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Introduction

Researchers often have substantive research questions that involve infor-
mative hypotheses. Consider, for example the following typical examples:

1. Cognitive behavioral therapy (CBT) in combination with drugs is
more effective against depression than CBT only; in addition, the
new drug is more effective than the old drug.

2. Facial burns would have a higher impact on self-esteem than body
burns and the impact for both types would be higher in females
than in men.

3. There is a positive relation between social skills, interest in artistic
activities and use of complicated language patterns, and the target
variable 1Q.

4. The exercises (no training, physical training, behavioral training,
and a combination of physical and behavioral therapy) are associ-
ated with a reduction in the mean aggression levels.

These hypotheses are called informative because they include directional
expectations about the ordering of the parameters. For example, in the



first hypothesis a clear ordering between the three drug treatment means
is expected and in the third hypothesis the regression coefficients for so-
cial skills, interest in artistic activities and use of complicated language
patterns are expected to be positively related to IQ. This prior knowledge
originates from previous research (i.e. theory) or academic reasoning and
can be translated into an order-constrained hypothesis by means of impos-
ing order constraints (i.e. <, >, =) on the model parameters. Thus, in
statistical symbols these four informative hypotheses might be expressed
as the following order-constrained hypotheses:

Hl * MUnew drug Z Hold drug Z Hno drug

H2 * Mmen;body < Hmen;face < Hfemales;body < Htemales;face
H3 : ﬁsocial > 07 ﬁartistic > 07 Blanguage > 0

H4 * Uno S {,Uphysical - ,Ubehavioral} S Hcombination s

where p reflects the population mean for each group and f is a regression
coefficient.

1.1 Current practice

Classical null-hypothesis significance testing (NHST) is the most widely
used method in the social and behavioral sciences to evaluate a hypothesis.
To evaluate hypotheses like Hy, Ho and Hy, we usually use an ANOVA
where the hypothesis is tested that all means are equal (nothing is going
on) against the alternative unconstrained hypothesis that something is
going on. For example, for the hypothesis H; the null-hypothesis equals
Ho1 @ pnew drug = Mold drug = Hno drug and the alternative hypothesis
equals Hyi : flnew drug » Mold drug > Mno drug- 1f the resulting F-test is
significant, all we know is that some means are not equal and additional
contrast tests are needed to find evidence in favor of the hypothesis of
interest.

Another frequently used approach for evaluating a directional hypoth-
esis like the ones above is linear trend analysis. To tests whether the
three group means in H; follow a decreasing order, predefined weights are
specified on the means. In case of three groups, the weights +1, 0, and
-1 are often used. The contrast compares the lowest group mean with the



highest group mean. Again, if the F-test is significant, all we know is
that the linear trend is not zero and additional diagnostics are needed to
support the conclusion of a linear trend.

1.2 History, critiques and alternatives

1.2.1 History

NHST as we know it today began with Karl Pearson (Pearson| 1900)
who introduced the chi-squared test of goodness of fit, and the p-value
associated with this test-statistic. This was followed by Willam Gosset’s
(pseudonym: Student) discovery of the t-distribution (Student) [1908).
However, it was Fisher (Fisher], 1925) who popularized significance tests
and p-values. The theory of Fisher was further ‘improved’ by Neyman
and Egon Pearson (Neyman & Pearson, |1928) who introduced hypothesis
testing.

Fisher’s approach is to use the data to provide evidence for the null-
hypothesis. No alternative hypothesis exists and it is the null-hypothesis
that is to be nullified. Note that the null-hypothesis does not need to be
a zero difference. In Fisher’s approach (Gigerenzer, 2004 the researcher
sets up a null-hypothesis that a sample comes from a population with a
known sampling distribution (e.g. t-distribution). The null-hypothesis
is disproved if the sample estimate is as extreme or more extreme than
we would expect by chance. Fisher regarded the p-value as inductive
evidence against the null-hypotheses. The smaller the p-value, the more
convincing the evidence against the null-hypothesis. The researcher is
supposed to decide if the evidence is convincing enough but does not talk
about accepting or rejecting the hypothesis.

