Variation in the Vowel System of Mišótika Cappadocian: Findings from Two Refugee Villages in Greece

Nicole Vassalou1,2, Dimitris Papazachariou1 & Mark Janse2
University of Patras1 & Ghent University2

vasnicol@hotmail.com, papaz@upatras.gr & mark.janse@ugent.be

ABSTRACT

The paroxyza erevna exhe tis allaghs pou faivetai na eche upostei to phonetikou systhma twn Mesiwtikwn, pou apostelei mia glwsiaki poiikhli tis Kapadokikh diaklektou. Ouiastrakta, estiadizei sti sýkrisi tou glwsioukou syshtmata pou chrismopoioun fusiako omyliptes tis diaklektou, oi otopoi omws diamevoun se duo diaforetikes Kapadokikhes koivntites sthn Ellada. Sotchos mas apostelei na prosbadiorismoume kai na ermnevoume ta morphi pou eche parhe to phonetikou systhma tis Kapadokikhs poiikhles stis meres mas, kathws kai na analusoume tis diafereves metaxai touv omyliptow tou duo glwsioukou syshtmator, lamyvanontas upothi toun mekanismou glwsiakhs etaphhs kai alalhhs, kathws kai tis koivnikhes parameptrous pou faivetai na epterezeun ton dialektiko systhma tis kath periexh.

Ei melite basizetai sti analwsi euggrafhereon fusiako dialektikou logou omyliptwn tou diaklektou pou kataikoun sti chwria Neo Agiwneri (nomo Kilkis) kai Zipehori (nomo Thessalonikhs). An kai auta ta chwria briskeontai arketae konta sto ena sto allo parousiastoun duo basikes diafarees, oi suneptes touv opoioi faivetai na antanaklwnou sto trpo omylias touv dialektowvn. H prwti diafora estiadizei sto eidos tou plithumou pou diamevei sto kath chwri. Dioti to Neo Agiwneri apostelei ena omoiogenes chwria, se antithese me to Zipehori pou einai meikto, kathws kataikoun se auti kai alloi dialektotoroun kato apo Miwiwtes. H deuteri basikis diaforas echei na kaine me th stath touv omyliptwn atopanti sto chrhse tou diaklektou. Autou pou diapistwtheke einai oti oi omyliptes apo to Neo Agiwneri einai pie dektikoi sto chrhse tou diaklektou se kathemeri bhs, enw antitheta autoi apo to Zipehori parousiasthoun mia pie diastatikhe kai symba arfhntikhe stath, ferevontas sto phí souvnetes tou koivnikou stigmatismu kai tou glwsiakhs fthoras pou faivetai na eche upostei to dialektikou systhma meta th eugkatástasa tou Kapadokwn prosfiwn sthn Ellada (1924).

Ows ek toutou, th morphi tou phonetikou syshtmata stis meres mas deixnei na apoklini sypeanika apo to palaioterono glwsiako systhma tou diaklektou, kai paralalla phanevounontai diafarees ston trpo omylias ton plprogramunton tou idiou glwsioukou syshtmator exaitias touv yparxeis etaphhs, kata omws apo diaforetikes koivnuglwsisikhes synhthkes.

Key Words: Mišótika, vowel system, linguistic change, sociolinguistic parameters.

1. INTRODUCTION

The present study examines the vowel system of contemporary Mišótika, which is a variety of Cappadocian Greek originally spoken in Misti. The aim of this research is to present the linguistic changes that the vowel system of Mišótika has undergone, concentrating on the speech of elderly informants in two villages in present-day Northern Greece. Another goal is to analyse the distribution of the vowels in the vowel spectrum and determine their phonological status. In particular, we want to compare the speech of native speakers from the two Cappadocian refugee communities and analyse the differences between the two, taking into consideration mechanisms of language contact and linguistic change and also the social parameters that influence the dialectal system.

This paper is structured in six parts. Section 2 contains some basic information about the historical and linguistic background of Cappadocian Greek and the variety of Misti. In section 3 we present the methodology used to approach the dialectal system. In section 4 we showcase the
results of speech analysis and in section 5 the interpretation of the vowel distribution. Finally, in section 6 we detail the primary conclusions of the present research.

