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Tunable Snell’s law for spin waves in heterochiral magnetic films
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Thin ferromagnetic films with an interfacially induced DMI exhibit nontrivial asymmetric dispersion relations
that lead to unique and useful magnonic properties. Here we derive an analytical expression for the magnon
propagation angle within the micromagnetic framework and show how the dispersion relation can be approximated
with a comprehensible geometrical interpretation in the k space of the propagation of spin waves. We further
explore the refraction of spin waves at DMI interfaces in heterochiral magnetic films, after deriving a generalized
Snell’s law tunable by an in-plane magnetic field, that yields analytical expressions for critical incident angles. The
found asymmetric Brewster angles at interfaces of regions with different DMI strengths, adjustable by magnetic
field, support the conclusion that heterochiral ferromagnetic structures are an ideal platform for versatile spin-wave
guides.
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I. INTRODUCTION

Spin waves (and their quasiparticle counterpart, magnons),
the collective excitations in magnetic spin systems coupled by
exchange interactions, present a wide variety of unique proper-
ties and prospective applications that continuously inspire fun-
damental research. Just like any wave, spin waves experience
dispersion caused either by geometric boundary or by interac-
tion with the transmitting medium. The Dzyaloshinskii-Moriya
interaction (DMI), present in magnetic materials with broken
inversion symmetry [1–4], has a chiral character and introduces
an asymmetry in the spin-wave dispersion relation [5–8]. This
leads to a plethora of remarkable phenomena such as the asym-
metric frequency shift measured in spin-polarized electron-
energy-loss and Brillouin light-scattering experiments [9–16],
the magnon Hall effect [17,18], a nontrivial spin-wave power
flow and unidirectional caustic beams [19], unidirectional spin-
wave emitters [20], nonreciprocal spin-wave channeling along
spin textures [21,22], and a nontrivial refraction of spin waves
at domain walls [23], to name a few. Yet, chiral magnonics is
still believed to be at the doorstep of its full potential.

Over the past years, immense experimental progress was
made with layered heterostructures, where DMI is interfacially
induced [24,25]. It motivated the exploration of heterochiral
structures—films in which DMI can be spatially varied via
engineering of the substrate and/or the capping layer [26,27].
Such structures have been already predicted to strongly confine
magnetic skyrmions [28] and increase their lifetime [29],
both essential for skyrmionic devices. In this paper, we take
the next step and examine the propagation of spin waves in
heterochiral films with a spatially engineered DMI and per-
pendicular magnetic anisotropy. Starting from the dispersion
relation, we derive an analytical expression for the magnon
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propagation angle in monochiral films. Next, we show how
the nontrivial dispersion relation can be approximated by cir-
cular isofrequencies to provide a comprehensible geometrical
interpretation in k space. This can then be conveniently used
to understand the refraction at interfaces where micromagnetic
parameters change, such as in a heterochiral magnetic film.
We go on to derive the generalized Snell’s law for spin waves
at interfaces where DMI changes, broadly tunable by in-plane
magnetic field. Although our derived relation is unique to chiral
magnetic interfaces, it has similar consequences as found in
metamaterials for photonics and phononics [30–36] and thus
bears general relevance to wave propagation in (hetero)chiral
media.

The paper is organized as follows. In Sec. II, we outline
the theoretical framework of our calculations. Section III
is devoted to description of propagation of spin waves in
magnetic films with homogeneous DMI. The prime topic of
the paper, the spin-wave refraction at interfaces where DMI
changes, is addressed in Sec. IV. Our results are summarized
in Sec. V.

II. MICROMAGNETIC FRAMEWORK

We describe the magnetization of a ferromagnetic film by a
two-dimensional (2D) continuous field �M(x,y) = Ms �m(x,y)
with a constant magnetization modulus | �M| = Ms and magne-
tization direction �m(x,y). The dynamics of the magnetization
are governed by the Landau-Lifshitz-Gilbert (LLG) equation

�mt = −γ

1 + α2
( �m × �Heff + α[ �m × ( �m × �Heff)]), (1)

with gyromagnetic ratio γ and damping factor α. At each
point in the film, the magnetization precesses around the
effective magnetic field, which is the functional derivative
of the magnetic free energy E = ∫

ε dV with respect to the
magnetization: �Heff = −δE/δ �M .
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The local energy density ε(x,y) of a given magnetization �M
has multiple sources, and we consider the following: exchange,
perpendicular anisotropy, Zeeman interaction due to an in-
plane applied field, DMI, and demagnetization. We focus on
the propagation of spin waves in ultrathin films (<1.5nm),
for which the occurrence of unidirectional caustic beams
becomes negligible [19] and for which we can approximate the
demagnetization field via an effective anisotropy Keff = K −
1/2μ0M

2
s . The expressions for the remaining energy-density

terms are, respectively,

εex = A[(∂x �m)2 + (∂y �m)2], (2)

εanis = −Keffm
2
z, (3)

εext = − �B · �mMs, (4)

εdmi = D[t][mx∂xmz − mz∂xmx

+my∂ymz − mz∂ymy], (5)

with exchange stiffness A, DMI strength D, effective
anisotropy constant Keff, and a bias field �B ⊥ êz. To simplify
the notation, we introduce the exchange length ξ = √

A/Keff

and the critical DMI strength Dc = 4
√

AKeff/π [37]. In this
paper, we only consider first-order deviations from a uniformly
magnetized film, which is the ground state for DMI strengths
below Dc.

Because of the perpendicular anisotropy, the magnetic mo-
ments are parallel to the normal of the film (z axis). However,
applying an in-plane magnetic field �B = B(cos β, sin β,0)
will tilt the magnetic moments in the direction of the
applied field. This tilting of the magnetic moments is
necessary to observe first-order effects of DMI on spin
waves. The relaxed uniform magnetization is given by �m0 =
(cos β sin θ, sin β sin θ, cos θ ), with tilting angle

θ =
{

arcsin MsB
2Keff

if B � Bc,

π/2 if B � Bc,
(6)

which is derived by minimizing the free energy, assuming
a uniform magnetization. The magnetic moments are fully
aligned with the in-plane magnetic field if its magnitude
exceeds the critical value Bc = 2Keff/Ms.

III. SPIN-WAVE PROPAGATION IN MONOCHIRAL FILMS

A. Dispersion relation

In order to derive the spin-wave dispersion relation, we
study the time evolution [Eq. (1)] of the first-order deviations
from the equilibrium configuration �m0, omitting the damping
term (α = 0), similar to Refs. [7,8]. With details of the
derivation given in the Appendix, the obtained spin-wave
dispersion relation reads

ω

ω⊥
=

√
(ξ 2k2 + B − sin2 θ )(ξ 2k2 + B) − 2ξ 2�k · �k0, (7)

with ω⊥ = 2γKeff/Ms, B = max(1,B/Bc), and

�k0 = 2 sin θ

πξ

D

Dc
(êB × êz). (8)

ω⊥ is the frequency of the precession of the magnetic moments
around the anisotropy axis, in the absence of other magnetic
interactions. B is introduced to combine the two cases B < Bc

and B > Bc in a concise mathematical expression.
The DMI, in combination with an applied in-plane field,

causes a term linear in �k. This asymmetry introduces nontrivial
spin-wave phenomena. For example, as already known, it
explains the frequency shift �ω = |ω(�k) − ω(−�k)| measured
in Brillouin light scattering measurements. This linear term
also has an important influence on the propagation direction
of spin-wave packets, and the refraction of spin waves at DMI
interfaces, which is the main topic of this paper.