Some authors have argued that the theory of Fisher is defective be-
cause the null-hypothesis cannot be rejected without providing evidence
for another (i.e. alternative) hypothesis (Sober||[2008). Specification of an
alternative hypothesis is the key difference between Fisher’s and Neyman-
Pearson’s methodologies. Although Fisher used some kind of alternative
when computing a p-value, he never explicitly defined nor used specific al-
ternative hypotheses. With the specification of an alternative hypothesis,
Neyman and Pearson added concepts of Type-II error rates (/3), and relat-
edly, statistical power. In Neyman-Pearson’s approach (Gigerenzer, |[2004)



the researcher sets up a null-hypothesis and an alternative hypothesis, and
decides about «, 8, and the sample-size (power calculations) a priori to
the experiment. These define the rejection region. Then, if the data falls
into the rejection region of the null-hypothesis, the null-hypothesis is re-
jected. Otherwise the null-hypothesis is accepted. Note that accepting a
hypothesis does not mean that you believe in it but only that you act as
if it were true.

NHST is considered as a compromise between Fisher’s theory on signif-
icance testing and the concepts from Neyman-Pearson. However, there is
not a single agreement upon the characterization of this hybrid NHST
(Little, [2013)). Some authors have argued that the hybrid logic is a
confusing and inconsistent mixture of the two different decision theories
(Gigerenzer,|1993)). On the other hand, Lehmann|(1993), a former student
of Neyman, argued that at a practical level, the two approaches are com-
plementary and that p-values, significance levels and power can be com-
bined into a unified approach (Spanos, [2003). The popularity of NHST
is probably due to the textbooks written (largely by non-statisticians) in
the 1940s to 1960s to teach students in the social sciences the ‘rules of
statistics’ (Gigerenzer et al.) [1989)). In addition, the hybrid theory was
standardized by editors of major journals. Researchers were therefore
more or less forced to use significance tests (Morrison & Henkel, |1970)).

1.2.2 Critiques

NHST has survived many attacks since its introduction in the 1940s (see
Nickerson)| 2000 and the references therein). One of the main critiques is
that the hypothesis of interest cannot be tested directly. Reconsider the
order-constrained hypothesis H;. To evaluate this directional hypothesis
using an ANOVA, the null-hypothesis Hy; is tested against the alternative
hypothesis H,;. Obviously, the hypothesis of interest H; is not part of the
null-hypothesis or the alternative hypothesis. Consequently, the resulting
F-test does not capture the a-priori ordering of the means and additional
contrast tests are required to find evidence in favor of H;. The aftermath
would be an inflated Type-I error rate («), or a decrease in power when
an « correction is used. In addition, using linear contrast tests to test a
directional hypothesis may result in spurious conclusions with regard to
the direction of the effect. For example, if the sample means for H; are



5, 10, and 1, the contrast test with weights +1, 0 and -1 will probably
reject the null-hypothesis in favor of a nonzero linear trend, even though
the first order constraint is violated.

1.2.3 Alternatives

Regardless the numerous critiques raised against NHST for the past 80
years, it is still the most taught decision theory in undergraduate courses.
As a result, it has slowed down scientific progress. The best option
seems to abandon NHST and to start teaching alternative available meth-
ods, among them effect sizes (Cohen| 1988), confidence intervals (Ney-
man, 1935), meta-analysis (Rosenthal, |1984)), Bayesian hypotheses test-
ing (Lindley, [1965) and model selection using information criteria (e.g.,
Akaike, [1998)). In this dissertation, we will investigate yet another al-
ternative, i.e. constrained statistical inference or informative hypothesis
testing (e.g., Hoijtink}, |2012; [Kuiper} 2011} |Silvapulle & Sen| 2005, Since
this is key to this dissertation, we will further elaborate on this.

1.3 Informative approaches

Since the early 1950s a vast amount of literature has been produced
in both the frequentist framework (Barlow, Bartholomew, Bremner, &
Brunk| [1972; [Kuiper| [2011; [Robertson, Wright, & Dykstra), [1988}; Silva-
pulle & Sen}||2005) and in the Bayesian framework (e.g., Hoijtink, |[2012) for
evaluating informative hypotheses such as H; — H, directly. To evaluate an
informative hypothesis, three methods can be distinguished, i.e. hypothe-
sis testing, model selection using information criteria and Bayesian model
selection. For an overview and a comparison see [Hoijtink and Klugkist
(2007), [Kuiper and Hoijtink| (2010) and |[Van de Schoot, Hoijtink, and
Romeijn| (2011)).

The advantage of informative hypotheses compared to classical NHST
is that the hypothesis of interest can be evaluated more directly. Conse-
quently, substantial smaller samples are needed to detect specific effects.
Non-technically, this is because the parameter space is restricted and it is
easier to find evidence for or against a smaller parameter space compared
to finding evidence for a larger parameter space. To illustrate, consider
Figure |1.1a, where the parameter space is defined by Hys : u1,ue (no
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Figure 1.1: The admissible area is shaded gray.

constraints are imposed on the means). Note that we only depicted the
parameter space between -4 and 4 and not the whole parameter space.
Then, the unrestricted parameter space consists of all possible values for
both parameters. In other words it consists of the entire range of ad-
missible hypotheses. Next, consider Figure [1.1b, where the parameter
space is now restricted by the order constraint Hy : u; > po. Now not
all possible combinations between p; and po are admissible. Therefore,
the range of possible statistical hypotheses is also smaller because only
the combinations in according with Hj are allowed. Therefore it is eas-
ier to differentiate the order-constrained hypothesis from the alternative
hypothesis. Hence, a higher power is gained and consequently a smaller
sample-size is needed. As we will show in the next Chapter, this sample-
size reduction may be as high as 50%.

Informative methods have demonstrated real value in improving NHST,
but unfortunately these methods are rarely used in the social and behav-
ioral sciences. The absence of these methods in a researcher’s toolbox can
be understood on three levels, i.e. textbook writers, benefits of alternative
methods, and software. On the first level, writers of todays textbooks for
the social and behavioral sciences hardly mention alternatives for NHST.
For instance, checking three books on statistics for the behavioral and



social sciences (Gravetter & Wallnau, [2014; |Sirkin| [2005; Tabachnick &
Fidell, [2007)) that were readily available, I found that they barely or not
at all hinted on the controversy of NHST. On the second level, today’s
researchers are trained at a time that NHST is the predominant method
of statistical inference. Hence, researchers are probably unaware of the
(major) benefits of informative hypotheses. On the third level, no (user-
friendly) software tool exists that can deal with order constraints in a
variety of statistical models. The available software tools are scattered
and limited to ordered means and variances, and to ordered regression
coefficients in a linear model.

1.4 Objectives

In this dissertation, we cover three main topics, i.e. reduction in sample-
size, model selection using order-constrained information criteria, and
software. The first objective is to investigate the reduction in sample-
size (gain in power) when an increasing number of order constraints is
imposed on the means of an ANOVA and on the regression coefficients of
a linear model. In addition, we also investigate the effects of outliers on
the power. The second objective is to introduce an alternative method to
order-constrained hypothesis testing for evaluating an order-constrained
hypothesis against its complement using information criteria. The third
objective is to develop software tools for estimating and evaluating order-
constrained hypotheses for a variety of statistical models. In addition,
we provide a clear tutorial on how these tools can be used to evaluate
informative hypotheses. Next, we will discuss each of these topics in more
detail.

1.4.1 Sample-size

There are three basic testing problems that can be considered in connec-
tion with informative hypotheses. In the literature they are often called
hypothesis test Type A, hypothesis test Type B (Silvapulle & Sen| [2005)).
and hypothesis test as Type C. In this dissertation, we shall consider solely
hypothesis test Type A and hypothesis test Type B. The role of hypoth-
esis test Type C is merely to complete the set of tests. Its practical use is
limited because its power is quite low (Gromping) [2010). In words, these



hypothesis tests can be defined as follows:

Type A test: Hag : all restrictions are active (=)

vs. H a1 : at least one order restriction is strictly true (>)

Type B test: Hpg : all restrictions hold in the population

vs. Hpi : at least one restriction is violated

Type C test: Hcyg : at least one restriction is false or active (=)

vs. He : all restrictions are strictly true (>)

In the null-hypothesis H 49 of hypothesis test Type A all order constraints
are treated as equality constraints and is tested against the alternative
order-constrained hypothesis H 41. In hypothesis test Type B, the null-
hypothesis Hpq is the order-constrained hypothesis and is tested against
its complement Hpi. In hypothesis test Type C, the alternative hypoth-
esis consists of strict order constraints only and is tested against the null-
hypothesis that at least one order constraint is violated.

To find evidence in favor of an order-constrained hypothesis, we use a
combination of hypothesis test Type B and hypothesis test Type A (in this
order), which we call hypothesis test Type J. The rationale is that if hy-
pothesis test Type B is not significant, we do not reject the null-hypothesis
that all restrictions hold in the population. However, hypothesis test Type
B cannot make a distinction between inequality and equality constraints.
Therefore, if hypothesis test Type B is not significant, the next step is to
evaluate hypothesis test Type A. If we reject its null-hypothesis H 4, we
can conclude that at least one inequality constraint is strictly true. Then,
if we combine the evidence of hypothesis test Type B and hypothesis Type
A, we can say that we have found indirect evidence in favor of (or against)
the order-constrained hypothesis. A measure of effect-size can aid in the
interpretation of the strength of this support.

In Chapter 2, we study the relationship between order constraints and
sample-size for hypothesis test Type J. More precise, by means of a simula-
tion study we investigate the reduction in sample-size when an increasing
number of order constraints is imposed on the means of an ANOVA and
on the regression coefficients of a linear regression model. The main re-



sults are power tables for hypothesis test Type J. These power tables are
comparable with the familiar power tables in (Cohen| 1988)) which are
seen as the ‘gold’ standard. The major advantage of our power tables
is that researchers can look up the necessary sample-size with predefined
power of 0.80 and predefined number of order constraints. In addition, we
developed a software tool because the power tables for order-constrained
tests only cover a subset of all possible models, while the software tool
can be used for all possible combinations.

1.4.2 Outliers

In inferential data analysis, a problem that is often ignored is that data
collected may contain irregularities that deviate from the majority of the
data, such as outliers in the response space. Consider, for example the
simple linear regression example in Figure|1.2, where the data contains one
outlier in the response space. The ordinary least squares (OLS) estimator,
which is usually used in ANOVA and linear regression is in this case
unduly influenced by a single outlier (see solid black line). This results in
biased estimates and a decline in statistical power. Fortunately, to deal
with these issues, various robust estimators haven been proposed, such
as the commonly used M-estimators (Huber) 1973) and MM-estimators
(Yohai, [1987). Again, consider Figure (1.2, Clearly, the response outlier
has no impact on the robust estimated regression line (see dashed line).

In Chapter 3, we explore the impact of order-constrained robust and
non-robust estimators on the power when the data are contaminated with
10% outliers in both the response variable and predictor variables. This is
done by means of a simulation study, where we compare the performance
of the order-constrained (non-robust) OLS estimators, and (robust) M-
estimators and MM-estimators. An empirical example about child and
parental adjustment following a pediatric burn event illustrates the appli-
cation of these robust tests.

1.4.3 Model selection

Besides hypothesis testing, another method for evaluating order-constrain-
ed hypotheses is model selection using information criteria. The advantage
of model selection compared to hypothesis testing is that model selection
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Figure 1.2: The effect of one response outlier on the OLS- and robust-
estimator.

has the ability to quantify evidence for the hypothesis of interest. This
can be done by computing a relative evidence based on two model prob-
abilities. This relative evidence is simply interpreted as the strength of
evidence in favor of one hypothesis over the other (Burnham & Ander-
son, 2002)). The AIC (Akaike| 1998)) is probably the most familiar and
widely used information criterion employed in the social and behavioral
sciences. Nevertheless, the AIC is not suitable when the model param-
eters are subject to order constraints. A modification of the AIC that
can deal with most linear order constraints in multivariate normal linear
models is the generalized order-restricted information criterion (GORIC)
(Kuiper, Hoijtink, & Silvapulle} [2011)).

In Chapter 4, we introduce a method for evaluating an order-constrain-
ed hypothesis against its complement H,. using the GORIC (weights). To
clarify, reconsider Figure [1.1b, where Hs : puy > po. Its complement
is defined as H. = not Hj, which corresponds to H. : pu1 < pe. For
the order-constrained hypothesis Hs, the complement is defined as H, =
not Hy. In total, there are 24 ways (i.e., 4! =4 x 3 x 2 x 1) in which
the four means can be ordered. Hypothesis Hs consists of 1 of these
24 combinations, therefore the complement represents the 24 - 1 = 23
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remaining ways in which the four means can be ordered. An empirical
example about facial burn injury illustrates our method.