2. HISTORICAL AND LINGUISTIC BACKGROUND

The Cappadocian dialect was spoken in the Central Anatolian Region of present-day Turkey, until 1924. Cappadocian is a linguistic variety of Greek origin which had been in contact with Turkish for almost nine centuries after the invasion of the Seljuks in the 11th century and the conquest of Byzantine Asia Minor by the Ottoman Turks in the 14th century. The result of this contact is apparent in the Cappadocian lexicon, phonology, morphology and syntax, although the exact impact varies among the different subdialects according to the nature and duration of the contact situation.

One of the Cappadocian villages was Misti, which was considered a homogeneous town without close contact with Muslim groups according to Dawkins (1916: 19). In 1924, the Cappadocians were forced to leave their homeland as part of the population exchange between Greece and Turkey. The inhabitants of Misti, estimated at around 400 families, were scattered all over Greece and settled in over twenty different villages and towns (homogeneous and mixed).

More specifically, Cappadocians settled either in homogeneous villages with other Cappadocian speakers or in villages with other Greek dialect speakers (locals or/and refugees) or in big cities like Athens and Thessaloniki. As a consequence, the descendants of the Cappadocian refugees have been in contact with different varieties of Greek during the last hundred years, under different conditions, which complicates the study of their speech, as there are several different versions of contact for the same linguistic system.

Moreover, we can perfectly well appreciate the pressure that the Cappadocians felt from the locals with whom they were in contact after the population exchange, and the severe stigma that any Turkish characteristics carried for many decades, not just in the language but in other aspects of social behaviour as well. One of the results of this stigmatization is to be found in the linguistic system of the variety, as the refugees were trying to hide the use of Cappadocian, as well as to accommodate as quickly as possible to the new linguistic environments. The social stigmatization and in some cases the attrition process of the dialect complicate the study of Mišótika to a very high degree.

As far as the vowel system of the Mišótika dialect is concerned, we have to point out that according to Dawkins, who conducted fieldwork in Cappadocia in the years 1909-1911, the Cappadocian vowel system, including of the dialect of Misti, consisted of eight vowels, aligning it with the vowel system of Turkish.

Figure 1: The older Cappadocian vowel system

The vowels {i, e, a, o, u} are common Greek, but the other three {y, œ, ɯ} are borrowed from Turkish. The latter vowels appear mainly in Turkish loans, e.g. kari ‘woman’ > {kaˈru}, tǖgün ‘tobacco’ > {tyˈtyn}, whereas their presence in Greek words is rare, if not unattested, e.g. σκυλιού > {ʃciˈʎu} > {ʃcyˈʎy}, τουτούτ > {tyˈtyt}, ἰκουσέν > {ˈiksen} > {ˈyksen} (Janse 2009: 40f, 2017: §6.1.1).\(^1\)

---

\(^1\) The very scanty evidence does not allow any speculations about the exact conditions under which {i} or {u} could change to {y} in certain environments. The examples quoted are isolated even in the respective dialects from which they were taken.
3. METHODOLOGY

The present study is based on recordings of elderly native speakers of Mišótika who live in two different villages in Greece, one in the prefecture of Kilkis (in the village of Neo Agioneri), and the other in the prefecture of Thessaloniki (in the village of Xirohori).

Although these villages are very close to one another (the distance between them is less than 10 kilometres), they present two major differences. Neo Agioneri today, is a homogeneous village with Cappadocian speakers, whereas Xirohori is a mixed village, inhabited not only by Cappadocians but also by other Greek-dialect speakers. Another distinctive characteristic of the two villages is the attitude of the inhabitants towards Mišótika. It seems that speakers from Neo Agioneri are more receptive to the use of the dialect. The elderly speakers from Xirohori, by contrast, present an overt negative attitude, perhaps reflecting the consequences of social stigmatization that their dialect has undergone after the population exchange of the 1920s.

The data for the present research was recorded using ethnographic methods of data collection. The fieldwork was conducted by a trained member of the community, who is a bilingual native speaker of Mišótika and Standard Modern Greek (SMG). The informants were recorded in pairs for more than one hour, producing casual speech.