B. Geometric interpretation

The influence of the dispersion relation in Eq. (7) on the
propagation of spin waves is not easy to grasp intuitively. It
is therefore useful to approximate the dispersion relation with
circular isofrequencies in k space, which can be done if x =
sin2 θ/(ξ 2k2 + B) is small. Note that the condition 0 < x < 1
is always met and the Maclaurin series of functions of x will
yield good approximations in the cases of weak applied fields,
strong applied fields, or small wavelengths. The dispersion
relation approximated with isofrequencies reads

ω

ω⊥
≈ ω0

ω⊥
+ ξ 2(�k − �k0)2, (9)

with the minimal frequency

ω0

ω⊥
= B − sin2 θ

2
− ξ 2�k2

0, (10)

obtained when �k = �k0. The vector pointing to the center of the
circular isofrequencies �k0 is independent of the frequency ω. It
is also perpendicular to the magnetic field �B, and proportional
to DMI strength D and the magnetic field, more precisely
sin θ . The radius of the circular isofrequency kg depends on
the frequency as

ξkg =
√

ω − ω0

ω⊥
. (11)

Using this approximation, it becomes very easy to study the
propagation of spin waves geometrically, as well as to examine
the refraction of spin waves at interfaces where DMI changes.

C. Magnon propagation angle

The group velocity can be calculated exactly for the disper-
sion relation given in Eq. (7):

�vg = ∇kω = 2ω⊥ξ 2(ι�k − �k0) with ι = 1 − 1
2x√

1 − x
. (12)

The propagation direction is always perpendicular to the
isofrequencies in k space. For the approximated dispersion
relation, this means that the propagation direction is parallel to
�k − �k0, which corresponds to the exact solution for ι ≈ 1.

In general, the propagation direction ι�k − �k0 is not parallel
to the wave vector �k. It is trivial to prove that the angle between
the wave vector �k = k(cos φk, sin φk) and the propagation
direction is given by

φprop = atan2(k0 cos(β − φk),ιk − k0 sin(β − φk)). (13)
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FIG. 1. Demonstration of the misalignment between the propa-
gation direction of a wave packet and its wave vector for an in-plane
field B = 0.5Keff/M and β = π/2, DMI strength D = 0.9Dc, and
frequency ω = 1.5ω⊥. A Gaussian spin wave packet is artificially
created at the left boundary and propagates to the right. The colors
show the deviation from the equilibrium magnetization calculated by
a full micromagnetic simulation. The black lines are the analytical
predictions of the propagation direction and the wave fronts.

If ιk > k0 sin(β − φk), then the propagation direction has a
component in the opposite direction of the wave vector k,
and hence the use of the atan2 function. This expression
is useful when positioning an antenna to create spin waves
with a desired propagation direction. The propagation angle
(for a given direction of the wave vector �k) depends on the
magnitude of the wave vector |�k|. This means that spin waves
with the same wave vector direction, but different frequencies,
propagate in different directions. Figure 1 shows the results
of a micromagnetic simulation using MuMax3 [38] of the
propagation of a Gaussian spin-wave packet with a wave vector
in the x direction. The propagation direction clearly has a y

component, which demonstrates that the propagation direction
of spin-wave packets in chiral magnets can differ considerably
from the direction of the wave packet’s k vector. The analytical
calculation of the propagation, also shown in Fig. 1, matches
the simulated result perfectly.

IV. SPIN-WAVE REFRACTION IN HETEROCHIRAL
MAGNETIC FILMS

A. A generalized Snell’s law

Spin waves reflect and/or refract at material boundaries.
The momentum parallel to the interface should be conserved.
Considering an interface along the y direction, this translates to
the constraint k1,y = k2,y , where the indices 1 and 2 denote the
incident and refracted waves respectively. If the propagation
direction is parallel to the k vectors, the well-known Snell’s
law applies: k1 sin φ1 = k2 sin φ2.1 If, however, the dispersion
relation is asymmetric, then the propagation direction is not
parallel to the wave vector and consequently Snell’s law no
longer describes the refraction of spin wave packets correctly.

In what follows, we examine the refraction of spin waves
at interfaces between regions with different DMI strengths
[D(x < 0) = D(1) and D(x > 0) = D(2)] in three different
ways. First, we employ full micromagnetic simulations using
MuMax3 [38]. Next, we demonstrate how to compute the

1All mentioned propagation angles are measured counterclockwise
from the normal on the interface.

