occurred in more than one dataset was that the reasoning factor 

collapsed into content-material specific subfactors. This split-up occurred in three of the five 

datasets (THUR41, SCHO76, and BEAU02). In two of these three datasets (SCHO76 and 

BEAU02), these content-specific reasoning factors largely represented verbal, numerical, and 

figural material and were in correspondence with the figural-verbal-numerical taxonomy (e.g., 

Ackerman, 1988; Guilford, 1967). 
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Discussion 

In this article, we built on personality research and suggested that studying hierarchies of 

factor solutions can also be useful for research on the structure of intelligence. Our reanalysis 

yielded new insights into the nature of the intelligence construct by identifying some structural 

consistencies at the top of the hierarchy of factor solutions that were reasonably stable across the 

five datasets. In this discussion section, we elaborate both on the substantive findings of our 

investigation as well as the methodological implications of studying hierarchies of factor 

solutions in intelligence research. We begin by discussing the substantive findings.  

Hierarchies of Intelligence Factor Solutions 

The present investigation focused on five datasets on the general structure of intelligence. 

Figure 8 provides a summary of our findings at the first five level of the hierarchy of factor 

solutions in these five datasets.  

As Figure 8 illustrates, one finding of our investigation was that we found evidence for the 

gc-gf distinction proposed by Cattell and J. L. Horn (Cattell, 1943b, 1963; J. L. Horn, 1965a, 

1976) at the second level of the hierarchy. A gf factor emerged in four, and a gc factor emerged 

in three of the five datasets. There were some differences in the relations between the gc and gf 

factors at the second level and the g factor. Although one of these two relations was typically 

high in each of the datasets, none of these correlations exceeded r = .74. Our analyses 

consequently suggest that both gc and gf carry meaning that is different from the g factor at the 

top in hierarchies of factor solutions.  

A second major finding was that there was a factor structure with a reasoning, a speed, and 

a knowledge factor at the third level of the solutions hierarchy. This basic structure was present in 

all five datasets (see Figure 8) even though the exact nature of the factors somewhat differed 

across the five datasets. The fact that we found this basic taxonomy in all five datasets is 
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remarkable given that the datasets considerably varied in the used material, context of the data 

collection (personnel selection vs. participation in research), time (1940s to the 2000s), and 

sample characteristics. The reasoning-speed-knowledge taxonomy is not identical to a specific 

model in the previous intelligence literature but nevertheless shows considerable similarities to 

models previously discussed in the literature. Specifically, the distinction between speed and 

reasoning abilities can also be found in the radex model of intelligence (e.g., Marshalek et al., 

1983). However, both speed and knowledge tasks can be classified into the rule-application 

segment of the radex model (Marshalek et al., 1983). Moreover, gc has been located in the rule-

application segment of the radex model (Marshalek et al., 1983), so that the radex model does not 

distinguish between gc, knowledge and speed. It should be noted that the radex model could only 

be calculated by means of smallest space analysis (Guttman, 1968), which leads to a 

representation of the data that can usually not be found by means of factor analysis. Furthermore, 

the distinction between reasoning and speed abilities is also a key building block of the Berlin 

model of Intelligence structure (Beauducel & Kersting, 2002; Jäger et al., 1997; Schulze, 2005; 

Süß & Beauducel, 2005). However, this model does not consider knowledge abilities. The reason 

for the fact that we did not finding content factors for verbal, numerical, and figural abilities at 

the third level that have been found in other models (Ackerman, 1988; Jäger et al., 1997; 

Marshalek et al., 1983) could also be related to the fact that the solutions-hierarchy approach 

aims at finding the most robust structures in the data, whereas smallest space analysis and related 

faceted confirmatory factor models (Süß & Beauducel, 2005) are aimed to identify complex 

overlapping structures.  