The transcription of the recordings was also made by bilingual speakers of Mišótika and Standard Modern Greek. The transcription was only orthographic in Greek at first stage, since not being trained linguists, the transcribers could not transcribe the recordings according to the International Phonetic Alphabet. We should mention, however, that we asked our transcribers to use capital letters instead of small print, whenever they heard a sound that they could not identify as a SMG vowel. We followed this method hoping that our transcribers would identify vowels that are part of the Mišótika vowel system, but do not exist in SMG. We thought that such a method was an efficient way to approach the linguistic system of Mišótika, as best we could. Nevertheless, it is important to say that we do not take their suggestions for granted, but as a preliminary hypothesis to be evaluated.

The transcribers used five small and five capital letters, theoretically identifying ten different vowels. The five vowels transcribed with small letters {i, e, a, o, u} were identified as being similar to the five vowels of the SMG, viz. /i, e, a, o, u/. The five vowels transcribed with capital letters {I, E, A, O, U} were identified as being different from the SMG vowels. Formant analysis helped us to find the realization area of these particular sounds and compare them with the five vowels of SMG, as well as, with descriptions in the existing literature. More specifically, then, we wanted to investigate whether any of these sounds coincide with the vowels mentioned by Dawkins (1916) and others, and also verify whether these vowels as identified by the transcribers are indeed realized as distinct vowels.

We examined eight elderly male speakers (70+ years old) of Mišótika from Neo Agioneri and Xirohori, four from each village. 1,000 tokens were collected from each informant, totalling 8,000 tokens. PRAAT (Boersma & Weenink 2013) was used for the transcription, annotation and formant analysis of the data. The results of the formant analysis were normalized, following the Watt & Fabricius normalization method, with the help of NORM (The Vowel Normalization and Plotting Suite, Thomas & Kendall 2007), an electronic database designed to aid phoneticians in manipulating, normalizing, and plotting vowel formant data.

4. RESULTS

In this section, we present the results provided by the measurements of the study on the speech of the speakers of Mišótika from the two different refugee villages and discuss the distribution of the vowels in the vowel spectrum. The following charts are divided according to the two informant groups and exhibit the realization of the vowels in the speech of the eight native speakers of Mišótika.

---

2 The Watt & Fabricius normalization method is based on central values by speaker and is utilized to reduce the differences between the speakers, but in essence the individual differences related to the physiological articulation system of every speaker are lost, while at the same time it retains the systematic differences between the vowel systems of the informants.
4.1. The speakers from Neo Agioneri

The analysis of the speech of informants from the speech community of Neo Agioneri, highlighted the distribution of the vowels according to the F1 and F2 values. In Figure 2, we can see the charts of stressed and unstressed vowels of speakers and then the table of the F1 and F2 values with the number of detected sounds.

Before we present the result of the analysis, we would like to explain very briefly, what the following charts actually show. In particular, the vertical axis refers to the normalized F1 value, which is a measurement that indicates the position of the tongue in relation to the high/low axis. The horizontal axis refers to the normalized F2 value, which shows the position of the tongue in the mouth in relation to the front/back axis. Each point on the chart with a letter next to it refers to the value of F1 and F2 of each particular vowel, and the ellipses around it presents the area that the majority of realizations of each vowel occupy in the vowel spectrum. The ellipses are derived from the statistical algorithm that calculates the 1.5 standard deviation of the values in the x- and the y-axis. This covers approximately 74% of the instances.

Figure 2: The stressed and unstressed vowels from Neo Agioneri

Figure 2 shows the distribution of the five vowels {i, e, a, o, u} which are similar to the vowels of SMG. The stressed vowels are clearly distinct from each other (apart from {o} and {u} which present a partial overlap), and the unstressed vowels also present a partial overlap, between {i} and {e} as well as between {o} and {u}, as is usually the case in the vowel systems of Modern Greek and its dialects (cf., among many others, Fourakis et al. 1999; Sfakianaki 2002).