FIG. 2. [(a)–(e)] Refraction and reflection of wave packets under
different incident angles φ1 at an interface with D(1) = 0.9Dc on the
left (x < 0) and D(2) = 0 on the right (x > 0), under an applied
in-plane field �B = 1K/Msêx perpendicular to the DMI interface.
The contour plots show results of micromagnetic simulations with
damping α = 0.001 and cell size 0.2ξ . The wave packets are
generated with a Gaussian antenna with frequency ω = 1.5ω⊥ and
FWHM = 50ξ (dashed lines). The analytically predicted propagation
direction and wavelength are depicted by solid lines and dots respec-
tively. (f) Theoretical prediction of refraction for all possible incident
angles. The direction of the incident and the corresponding refracted
wave are plotted in same color. The gray region represents the range
in which total reflection occurs.

refraction angle using the exact dispersion relation [Eq. (7)].
Finally, we use the approximated dispersion relation [Eq. (9)]
to construct a generalized Snell’s law which allows for analyt-
ical calculations of refraction angles as well as critical incident
angles. The methods presented here can be easily extended to
include changes in other material parameters as well. However,
in order to capture the chiral effects solely and for the sake of
clarity, we leave the other material parameters (A,Keff,Ms)
unchanged in regions where DMI is varied.

The results of full micromagnetic simulations of wave
packets incidental to a DMI interface are presented in
Figs. 2(a)–2(e). Qualitatively, they already show most of the
interesting features of spin-wave refraction. The refraction is
not symmetric for positive and negative incident angles. This
is very clear when comparing the result for φ1 = −60◦, for
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which there is total reflection, and φ1 = 60◦, for which there
is noticeable transmission. Related to this is the occurrence
of negative refraction, visible in Fig. 2(c), where the incident
and refracted waves are on the same side of the normal to the
interface.

The interface makes the dispersion relation regionally
dependent, for which term linear in �k changes. To calculate the
refraction angle for a given incident angle and frequency, we
first compute k1,y by solving the dispersion relation [Eq. (7)]
for �k1 in the left region, under the constraint that the direction
of the group velocity �vg [Eq. (12)] corresponds to the given
incident angle φ1. This can be done with a numerical self-
consistent calculation. Imposing k1,y = k2,y , we solve the
dispersion relation of the right region for k2,x , by taking
the real positive root of a fourth-order equation. Once �k2

is known, one can calculate the propagation direction with
expression (12). If the fourth-order equation does not have
positive roots, then there is total reflection at the interface. Note
that we have neglected damping, higher-order deviations, and
nonuniformities in the magnetization, such as the spin canting
at the interface [28]. However, Fig. 2 shows that the calculated
propagation directions, as well as the wavelengths, perfectly
match the results of the simulations.

Using the circular isofrequency approximation of the dis-
persion relation, the condition k1,y = k2,y can be rewritten in
a generalized Snell’s law:

k(1)
g sin φ1 + k

(1)
0,y = k(2)

g sin φ2 + k
(2)
0,y, (14)

enabling analytical calculation of the refraction angle φ2 for a
given incident angle φ1. Yu et al. [23] reported a similar gener-
alized Snell’s law for refraction of spin waves at a domain wall
in a chiral magnet with an (atypical) in-plane easy anisotropy
axis.2 At such (albeit uncharacteristic) domain walls, and
in our case of chiral interfaces, the negative refraction and
asymmetric Brewster angles occur because the isofrequencies
are shifted differently in k space in the left and the right
regions, which is embodied in the generalized Snell’s laws by
the additional terms k

(1)
0,y and k

(2)
0,y . In contrast to the refraction

at domain walls of Ref. [23], there is no symmetry between
the shifts in k space in the left and right regions in our case of
a DMI interface. Furthermore, in our generalized Snell’s law,
�k(1)

0 and �k(2)
0 do not only depend on the DMI strengths but can

also be positioned in k space at will by tuning the direction and
magnitude of the in-plane bias field.