1.4.4 Software

Although, constrained statistical inference has been around for more than
70 years, software routines are scarce. The available methods are limited,
complex, computationally demanding and a user-friendly software routine
is often lacking. To fill this gap, in Chapter 5 we present the R func-
tion InformativeTesting() for testing order-constrained hypotheses in
structural equation models, which is currently available in the R pack-
age lavaan (Rosseel, [2012). The method uses a likelihood ratio test and
the corresponding p-value can be computed based on the parametric boot-
strap or Bollen-Stine bootstrap. Since, the p-value can be biased, a double
bootstrap procedure is available. Nevertheless, bootstrapping is a com-
putationally demanding procedure, even with today’s computer power.
Fortunately, in linear regression models this bootstrap procedure can be
avoided. Therefore, we developed the R package restriktor for estimating
and evaluating order-constrained hypotheses for regression models. This
includes, ANOVA, linear regression, generalized linear regression, robust
estimation of the linear regression model and multivariate linear regres-
sion. In Chapter 6, we provide a tutorial introduction to restriktor. By
means of seven examples we demonstrate how informative hypotheses can
be evaluated using both hypothesis tests and model selection using infor-
mation criteria. More information about restriktor can be found online
at \www.restriktor.org,

It is important to stress that developing an R package is not a short-
term job. Over the last few years, restriktor has matured from a wobbly
single function to a stable comprehensive toolbox for estimating and eval-
uating order-constrained hypotheses. This means that initial functions
have been deprecated over the years and replaced by the restriktor pack-
age. To ensure reproducibility of the simulation results and applicability
of the examples given in this dissertation, we adapted all R-input and
output to match the current restriktor version (0.1-70).
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1.5 Outline

Chapter 2 In the first study we investigate the gain in power when
an increasing number of order constraints is imposed on the means of
an ANOVA and on the regression coefficients of a linear model. The
chapter is published as Vanbrabant, L., Van de Schoot, R., & Rosseel, Y.
(2015). Constrained statistical inference: sample-size tables for ANOVA
and regression. Frontiers in Psychology, 5: 1565. http://dx.doi.org/
10.3389/fpsyg.2014.01565!

Chapter 3 In the second study, we compare order-constrained robust
and non-robust estimation methods for informative hypotheses. More
specifically, we investigate the performance of robust and non-robust es-
timators in terms of the mean squared error and we investigate the size
and power of one-sided robust and non-robust tests.

Chapter 4 In the third study, we introduce a new method on how
to evaluate an order-constrained hypothesis against its complement using
the GORIC (weights). This chapter is under revision at Psychological
Methods as Vanbrabant, L., Van Loey, N., & Kuiper, R. Giving the com-
plement a compliment: Evaluating an order-constrained hypothesis against
its complement using the GORIC.

Chapter 5 In the fourth study, we present a general method for test-
ing order-constrained hypothesis in structural equation models. This
chapter is published as Vanbrabant, L., Van de Schoot, R., Van Loey,
N., & Rosseel, Y. (2017). A General Procedure for Testing Inequal-
ity Constrained Hypotheses in SEM. Methodology, 13: 61-70. http://
dx.doi.org/10.1027/1614-2241/a000123|

Chapter 6 In this chapter, we demonstrate by seven examples how
order-constrained hypotheses can be evaluated using restriktor.

Chapter 7 In this chapter, I give thought to my research papers. I
discuss the limitations of this dissertation, what could be improved and
which topics remain for future research.

Chapter 8 In this chapter, we provide a summary of this dissertation
in Dutch.
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Constrained statistical inference:
sample-size tables for ANOVA and

regression’

Researchers in the social and behavioral sciences often have clear expec-
tations about the order/direction of the parameters in their statistical
model. For example, a researcher might expect that regression coeffi-
cient 1 is larger than B3 and (3. The corresponding hypothesis is H:
B1 > {B2,03} and this is known as an (order) constrained hypothesis.
A major advantage of testing such a hypothesis is that power can be
gained and inherently a smaller sample size is needed. This article dis-
cusses this gain in sample size reduction, when an increasing number of
constraints is included into the hypothesis. The main goal is to present
sample-size tables for constrained hypotheses. A sample-size table con-
tains the necessary sample-size at a prespecified power (say, 0.80) for an