Apart from the five vowels that exist in SMG, our transcribers identified five more vowels using capital letters {I, E, A, O, U}. At this point, we would like to reiterate that we do not take the above identifications for granted, but try to evaluate their indications. These five other vowels appear in infrequent to very infrequent instances, as can be seen in Table 1.
Table 1 The F1 and F2 values of the vowels from Neo Agioneri

<table>
<thead>
<tr>
<th>Vowel</th>
<th>F1</th>
<th>F2</th>
<th>Records found</th>
<th>Vowel</th>
<th>F1</th>
<th>F2</th>
<th>Records found</th>
</tr>
</thead>
<tbody>
<tr>
<td>{i}</td>
<td>0.754</td>
<td>1.587</td>
<td>307</td>
<td>{i}</td>
<td>0.790</td>
<td>1.538</td>
<td>543</td>
</tr>
<tr>
<td>{I}</td>
<td>0.768</td>
<td>1.482</td>
<td>2</td>
<td>{I}</td>
<td>0.845</td>
<td>1.469</td>
<td>5</td>
</tr>
<tr>
<td>{e}</td>
<td>1.030</td>
<td>1.396</td>
<td>220</td>
<td>{e}</td>
<td>0.983</td>
<td>1.454</td>
<td>312</td>
</tr>
<tr>
<td>{E}</td>
<td>1.323</td>
<td>1.211</td>
<td>58</td>
<td>{E}</td>
<td>1.260</td>
<td>1.310</td>
<td>46</td>
</tr>
<tr>
<td>{a}</td>
<td>1.446</td>
<td>1.091</td>
<td>334</td>
<td>{a}</td>
<td>1.418</td>
<td>1.154</td>
<td>928</td>
</tr>
<tr>
<td>{A}</td>
<td>1.549</td>
<td>1.087</td>
<td>3</td>
<td>{A}</td>
<td>1.440</td>
<td>1.237</td>
<td>7</td>
</tr>
<tr>
<td>{o}</td>
<td>0.968</td>
<td>0.780</td>
<td>219</td>
<td>{o}</td>
<td>0.976</td>
<td>0.803</td>
<td>224</td>
</tr>
<tr>
<td>{O}</td>
<td>1.226</td>
<td>0.645</td>
<td>2</td>
<td>{O}</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>{u}</td>
<td>0.784</td>
<td>0.819</td>
<td>115</td>
<td>{u}</td>
<td>0.810</td>
<td>0.879</td>
<td>343</td>
</tr>
<tr>
<td>{U}</td>
<td>0.749</td>
<td>0.916</td>
<td>14</td>
<td>{U}</td>
<td>0.824</td>
<td>1.167</td>
<td>12</td>
</tr>
</tbody>
</table>

The sound that our transcribers transcribe with capital {A} appears only ten times altogether in the speech of the informants from Neo Agioneri: three times as a stressed and seven times as an unstressed vowel. Capital {O} appears only twice as a stressed vowel, and capital {I} is identified only seven times: twice as a stressed and five times as an unstressed vowel. Conversely, capital {U} appears frequently in fourteen stressed and twelve unstressed tokens respectively.

As for the distribution of {I, A, O, U}, we note that capital {I} is realized as a high front vowel, {A} as a low front vowel, {U} as a high vowel with a tendency for a less back realization and {O} as a really back vowel. However, what is particularly interesting is the distribution of the vowel transcribed with capital {E}. This vowel is identified much more frequently than the other vowels with capital letters. In particular, we find it in 58 tokens as a stressed and in 46 as an unstressed vowel. Based on the charts (Figure 2), we observe that capital {E} is realized between [e] and [a] according to both F1 and F2 values, which means that it is a vowel lower than [e] and more front than [a]. Finally, it seems that its distribution is quite similar in both charts.

4.2. The speakers from Xirohori

The results provided by the study of the speech of males from Xirohori indicate that there are some remarkable deviations from the vowel system of speakers from Neo Agioneri. More specifically, we discovered that there are some differences in the distribution of the five vowels {i, e, a, o, u}. It seems that these vowels create a smaller vowel spectrum than that of the speakers from Neo Agioneri, with typical examples the less low realization of {a} and the close distance between {i} and {e}. Nevertheless, the stressed vowels are distinct from each other once again, and the unstressed vowels are closer to each other, with many more overlaps between {i} and {e}, as well as between {o} and {u}, as can be seen in Figure 3. Also, the (e) and (a) vowel realization seems to be very close to each other, something we have not seen in the spectrums of the informants from Neo Agioneri.
As to the sounds transcribed with capital letters, it seems that capital {I} is not realized by the speakers from Xirohori at all. Capital {A} is found only twenty two times altogether: ten times as a stressed and twelve times as an unstressed vowel, as can be seen in table 2. Its distribution presents an extended overlap between {e}, {a} and capital {E} as well, especially in the chart of stressed vowels. Capital {O} appears only four times: twice as a stressed and twice as an unstressed vowels respectively, and it is realized in a high and back position.