B. Critical angles

There are two different kinds of critical incident angles—the
Brewster angles and the critical angle for negative refraction.
The Brewster angles φ1 = φ±

B can be calculated from the
generalized Snell’s law by imposing that the refracted wave
is parallel to the interface (φ2 = ±π/2), as

φ±
B = arcsin

(±k(2)
g + k

(2)
0,y − k

(1)
0,y

k
(1)
g

)
. (15)

2Magnetization of chiral films is typically not in plane due to an
easy axis perpendicular to the film plane.

(b)

(a)

FIG. 3. (a) Refraction angle φ2 of a wave packet with frequency
ω = 1.5ω⊥ at a DMI interface (D(1) = 0 and D(2) = 0.9Dc), as a
function of the incident angle φ1 and the direction of the applied
field �B = 1K/Ms(cos β, sin β,0). The black regions indicate total
refraction, bounded by the Brewster angles φ±

B , and the black line
shows the critical negative refraction angle φN. (b) The critical
incident angles φ±

B and φN as a function of the direction of the applied
field (in-plane angle β) and frequency ω.

The critical negative refraction angle is defined as the inci-
dent angle φ1 = φN for which the refracted wave packet is
orthogonal to the interface (φ2 = 0). Negative refraction occurs
for incident angles between 0 and φN. Using the generalized
Snell’s law, we obtain

φN = arcsin

(
k

(2)
0,y − k

(1)
0,y

k
(1)
g

)

= arcsin

(√
ω⊥

ω − ω1
0

2 sin θ

π

D(2) − D(1)

Dc
êB · êx

)
. (16)

Figure 3(a) shows how the refraction angle and the critical
angles depend on the incident angle φ1 and the direction of
the in-plane bias field (angle β). The asymmetry for positive
and negative incident angles is clearly visible. Likewise, the
two Brewster angles φ+

B and φ−
B are not equal. Figure 3(b)

shows the critical angles in function of the direction of the field
and the frequency ω. From this figure, one can conclude that
spin-wave packets with a low frequency refract more strongly
than spin-wave packets with a high frequency.

For given strengths of the applied field B and DMI, the
range of total internal reflection is maximized when the
in-plane field is perpendicular to the DMI interface. Note
that in such a case there is no internal reflection for spin
waves coming from the other side of the interface normal.
Therefore, by adding a second parallel interface, one obtains
an unidirectional spin-wave guide as illustrated schematically
in Fig. 4. Inverting the polarity of the applied magnetic field
changes the direction of this spin-wave guide. This concept
promotes heterochiral films as a broadly tunable platform for
nanoengineered unidirectional spin-wave guides.
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FIG. 4. A cartoon of a strip with DMI strength D(1) within an
extended ferromagnetic film with DMI strength D(2) > D(1). Such
a strip acts as a unidirectional spin wave guide when applying a
magnetic field �B as shown. The Brewster angle φB delimits the angular
section (gray) in which total reflection occurs. 〈�vg〉 is the average
propagation direction of reflected waves.

V. CONCLUSIONS

In summary, we have shown how the spin-wave dispersion
relation in a chiral thin film with perpendicular anisotropy can

be analyzed with a comprehensible geometrical representation
and derived a broadly tunable Snell’s law for a DMI interface,
both checked against full-blown micromagnetic simulations.
Bearing in mind the recent advances in direct imaging of
incident, reflected, and refracted spin waves in ferromagnetic
films [39] and the emergent atomically thin heterosystems
where DMI can be spatially adjusted [24–27], we expect our
findings to inspire further theoretical and experimental work
to explore full versatility of heterochiral ferromagnetic films
for otherwise unattainable magnonic properties and devices.
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APPENDIX: DERIVATION OF THE DISPERSION RELATION

In this Appendix, we provide the derivation of the dispersion relation for spin waves in a chiral ferromagnetic film with
perpendicular easy anisotropy axis, subjected to an applied in-plane field Bêy in the y direction, within the micromagnetic
framework. This dispersion relation can then easily be generalized for an arbitrary applied field direction in the (x,y) plane.