IThis chapter is published as Vanbrabant, L., Van de Schoot, R., & Rosseel, Y.
(2015). Constrained statistical inference: sample-size tables for ANOVA and regres-
sion. Frontiers in Psychology, 5: 1565. http://dx.doi.org/10.3389/fpsyg.2014.01565.
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increasing number of constraints. To obtain sample-size tables, two Monte
Carlo simulations were performed, one for ANOVA and one for multiple
regression. Three results are salient. First, in an ANOVA the needed
sample-size decreases with 30% to 50% when complete ordering of the pa-
rameters is taken into account. Second, small deviations from the imposed
order have only a minor impact on the power. Third, at the maximum
number of constraints, the linear regression results are comparable with
the ANOVA results. However, in the case of fewer constraints, ordering
the parameters (e.g., 81 > fB2) results in a higher power than assigning a
positive or a negative sign to the parameters (e.g., 51 > 0).

2.1 Introduction

Suppose that a group of researchers is interested in the effects of a new
drug in combination with cognitive behavioral therapy (CBT) to diminish
depression. One of their hypothesis is that CBT in combination with
drugs is more effective than CBT only and that the new drug is more
effective than the old drug. In symbols this hypothesis can be expressed
as HCBT: 1 < p < p3 (,ul = CBTnewidrugy M2 = CBToldidru_zp Hn3 =
CBT 1o drug), where p reflects the population mean for each group. To
replace the old drug with the new one, the researchers want at least a
medium effect size of f = 0.25. Classical sample-size tables based on the
F test (see for example |Cohen| [1988) show that in case of three groups,
f = 0.25 and a significance level of a = 0.05, 159 subjects are necessary
to obtain a power of 0.80. However, the expected ordering of the means
is in this case completely ignored. When the order is taken into account
(here two order constraints), then the results from our simulation study
(see Table|2.1} to be explained below) show that with fully ordered means
a sample-size reduction of about 30% can be gained.

Consider another example of a constrained hypothesis but now in the
context of linear regression. Suppose that a group of researchers wants to
investigate the relation between the target variable IQ and five exploratory
variables. Three exploratory variables are expected to be positively as-
sociated with an increase of IQ, while two are expected to be negatively
associated:

« social skills (31 > 0)
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o interest in artistic activities (82 > 0)

o use of complicated language patterns (83 > 0)
o start walking age (84 < 0)

o start talking age (85 < 0)

To test this hypothesis an omnibus F' test is often used, where the user-
specified model (including all predictors) is tested against the null model
(including an intercept only). In our example, the null hypothesis is spec-
ified as Hy: 81 = B2 = B3 = B4 = B5 = 0. Classical sample-size tables
show that in case of a medium effect-size (f? = 0.10) 135 subjects are
necessary to obtain a power of 0.80 (a = 0.05). However, all information
about the expected direction of the effects is completely ignored. When
this information is taken into account, then our simulation results (see
Table |2.2] to be explained below) show that with imposing five inequality
constraints, a sample-size reduction of about 34% can be gained. If we
impose 2 inequality constraints, the reduction drops to about 14%. This
clearly shows that imposing more inequality constraints on the regression
coefficients results in more power. Note that the researchers only imposed
inequality constraints on the variables of interest. But, this does not have
to be the case. Additional power can be gained by also assigning positive
or negative associations to control variables. For example, the researchers
could have controlled for socioeconomic status (SES). Although, SES is
not part of the researchers main interest, they could have constrained SES
to be positively associated with IQ if they have clear expectations about
the sign of the effect. In this vein, a priori knowledge about the sign of
a regression parameter can be an easy solution to increase the number of
constraints and, therefore, decreasing the necessary sample-size [Hoijtink
(2012).

Constrained statistical inference (CSI) has a long history in the sta-
tistical literature. A famous work is the classical monograph by [Barlow,
Bartholomew, Bremner, and Brunk| (1972), which summarized the devel-
opment of order constrained statistical inference in the 1950s and 1960s.
Robertson, Wright, and Dykstra| (1988) captured the developments of
CSI in the 1970s to early 1980s and |[Silvapulle and Sen| (2005) present
the state-of-the-art with respect to CSI. Although, a significant amount
of new developments have taken place for the past 60 years, the relation-



20 CSI: sample-size tables for ANOVA and regression

ship between power and CSI has hardly been investigated. An appeal-
ing feature of constrained hypothesis testing is that, without any addi-
tional assumptions, power can be gained (Barlow, Bartholomew, Brem-
ner, & Brunk| (1972} [Bartholomew| [1961a),[1961b; [Kuiper & Hoijtink|[2010}
Kuiper, Nederhoff, & Klugkist| 2011} [Perlman| 1969} [Robertson, Wright,
& Dykstral, (1988}, [Silvapulle & Senl, 2005} [Van de Schoot & Strohmeier]
2011; [Wolak} [1989). Many applied users are familiar with this fact in the
context of the classical t-test. Here, it is well-known that the one-sided
t-test (e.g., 1 = po against gy > ug) has more power than the two-sided
t-test (e.g., p1 = po against g # pe), because the p value for the latter
case has to be multiplied by two. We show that this gain in power readily
extends to the setting where more than one constraint can be imposed.
For example, in an ANOVA with three groups the number of order con-
straints may be one or two, depending on the available information about
the order of the means. Hence, we present sample-size tables for con-
strained hypothesis tests in linear models with an increasing number of
constraints. These tables will be comparable with the familiar sample-size
tables in |Cohen| (1988)) which are often seen as the ‘gold’ standard. The
major advantage of our sample-size tables is that researchers are able to
look up the necessary sample size for various numbers of imposed con-
straints.

The remainder of this article is organized as follows. First, we in-
troduce hypothesis test Type A and hypothesis test Type B, which are
used for testing constrained hypotheses. Second, we present sample-
size tables for order-constrained ANOVA, followed by sample-size tables
for inequality-constrained linear regression models. For both models we
present sample-size tables which depict the necessary sample size at a
power of 0.80 for an increasing number of constraints. Next, we provide
some guidelines for using the sample-size tables. Finally, we demonstrate
the use of the sample-size tables based on the CBT and IQ examples and
we provide R (R Development Core Team) 2016) code for testing the con-
strained hypotheses. Note that the article has been organized in such a
way that the technical details are presented in the Appendices and can
be skipped by less technical inclined readers who are interested primarily
in the sample-size tables.
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2.2 Hypothesis test Type A and Type B

In the statistical literature, two types of hypothesis tests are described for
evaluating constrained hypotheses, namely hypothesis test Type A and
Type B (Silvapulle & Sen, 2005). A formal definition of hypothesis test
Type A and hypothesis test Type B is given in Appendix Al Consider for
example the following (order) constrained hypothesis: H: 1 < ps < ps.
Here, the order of the means is restricted by imposing two inequality con-
straints. In hypothesis test Type A, the classical null hypothesis H g is
tested against the (order) constrained alternative H4; and can be sum-
marized as:

Type A:
Hap: p1 = p2 = p3
2.1
Hyp oo opy < po < pg . (2.1)

In hypothesis test Type B, the null hypothesis is the (order) constrained
hypothesis Hpg and it is tested against the two-sided unconstrained hy-
pothesis Hp1 and can be summarized as:

Type B:
Hpo: p1 <po<ps (2.2)
Hpi: i # pe # ps '

Note the difference with classical null hypothesis testing, where the hy-
pothesis Hyo is tested against the two-sided unconstrained hypothesis
Hp,. To evaluate constrained hypotheses, like H: p1 < ps < ps, hypoth-
esis test Type B and hypothesis test Type A are evaluated consecutively.
The reason is that, if hypothesis test Type B is not rejected, then the
constrained hypothesis does not fit significantly worse than the best fit-
ting unconstrained hypothesis. In this way, hypothesis test Type B is a
check for constraint misspecification. Severe violations will namely result
in rejecting the constraint hypothesis (e.g., 20 < 40 < 30) and further
analyses are redundant. If hypothesis test Type B is not rejected, then
hypothesis test Type A is evaluated because hypothesis test Type B can-
not distinguish between inequality or equality constraints. In addition,
because we are mainly interested in the power of the combination of both
hypothesis tests, we introduce a new hypothesis test called Type J. The
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power of Type J is the probability of not rejecting hypothesis test Type B
times the probability that hypothesis test Type A is rejected given that
hypothesis test Type B is not rejected. However, in case of constraint
misspecification, we will call it pseudo power. This is because for hypoth-
esis test Type B, power is defined as the probability that the hypothesis
is correctly not rejected. Since this is not in accordance with the classical
definition of power, we call it pseudo power.

