Advanced search
1 file | 387.62 KB

Fischer decomposition for the symplectic group

Author
Organization
Abstract
We prove the Fischer decomposition for the space of spinor-valued polynomials, defined on Euclidean space of four-fold dimension, in terms of irreducible modules for the symplectic group, consisting of so-called osp(4|2)-monogenics.
Keywords
QUATERNIONIC CLIFFORD ANALYSIS, HIGHER SYMMETRIES, FUNDAMENTS, LAPLACIAN, EQUATIONS

Downloads

  • 2018 fb hds de rl vs Fischer decomposition for the symplectic group.pdf
    • full text
    • |
    • open access
    • |
    • PDF
    • |
    • 387.62 KB

Citation

Please use this url to cite or link to this publication:

Chicago
Brackx, Fred, Hennie De Schepper, David Eelbode, Roman Lávička, and Vladimir Souček. 2018. “Fischer Decomposition for the Symplectic Group.” Journal of Mathematical Analysis and Applications 458 (1): 831–848.
APA
Brackx, Fred, De Schepper, H., Eelbode, D., Lávička, R., & Souček, V. (2018). Fischer decomposition for the symplectic group. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 458(1), 831–848.
Vancouver
1.
Brackx F, De Schepper H, Eelbode D, Lávička R, Souček V. Fischer decomposition for the symplectic group. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. Elsevier BV; 2018;458(1):831–48.
MLA
Brackx, Fred, Hennie De Schepper, David Eelbode, et al. “Fischer Decomposition for the Symplectic Group.” JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 458.1 (2018): 831–848. Print.
@article{8562030,
  abstract     = {We prove the Fischer decomposition for the space of spinor-valued polynomials, defined on Euclidean space of four-fold dimension, in terms of irreducible modules for the symplectic group, consisting of so-called osp(4|2)-monogenics.},
  author       = {Brackx, Fred and De Schepper, Hennie and Eelbode, David and L{\'a}vi\v{c}ka, Roman and Sou\v{c}ek, Vladimir},
  issn         = {0022-247X},
  journal      = {JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS},
  keyword      = {QUATERNIONIC CLIFFORD ANALYSIS,HIGHER SYMMETRIES,FUNDAMENTS,LAPLACIAN,EQUATIONS},
  language     = {eng},
  number       = {1},
  pages        = {831--848},
  publisher    = {Elsevier BV},
  title        = {Fischer decomposition for the symplectic group},
  url          = {http://dx.doi.org/10.1016/j.jmaa.2017.09.041},
  volume       = {458},
  year         = {2018},
}

Altmetric
View in Altmetric
Web of Science
Times cited: