Heterocellular 3D scaffolds as biomimetic of peritoneal metastases

Elly De Vlieghere1,2, Emiel De Jaeghere3, Jasper Van Hoorick3, Glenn Wagemans1, Leen Pieters4, Elodie Melsens5, Sara Neyt6, Bruno De Geest7, Peter Dubruel3, Wim Ceelen3, Heidi Declercq3, Olivier De Wever1,2
1) Laboratory of Experimental Cancer Research, Ghent University, Belgium. 2) Cancer Research Institute Ghent (CRIG), Ghent University, Belgium. 3) Polymer Chemistry and Biomaterials Group, Ghent University, Belgium. 4) Department of Basic Medical Science, Ghent University, Belgium. 5) Department of Surgery, Ghent University hospital, Belgium. 6) MOLECUBES NV, Ghent, Belgium. 7) Laboratory of Pharmaceutical Technology, Ghent University, Belgium.

INTRODUCTION
Peritoneal carcinomatosis is a major source of morbidity and mortality in patients with advanced abdominal neoplasms. Intraperitoneal chemotherapy (IPC) is an area of intense interest given its efficacy in ovarian cancer. However, large peritoneal metastases with adequate blood flow have a high interstitial fluid pressure, which inhibits intratumoral drug distribution (1). To study drug penetration and its influencing factors, reliable in vivo models that mimic peritoneal metastases are crucial.

EXPERIMENTAL METHODS
Poly-lactic acid scaffolds of 0.1cm³ were coated with gelatin and were seeded with combinations of ovarian cancer cells (SK-OV-3-Luc-eGFP, 2x10⁶) and cancer-associated fibroblasts (CAF, 8x10⁶). Viability of these tumor scaffolds was longitudinally monitored by bioluminescent imaging (BLI) and assessed by end-point Live/Dead staining. Cancer cell-CAF organization in the scaffolds were visualized by histology, scanning electronic microscopy (SEM, fig 1A) and confocal microscopy (fig 1B). After 3 weeks of in vitro culture, the tumor scaffolds were intraperitoneally implanted onto the peritoneal wall. Cancer cell viability was monitored by BLI, blood vessel infiltration by μCT and tissue formation and organization by histology (fig 1C-E).

RESULTS AND DISCUSSION
CAFs (fig 1B red) are organized into spheroids between the pores, whereas cancer cells (fig 1B green) grow both on the scaffold struts and also in the aforementioned spheroids. Cancer cells adhered to the 3D scaffolds follow the print direction of the struts. After in vivo implantation, tumor scaffolds become vascularized (fig 1D) and show exponential growth of cancer cells. Histological analysis reveals infiltration of host fibroblasts, inflammatory cells and both small and large pericyte-covered blood vessels. All these histological aspects show remarkable similarities to size-comparable covered peritoneal metastases of ovarian cancer patients (fig.1E-F).

CONCLUSION
In vitro cultured heterocellular 3D scaffolds become functionalized in vivo by the host. The newly formed tissue remarkably biomimics a peritoneal metastasis of an ovarian cancer patient. This model opens new opportunities for therapeutic evaluation of drugs against peritoneal metastases (and their microenvironment).

ACKNOWLEDGMENTS: The authors would like to thank the Research Council of Ghent University for providing financial support to this project.