Table 2 The F1 and F2 values of the vowels from Xirohori

<table>
<thead>
<tr>
<th>Vowel</th>
<th>F1</th>
<th>F2</th>
<th>Records found</th>
<th>Vowel</th>
<th>F1</th>
<th>F2</th>
<th>Records found</th>
</tr>
</thead>
<tbody>
<tr>
<td>{i}</td>
<td>0.786</td>
<td>1.508</td>
<td>260</td>
<td>{i}</td>
<td>0.819</td>
<td>1.451</td>
<td>510</td>
</tr>
<tr>
<td>{e}</td>
<td>1.098</td>
<td>1.346</td>
<td>226</td>
<td>{e}</td>
<td>1.005</td>
<td>1.361</td>
<td>302</td>
</tr>
<tr>
<td>{E}</td>
<td>1.315</td>
<td>1.235</td>
<td>51</td>
<td>{E}</td>
<td>1.216</td>
<td>1.294</td>
<td>46</td>
</tr>
<tr>
<td>{a}</td>
<td>1.418</td>
<td>1.119</td>
<td>310</td>
<td>{a}</td>
<td>1.294</td>
<td>1.166</td>
<td>874</td>
</tr>
<tr>
<td>{A}</td>
<td>1.415</td>
<td>1.220</td>
<td>10</td>
<td>{A}</td>
<td>1.406</td>
<td>1.335</td>
<td>12</td>
</tr>
<tr>
<td>{o}</td>
<td>1.039</td>
<td>0.791</td>
<td>229</td>
<td>{o}</td>
<td>0.970</td>
<td>0.806</td>
<td>205</td>
</tr>
<tr>
<td>{O}</td>
<td>1.034</td>
<td>0.670</td>
<td>2</td>
<td>{O}</td>
<td>0.876</td>
<td>0.673</td>
<td>2</td>
</tr>
<tr>
<td>{u}</td>
<td>0.823</td>
<td>0.783</td>
<td>88</td>
<td>{u}</td>
<td>0.830</td>
<td>0.876</td>
<td>268</td>
</tr>
<tr>
<td>{U}</td>
<td>0.854</td>
<td>0.894</td>
<td>27</td>
<td>{U}</td>
<td>0.826</td>
<td>0.919</td>
<td>7</td>
</tr>
</tbody>
</table>

In addition, the vowel transcribed as capital {U} is realized as a high vowel and in a clearly back position. As we can see, its distribution is detected within the realization area of {u}, especially in the chart of unstressed vowels, which means that it is not realized differently from [u] vowel, something that it is not observed by the speakers from Neo Agioneri. Also in the chart of unstressed vowels, a partial overlap between the back vowels is detected, something that is realized among the front vowels as well.

Looking at the distribution of the capital vowel {E} in the vowel spectrum, it seems that it is realized by the speakers from Xirohori in a position similar to the males from Neo Agioneri, which is
lower than [e] and more front than [a], and at a similar percentage rate as well: 51 tokens in stressed and 46 tokens in unstressed position. It is clear that this vowel is different from the five vowels found in SMG and is used much more frequently than the other vowels transcribed with capital letters. Overall, the results of the present investigation demonstrate a clear numerical distinction between vowels that exist in SMG and vowels that do not.

5. DISCUSSION

To summarize the distribution of the vowels that the transcribers, as native speakers of the dialect, identified with capital letters, it is essential to discuss the cases individually. Firstly, we have seen that capital {O} appears quite infrequently, as we found only two tokens in the speech of the informants from Neo Agioneri and four tokens in the speech of the males from Xirohori. This vowel is realized as a really back [o] in both groups of speakers. Nevertheless, this sound does not seem to coincide with the rounded open-mid front vowel [œ] identified by Dawkins as a “modified” (1916: 39) and “soft” vowel (1916: 41). Therefore, the very few instances and the inconsistencies of their F1 and F2 values do not allow us to accept our transcribers’ identification of {O} as a distinct sound.