The third major finding was that we found considerable agreement on the fourth and fifth 

level of the hierarchy (see Figure 8). Specifically, we found evidence for a taxonomy consisting 

of factors for speed (5 of 5 datasets), reasoning (5 of 5 datasets), fluency (4 of 5 datasets), and 



Running Head: HIERARCHIES OF INTELLIGENCE FACTOR SOLUTIONS  22 

knowledge (4 of 5 datasets). In addition to this speed-reasoning-fluency-knowledge taxonomy, 

there was also some evidence for the existence of a memory-perception factor (3 datasets). We 

speculate that a problem for identifying this factor was that some of the datasets did not contain a 

sufficient number of both prototypical perception and prototypical memory tasks. Accordingly, a 

factor primarily characterized by memory tasks emerged in two datasets (SCHO76, BEAU02), 

and a perception factor emerged in one dataset with a small number of memory tests (THUR41). 

In the dataset that features a variety of both tasks (WOTH90), an integrated factor emerged.  

In summary, this study suggests that intelligence as operationalized in the five datasets that 

we studied can be characterized by a 1-2-3-5 hierarchy of factor solutions with a g factor at the 

top of the solutions hierarchy, gc and gf factors at the second level, a speed-reasoning-knowledge 

taxonomy at the third level, and a four- or five-factor taxonomy with a speed, a reasoning, a 

fluency, a knowledge and possibly a memory-perception factor at the fourth or fifth level. The 

evidence for the speed-reasoning-knowledge taxonomy at the third level was somewhat stronger 

than the evidence for the gc/gf and the speed-reasoning-fluency-knowledge-memory/perception 

taxonomy at the fifth level because we found evidence for factors of this type in all five datasets 

(see Figure 8). Overall, the findings of this study suggest that intelligence has a relatively stable 

hierarchy of factor solutions in the five datasets we investigated. The differences between the 

hierarchies of factor solutions in the five datasets were overall comparable to the differences 

typically found between investigations in the field of personality. Lexical studies of personality 

commonly also show considerable agreement but nevertheless also show some deviations across 

different languages or different sets of items (Ashton, Lee, & Goldberg, 2004; Ashton, Lee, 

Perugini et al., 2004).  

Our study provides researchers, test developers, and practitioners with a different 

representation of the structure of intelligence. This different representation has several 
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implications for intelligence research.  

One implication of our study is that its findings provide a basis for structuring future meta-

analyses and reanalyses of intelligence research just like lexical studies studying hierarchies of 

factor solutions and the five- and six-factor taxonomies were useful for personality researchers 

(Ashton & Lee, 2005; Saucier & Goldberg, 2001). The 1-2-3-5 taxonomy includes relatively 

broad factors and can thus be used on datasets that use a variety of different types of intelligence 

batteries. This characteristic may especially be useful when researchers seek to structure literature 

on the relationship between different types of intelligence measures and outcome criteria.  

A second implication of our study for intelligence research is that it could provide a basis 

for the development of new intelligence batteries and measures. One possibility would be to 

develop a battery that captures the entire 1-2-3-5 structure. However, because hierarchies of 

factor solutions typically include considerable overlap between adjacent levels, we believe that a 

convenient approach for researchers could be to target one or two specific levels of the 1-2-3-5 

taxonomy. Researchers could then try to select a set of intelligence tasks that adequately capture 

these levels of the taxonomy (e.g., the third or the second and the fifth level). An advantage of 

this approach is that it is relatively simple. Consequently, there may be a good chance that factor 

solutions replicate well across different contexts and datasets.  

Methodological Implications 

Intelligence research has traditionally focused on higher-order factor analysis and bi-factor 

analysis, and these approaches have contributed to significant progress in the field of intelligence 

research. A limitation of these approaches is that the extraction of factors at each level is affected 

by the extraction of factors at other levels. This characteristic limits the number of hierarchical 

levels in higher-order and bi-factor models to commonly not more than three (cf. Carroll, 1993; 

Mulaik & Quartetti, 1997). The solutions-hierarchy approach adds a different representation of 
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intelligence. Researchers can use the solutions-hierarchy approach to study relationships between 

a large number of levels and to graph relationships between closely related factors. The solutions-

hierarchy approach may especially be useful when researchers are interested in providing a 

description of an intelligence dataset and when they seek to identify differences and similarities 

across datasets from different traditions of intelligence research.  