The dynamics of magnetization �m(x,y) is described by the Landau-Lifschitz-Gilbert equation. Here, we will only consider
the precessional motion and neglect the damping term (α = 0). The equation of motion reads

�̇m = −γ �m × �h, (A1)

with �h being the effective magnetic field which is related the functional derivative of the magnetic free energy E = ∫
ε dV with

respect to the magnetization. For the energy density terms given in Eqs. (2)–(5), the effective magnetic field reads

�h = − δE

δ �M = 2A

Ms
� �m + 2D

Ms

⎛
⎝ ∂xmz

∂ymz

−∂xmx − ∂ymy

⎞
⎠ + 2Keff

Ms
mzêz + Bêy. (A2)

Consider the uniform equilibrium state �m0. Because of the in-plane field Bêy and the perpendicular anisotropy, the
magnetization �m0 will have a z component as well as a y component. The exact orientation of the magnetization �m0 can be
found easily by minimizing the free energy E assuming a uniform magnetization:

�m0(x,y) = (0, sin θ, cos θ ), (A3)

with

θ =
{

arcsin(MsB/2Keff), if MsB < 2Keff,

π/2, if MsB � 2Keff.
(A4)

Let us construct a new coordinate system for the magnetization (êa,êb,êo) by rotating the coordinate system (êx,êy,êz) around êx

over the angle θ , making êo and �m0 parallel. The coordinate transformation is given by

êa = êx , êb = cos θ êy − sin θ êz, êo = sin θ êy + cos θ êz. (A5)

Expressing the effective field in the coordinate system (êa,êb,êo) yields

Msha

2
= A�ma − sin θD∂xmb + cos θD∂xmo, (A6)

Mshb

2
= A�mb + D∂ymo + sin θD∂xma + cos θ

BMs

2
+ sin2 θKeffmb − sin θ cos θKeffmo, (A7)

Msho

2
= A�mo − D∂ymb − cos θD∂xma + sin θ

BMs

2
+ cos2 θKeffmo − sin θ cos θKeffmb. (A8)

Now we can study the time evolution of small deviations (ma 
 1,mb 
 1,mo ≈ 1) from the equilibrium magnetization �m0. For
first-order deviations, we obtain ṁo = 0 and

ṁa = −γ [mbho − mohb] ≈ 2γ

Ms

(
A� − cos2 θKeff − sin θ

BMs

2
+ sin2 θKeff

)
mb + 2γ

Ms
(sin θD∂x)ma, (A9)

ṁb = −γ [moha − maho] ≈ − 2γ

Ms

(
A� − sin θ

BMs

2
− cos2 θKeff

)
ma + 2γ

Ms
(sin θD∂x)mb. (A10)
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The spin-wave dispersion relation can be calculated by filling in the plane wavesma ∝ exp i(ωt − �k · �r) andmb ∝ exp i(ωt − �k · �r)
and solving the resulting system of equations to obtain

ω

ω⊥
=

√(
ξ 2k2 + cos2 θ − sin2 θ + sin θ

BMs

2Keff

)(
ξ 2k2 + cos2 θ + sin θ

BMs

2Keff

)
− sin θ

D√
AKeff

ξkx. (A11)

Here we introduced the exchange length ξ = √
A/Keff, the critical DMI strength Dc = 4

√
AKeff/π , and the characteristic

frequency ω⊥ = 2γKeff/Ms. The dispersion relation can be written in a simpler form if we define B = max(1,MsB/2Keff) as

ω

ω⊥
=

√
(ξ 2k2 + B − sin2 θ )(ξ 2k2 + B) − 4 sin θ

π

D

Dc
ξkx. (A12)

Finally, we can generalize the dispersion relation for an arbitrary direction of applied field in the (x,y) plane, as

ω

ω⊥
=

√
(ξ 2k2 + B − sin2 θ )(ξ 2k2 + B) − 2ξ 2�k · �k0, (A13)

where

ξ �k0 = 2 sin θ

π

D

Dc
(êB × êz). (A14)
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