As for capital {A}, we also have very few tokens and most of them in the speech of the inhabitants from Xirohori. This vowel is realized as a really low [a] although it is produced within the realization area of {a} in any case. In the speech of the informants from Xirohori its distribution presents an extended overlap between {e}, {a} and the capital {E}, with the existence of some divergent realizations of capital {A} especially in the chart of unstressed vowels. Similarly, this sound does not seem to coincide with any of the older Cappadocian vowels. The fact that this vowel did not exist in the older Cappadocian system, combined with its low frequency, does not allow us to accept it as a distinct sound in the Mišótika vowel system.

Nevertheless, in order to investigate the divergent realizations of capital {A}, we studied the environments in which {A} appears in the speech of the informants of both villages. In particular, we noticed that it is usually detected as a variant of capital {E}, as the transcriber in the same structures sometimes indicates the detected sound with capital {A} and others with capital {E}, as detailed in the examples below:

1) ντΕρΕ - ντΑρΑ (/de’re/- /da’ra/ “now”)
2) κΕλρια - κΑλρια (/khe’lerja/ - /kha’larja/ “rock-cut chamber, storehouse”)

Consequently, the high vowel described with capital {I} can be identified as referring to the older Cappadocian vowel [y], a high front rounded [i], according to the F1 and F2 values. However, this vowel seems to be in the process of elimination, as [y] appears in very small numbers (only 7 times) in the speech of the informants from Neo Agioneri, whereas it is not realized at all in the speech of those from Xirohori.

On the other hand, our data shows that the vowel transcribed with capital {E} presents a different pattern. First of all, it is not realized as the older Cappadocian [+round, +front] [œ], but as a [-round, +front] [æ]. Moreover, this [æ] vowel seems to appear systematically in the speech of both villages and in both stress conditions. More specifically, when we studied the environments in which [æ] appears, we noticed that it is realized mainly in the ultimate stressed syllable of disyllabic words, i.e. in the stressed syllable of an iambic foot. Sometimes, it is also found in the unstressed syllable of an iambic foot, but on the condition that the same vowel [æ] appears in the stressed syllable of the same foot as well, probably as a result of regressive vowel harmony, as we can see in the examples below:

3) [de’rae] or [dæe’rae] < Medieval Greek εδάρε “now”

3 It should be noted that this type of harmony (regressive) is different from the progressive vowel harmony found in Turkish and other Altaic languages, which applies to suffixes (see Archangeli & Pulleyblank 2007 on different types of harmony). The progressive vowel harmony of the Turkish type is found in Cappadocian as well (Janse 2009: 39f, 2017: §6.2.1.4.1). For other examples of regressive vowel harmony, traditionally called regressive vowel assimilation, in Cappadocian see Dawkins (1916: 64f.) and Janse (2017: §6.2.1.4).
4) [te'mær] or [te'mær] < Medieval Greek ἡμέτερος “our”
5) [se'veær] or [sæ'veær] < Turkish sever “time”

It seems that its realisation in the unstressed position was not obligatory, but optional and only in the metrical environment previously described. What may be inferred from the absolute numbers and percentages, is that the vowel [æ] is either in the process of high reduction and possible loss or in the first stages of its appearance. We have to stress that in one of our previous studies (Vassalou et al. 2017), we concluded that it should be in the first stages of its appearance.

This new variant [æ] is found in particular lexical items and assumed an additional part in the vowel system, i.e. as a variant of /e/ in very specific phonological/phonetic contexts, but it still has a small percentage of appearance, viz. less than 25%. The fact that this sound is found at the same rate by the speakers of both villages is something that reinforces the conclusion that the vowel has a place in the vowel system of Mišótika and displays systematic distribution of appearance.