Another way in which the solutions-hierarchy approach may be useful for researchers is 

when they seek to study correlated factors with different levels of broadness/generality in 

outcome criteria but do not want to make assumptions on the causal direction of the correlations 

(Humphreys, 1981; Sternberg, 1981). The unspecified causal direction between the more general 

and more specific factors in the solutions-hierarchy approach may have practical implications 

when it comes to studying the role of correlated intelligence constructs in outcome criteria (Lang 

et al., 2010; Krumm et al., 2014). When researchers assume that a g factor causes the correlations 

between intelligence tests, the higher-order model and incremental validity analysis are the 

adequate tools for studying the role of g and narrower intelligence constructs in outcome criteria. 

In the higher-order model, g has a causal influence on the narrower cognitive abilities (see Figure 

1a) and the higher-order model therefore assumes that all shared variance between g and the 

narrower cognitive abilities is caused by g. In line with this idea, g should be entered first in 

incremental validity analyses. In contrast, when researchers wish to not make the a-priori 

assumption that shared variance results from g, they can base their research on the bi-factor or the 

solutions-hierarchy approach as both approaches do not make assumptions on the causal order of 

g and the narrower cognitive abilities. In the solutions-hierarchy approach, shared variance 

between g and the narrower cognitive abilities can be retained without assumptions on the source 

of the shared variance. The relationship between the correlated factors from a hierarchy of factor 

solutions and the criterion can then be studied using regression-based techniques that do not use 
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assumptions on a causal order of the predictors (Lang et al., 2010). Regression-based techniques 

of this type include relative importance analysis (Grömping, 2007) and dominance analysis (Azen 

& Budescu, 2003). Studying hierarchies of factor solutions consequently does not only provide a 

different approach for studying the structure of intelligence but also has implications for studying 

relationships between intelligence constructs and outcome criteria.  

Limitations 

One limitation of our study concerns the source of the differences between datasets. As 

noted previously, there were considerable similarities in the factor structures from each of the 

datasets, and these similarities were surprisingly large given that the five datasets considerably 

varied in the used material, the context (applicants vs. volunteers), the time (1940s to the 2000s), 

and the characteristics of the participants. Nevertheless, there were also some relevant differences 

between the datasets. A limitation of our investigation is that it is difficult to tell why these 

differences occurred and what factor likely caused these differences.  

A second limitation is the number of manifest variables in the current analyses. The number 

of tests in the five datasets ranged from 38 to 63. Although these numbers are considerably 

higher than the number of tests in most investigations on the structure of intelligence and are the 

largest available matrices on the general structure of intelligence, these numbers are still 

considerably smaller than the number of manifest variables in studies examining hierarchies of 

factor solutions in the field of personality research. The reason is that gathering data on a 

manifest variable in personality research (a personality item consisting of a Likert-scale rating of 

a personality-related adjective or statement) consumes less time than gathering data on a manifest 

variable in intelligence research (a test consisting of multiple similar items). Nevertheless, the 

factors in the stable taxonomies we identified still were all based on a considerable number of 

variables. Furthermore, it is likely that the variables in intelligence-structure investigations are 
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considerably more reliable than the single-item ratings used in personality research so that the 

higher reliability of the variables may partly make up for the lower overall number of variables.  

Another limitation of our reanalyses is the fact that the datasets in our investigation 

consisted of relatively young samples. The intelligence literature suggests that gc and gf develop 

differently across the lifespan (Cattell, 1963; Horn, 1976) and also that performance in specific 

tests changes differently across the life span and across cohorts (Skirbekk, Stonawski, Bonsang, 

& Staudinger, 2013). We accordingly recommend future research using older and more age-

diverse samples.   