Finally, as for the high vowel transcribed with capital {U} this could easily refer to the older Cappadocian vowel [u], a high back unrounded [u], according to the F1 and F2 values. However, it seems that this vowel is also in the process of extinction, as it has low percentages of appearances. Especially in the charts of unstressed, there is a difference in the realization of {U} between the speakers of the two villages. In the chart from Neo Agioneri, the vowel has a tendency for a less back realization, while in Xirohori all its realizations are produced within the realization area of [u]. Examining our data, we studied the environments in which [u] appears and we noticed that it is detected in specific environments presenting a quite similar behaviour to that of the [æ] vowel. In particular, it appears mainly in the ultimate stressed syllable of disyllabic or polysyllabic words, i.e. in the stressed syllable of an iambic foot. Sometimes, it is also found in the unstressed syllable of an iambic foot, but with the precondition that the same vowel [u] is realized in the stressed syllable of the same foot as well, something we have observed in both cases in the appearance of the [æ] vowel, as we can see in the examples below:

6) [tu'ndur] or [tu'ndur] < Turkish tandur “clay oven”
7) [pa'mbur] or [pa'mbur] < Turkish vapur “steamer”

According to our data, we observed that in the same structures there were times when the detected sound is realized with [u] and others with [u], something that justifies the existence of overlapping between the two sounds in the vowel spectrums. What may be inferred is that the realization of the older Cappadocian [u] vowel is often optional, and it seems to be assimilated with [u], because of the language contact with SMG, since the settlement of the Cappadocian refugees in Greece.

6. CLOSING REMARKS

Wrapping up the previous discussion, we hope to have shown that our data indicate that the vowel systems of the speakers from the two Cappadocian refugee communities diverge from the older system described by Dawkins (1916, figure 1). In particular, the speech of both speech communities provide evidence for the existence of a new variant of the phonological unit /e/, i.e. the [-round, +front] vowel [æ], which seems to appear systematically in the vowel system of Mišótika as a variant of /e/. Furthermore, this new variant appears in very specific metrical contexts, specifically as the stressed – and sometimes as the unstressed – vowel of an iambic foot in disyllabic words. At the same time, the three vowels reported by Dawkins which do not exist in SMG are either lost (like the mid back rounded [œ] and the high front rounded [y]) or at the very last stage of elimination (like the high back unrounded [u]).

If the only changes that appeared within Mišótika was the loss – or the process of assimilation – of the three “Turkish” vowels, we would speak for a process of attrition. However, the existence of a new variant, i.e. [æ], which does not exist in SMG and appears quite systematically, leads us to the conclusion that the above two phenomena can easily be interpreted as a levelling process
towards a new koine⁴, as Mišótika has been in contact with SMG and other Greek varieties since the population exchange of the 1920s. Something we also argued in a previous paper of ours (Vassalou et. al. 2017).

Furthermore, we have evidence that there are differences between the two Cappadocian speech communities. In particular, it seems that the vowel system of the inhabitants of both villages diverges from the older one described by Dawkins and at the same time Xirohori seems to be one step ahead in the process of linguistic change, since 1) the high back unrounded [ɯ] seems to be assimilated with the [u] vowel, 2) the vowels create a smaller vowel spectrum, something that is usually the case in the vowel systems of Modern Greek and its dialects, and finally 3) the high front rounded [y] is totally lost.

We believe that these differences between the speakers from the two villages are due to the contact situations existing in each one and to the different attitudes of the speakers towards the dialect. As it was noted during the ethnographic study, Xirohori is a mixed village, since not only Cappadocians but also other Greek-dialect speakers live there, whereas Neo Agioneri is a homogeneous village. In addition, the inhabitants of Xirohori are not as receptive to the use of the dialect (since they present an overt negative attitude), as opposed to the inhabitants from Neo Agioneri. Both of these features seem to play a fundamental role in the speech of the informants.

To conclude, Mišótika in not a dead variety, at least between the elderly speakers. There are people who use it and recognize it as a distinct system, i.e. Mišótika as opposed to SMG. Nevertheless, the variety that native speakers use is not identical with the variety that Dawkins described a century ago, with changes that indicate a levelling process. Finally, there are small differences, in relation to the vowel system, between the two speech communities of the same dialectal system, differences that are the result of contact under different sociolinguistic conditions.

REFERENCES


⁴ The koineization process has resulted in the creation of a new variety, which includes mixed features from the mutually comprehensive linguistic systems that have been in contact (cf., among many others, Trudgill 1986: 107; Hinskens 1992: 15).