In addition to the described limitations that relate to the nature of the datasets that we 

reanalyzed, there are also limitations of the solutions-hierarchy approach method. One limitation 

of the approach is that it is based on exploratory factor analysis. Exploratory factor analysis is 

data-driven in its nature and does not directly allow researchers to test the degree to which pre-

specified factor models fit a particular dataset.  

A second limitation of the solutions-hierarchy approach is that it is typically difficult to 

objectively judge how many factors should be extracted. Decisions on the number of factors that 

should be extracted typically depends on the interpretation of the factors especially when 

researchers study different datasets. This limitation is not specific to the use of hierarchies of 

factor solutions for the purpose of studying the structure of intelligence.  

A third limitation of the solutions-hierarchy approach is that it is primarily suited to 

describe relationships between intelligence factors. The solutions-hierarchy approach is not 

designed for testing specific causal theories on how intelligence factor influence each other. For 

instance, the solutions-hierarchy approach is capable of describing the correlation of g with gc 

and gf factors at the second level. However, the approach is not capable of, for instance, testing 

theoretical ideas on effects of g on gc and gf (Undheim & Gustaffson, 1987; Valentin Kvist & 
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Gustafsson, 2008).  

Finally, a fourth limitation of the solutions-hierarchy and most other research on the 

structure of intelligence is the fact that factor models do not necessarily provide insights on the 

functional level of the human brain (Bartholomew, 2004). In an ideal scenario, researchers would 

like to find correspondence between intelligence factors identified in research on the structure of 

intelligence and individual differences in biological characteristics. However, correspondences of 

this type are not easy to identify and require biological research (Bartholomew, 2004).   

Future Directions 

Although our investigation was based on five large datasets, it nevertheless seems 

necessary and worthwhile to further investigate the structure of intelligence using the solutions-

hierarchy approach by conducting new research and by applying the approach more broadly in 

other intelligence variable sets and samples. For instance, future research could further 

investigate the memory/perception factor. One possible approach for doing so would be to 

combine perception tasks from the WOTH90 and THUR41 datasets with the memory tasks from 

BEAU02 and WOTH90 in one data collection. Another important goal would be to investigate 

older samples. As we noted in the limitations section, most of the datasets in our investigation 

consisted of relatively young samples and the structure of intelligence may be subject to change 

across the lifespan.  

The development of models of intelligence has often been based on new methods of 

multivariate data analysis, especially in the domain of factor analysis. Examples include 

Spearman’s two-factor theory and Thurstone’s primary mental abilities. The present study is just 

another example for the close relationship between multivariate data analysis and models of 

intelligence. It might therefore be expected that further developments in the domain of factor 

analysis will further our understanding of intelligence. Since the solutions-hierarchy approach 
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does not identify the hierarchical level of the factors with the causal hierarchy of the factors, it 

might be conceived to specify causal relations in a second step. This would allow for a 

specification of causal relations across all levels of the hierarchy (upwards, on the same level, and 

downwards) according to theoretical assumptions and not simply according to the hierarchical 

level of the factors.  

Conclusion 

In this article, we have suggested that studying hierarchies of factor solutions can provide 

novel insights into the structure of psychometric intelligence. In our reanalysis of five datasets, 

we applied the modified solutions-hierarchy approach to five large scale investigations on the 

structure of intelligence. Our analyses suggest that intelligence has a 1-2-3-5 hierarchy of factor 

solutions with a g factor at the top of the hierarchy, gc and gf factors at the second level, a speed-

reasoning-knowledge taxonomy at the third level, and a four- or five-factor taxonomy with a 

speed, a reasoning, a fluency, a knowledge and possibly a memory-perception factor at the fourth 

or fifth level. We believe that these findings provide a building block for future research on 

intelligence using the solutions-hierarchy approach and have the potential to contribute to a better 

understanding of the structure of intelligence.  
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Table 1 
Some Common Ideas on Factor Taxonomies at Different Levels of the Intelligence Hierarchy 
Factors Model/Author(s) Prediction 
1  Jensen, 1998; Lubinski, 2004; P. A. Vernon, 

1988 
Explains 50% of the variance 

1 Gustafsson, 1984; Jensen, 1998; Undheim & 
Gustaffson, 1987; Spearman, 1904 

Fluid tasks like Raven’s progressive matrices have the highest 
loadings.  

1 Robinson (1999, 2005) Knowledge and acquired skills have the highest loadings 
1 Ashton, Lee, and P. A. Vernon (2001, 2005) Fluid and crystallized show similar loadings 
2 P. E. Vernon’s Hierarchical Theory of 

Intelligence (P. E. Vernon, 1950) 
v:ed (verbal:educational) captures abilities like verbal ability, 
numerical facility, logical reasoning and fluency perceptual 
factor labeled k:m (spatial:mechanical) that is dominated by 
spatial abilities, mechanical information, psychomotor 
coordination, reaction times and manual skills 

2 gf-gc theory (R. B. Cattell, 1943b, 1963, J. 
L. Horn, 1965a, 1976 

general crystallized factor (gc) capturing the ability to use 
knowledge, acquired skills, and experience as well as a general 
fluid factor (gf) tapping the ability to think logically and solve 
problems in novel situations. 

3 Gustafsson’s HILI model (Gustafsson, 1984) gf-gc and a visualization factor (gv) that includes all tasks with 
figural content.  

3 Verbal-Perceptual-Image Rotation Model 
(Johnson & Bouchard, 2005) 

Verbal and perceptual factors similar to Vernon’s hierarchical 
theory, additional image rotation factor 

3 Figural-Verbal-Numerical Taxonomy 
(Ackerman, 1988; Ackerman, Beier, & 
Boyle, 2005; Marshalek Lohman, & Snow, 
1983), also included structure of intellect 
model (Guilford, 1967) and the Berlin model 
of intelligence structure (Süß & Beauducel, 
2005) 

Figural, verbal, and numeric content loads on three separate 
factors  

4 Ackerman’s modified version of the radex 
model (Ackerman, 1988; Ackerman et al., 
2005) 

figural, verbal, and numerical power abilities and more basic 
speed abilities 

4 Operation facets of the Berlin model of 
intelligence structure (Beauducel & 
Kersting, 2002; Jäger, Süß, & Beauducel, 
1997; Süß & Beauducel, 2005) 

a broad reasoning factor that primarily captures the ability to 
think logically, a memory factor, a fluid ability factor that taps 
the ability to generate diverse ideas and material like words or 
figural shapes, and a speed factor that captures the ability to 
process material and quickly solve simple tasks.  

5 Extended gf-gc theory(Hakstian & Cattell, 
1974; J. L. Horn, 1965a; J. L. Horn & 
Cattell, 1966) 

gf-gc and additionally: general cognitive speed (gs), 
visualization capacity (gv) that taps the ability to integrate and 
organize visual material, general memory capacity (gm), and 
general retrieval capacity (gr) that captures the ability to retrieve 
information from long-term memory and is largely similar to the 
concept of fluency in other intelligence models. A notable 
difference, however, is that verbal and word fluency factors are 
assigned to gc and not to the gr dimension in the theory so that 
that gr is not perfectly identical to fluency constructs in other 
frameworks.  

7 Three stratum theory of cognitive abilities 
(Carroll, 1993) 

Second stratum includes gc, gf, gv, gs, and gr from the extended 
gf-gc theory and additionally two new factors: Auditory 
perception and reaction time decision speed 

8 Primary Mental Abilities (Thurstone 1938; 
Thurstone & Thurstone, 1941) 

Word fluency, verbal comprehension, spatial visualization, 
number facility, associative memory, reasoning, and perceptual 
speed 
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Table 2 

Datasets Included in the Review 

  Sample  Material 
Label Author(s) and year of 

publication 
N Characteristics  No. Source(s) 

THUR41 Thurstone and 
   Thurstone (1941) 

710 Elementary 
school children,  

 60 New developments; tests 
from previous publications by 
L. L. Thurstone (1938a, 
1938b)  

HORN65 J. L. Horn (1965a) 297 Prisoners, school 
children, and 
unemployed 
persons, mean 
age: 27.6 years 
(SD = 10.6; 
Range = 14–61); 
27.61 percent 
female 

 38b 7 tests taken from Botzum 
(1951) 
5 tests taken from previous 
research by R. B. Cattell 
2 tests from previous research 
by J. P. Guilford 
3 tests from previous research 
by L. L. Thurstone  
1 test taken from Taylor 
(1947) 

SCHO76 Scholl (1976) 276 German police 
trainees, mean 
age: 20.4 years 
(Range = 16–36) 

 63 57 translations of tests from 
the 1963 Kit of Factor-
Referenced Tests (French, 
Ekstrom, & Price, 1963);  
3 newly developed tests;  
2 tests from the 
Leistungsprüfsystem (LPS; 
W. Horn, 1962);  
1 test from the 
Intelligenzstrukturtest (I-S-T; 
Amthauer, 1955) 

WOTH90 Wothke, Bock,  
   Curran, Fairbank, 
   Augustin, Gillet,  
   and Guerrero     
   (1990) 

6,751 overall but 
participants 
worked on 
different booklets, 
Ns for each 
correlation vary 
between 207–701; 
harmonic mean 
230 

Air-force recruits, 
16.9 percent 
female 

 56 Armed Services Vocational 
Aptitude Battery (ASVAB, 
10 tests); 46 tests from the 
1976 Kit of Factor-
Referenced Tests (Ekstrom, 
French, Harman, & Derman, 
1976) 

BEAU02 Beauducel and    
   Kersting (2002)a 

16,823 Applicants for 
governmental 
positions in 
Germany, Mean 
age: 21.39 (SD = 
4.41; Range = 15–
57); 58.10 percent 
female 

 44 New developments; fluid 
tasks are based on previous 
work by Jäger, Süß, and 
Beauducel (1997) 

aThe dataset we analyzed in the current article is an extended version of the dataset analyzed in the 2002 publication.  
bAdditionally includes six tests measuring attention and one test that was highly similar to another test (both were 
mechanical knowledge tests and correlated at r = .69). Because attention is considered to be related to intelligence 
but is treated as a separate construct in the literature (e.g., de Jong & Das-Smaal, 1995; Schweizer, Moosbrugger & 
Goldhammer, 2005) and because the parallel tests yielded a strong test-specific factor, these tests were excluded.  
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Figure 1. The higher-order model and the bi-factor model are shown in (a) and (b), respectively. 

These models seek to find the most parsimonious hierarchical solution. In contrast, the 

hierarchies of factor solutions approach shown in (c) separately extracts solutions with different 

numbers of factors from the same indicators and then studies correlations between these factors 

and represents a different analytical strategy. FUF = first unrotated factor.
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Figure 2. First fifteen eigenvalues (o) and first fifteen simulated random eigenvalues from Horn’s 

parallel analysis procedure (x) for the five datasets included in the present study.  
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Figure 3. The hierarchical structure of the Thurstone and Thurstone (1941) dataset.  
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Figure 4. The hierarchical structure of the J. L. Horn (1965a) dataset.  
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Figure 5. The hierarchical structure of the Scholl (1976) dataset.  
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Figure 6. The hierarchical structure of the Wothke, Bock, Curran, Fairbank, Augustin, Gillet, and 

Guerrero (1990) dataset.  
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Figure 7. The hierarchical structure of the Beauducel and Kersting (2002) dataset.  
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Figure 8. Overview and summary of the findings. The numbers in parentheses indicate the 
number of datasets with evidence for the respective factor.  

 