In this article, we make use of the ' (F-bar) statistic for testing hy-
pothesis test Type A and hypothesis test Type B. The F is an adapted
version of the well known F statistic often used in ANOVA and linear
regression and can deal with order/inequality constraints. The technical
details of the F statistic are discussed in Appendix B, including a brief
historical overview. To calculate the p value of the F statistic, we cannot
rely on the null distribution of F' as in the classical F' test. However, we
can compute the tail probabilities of the F distribution by simulation or
via the multivariate normal distribution function. The technical details
for computing the p value based on the two approaches are discussed in
Appendix |Cl

Several software routines are available for testing constrained hypothe-
ses using the F statistic (hypothesis test Type A and Type B). Ordered
means may be evaluated by the software routine ‘Confirmatory ANOVA’
discussed in |[Kuiper, Klugkist, and Hoijtink| (2010). An extension for
linear regression models is available in the R package ic.infer or in our
own written R function csi.lm(). The function is available online at
http://github.com/LeonardV/CSI_1m 2 Hypothesis test Type A may
also be evaluated by the statistical software SAS/STAT® (SAS Institute
Inc}, 12008)) using the PLM procedure.

2.3 Sample-size Tables for order constrained
ANOVA

In this section we calculate the sample size according to a power of 0.80
for hypothesis test Type J. We will in particular investigate (a) the gain
in power when we impose an increasingly number of correctly specified

2Note that the csi.1m() function is deprecated. The function has been replaced by
the R package restriktor.
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order constraints on the one-way ANOVA model; (b) the pseudo power
when some of the means are not in line with the ordered hypothesis.

2.3.1 Correctly specified order constraints

We consider the model y; = piz;1+. . .+ ppxin+e, ¢ =1,...,n, where we
assume that the residuals are normally distributed. Data are generated
according to this model with uncorrelated independent variables, for k =
3,...,8 groups, and for a variety of real differences among the population
means, f = 0.10 (small), 0.15, 0.20, 0.25 (medium), 0.30, 0.40 (large),
where f is defined according to|Cohen| (1988 pp. 274-275). We generated
20,000 datasets for N = 6, ..., n, where n is eventually the sample-size per
group at a power of 0.80. The simulated power is simply the proportion
of p-values smaller than the predefined significance level. In this study
we choose the arbitrary value o = 0.05. An extensive description of the
simulation procedure is given in Appendix [D|

Table [2.1| shows the result of the simulation study in which we inves-
tigated the sample size at a power of 0.80 for different effect sizes and an
increasing number of order constraints. For example, the first row (ngs,)
presents the sample-sizes per group for an ANOVA with k& = 3 groups and
no constraints. These sample-sizes are equal to those in |(Cohen| (1988) [
The second row (ngs3,) shows the sample-sizes per group for £k = 3 and 1
imposed order constraint, and so on. The values between the parentheses
show the relative sample-size reduction. The second column represents
the Type I error rates. The values are computed based on the smallest
sample size given in the last column (S = 10,000, S is the number of
datasets). All results are close to the predefined value of a@ = 0.05, de-
spite the fact that hypothesis test Type J is a composite of hypothesis
test Type A and Type B.

The results show that, for any value of f, the sample size decreases with
the restrictiveness of the hypothesis. In other words, more information
about the means, provided by the order constraints imposed on them,
leads to a higher power. For example, in case of a small effect size (f
= 0.10) and k = 4, the total sample size reduction with 1 constraint is

3The unconstrained one-way ANOVA sample-sizes may differ slightly (& 1) from the
sample-sizes described in|Cohen|(1988). These differences can completely be attributed
to the number of simulation runs.
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96 (274-250 = 24, 4 x 24 = 96), with 2 constraints 228 (4 x 57), and
with 3 constraints 400 (4 x 100). Noteworthy, within a certain group k
and a given number of constraints, the sample size decreases relatively
equal across effect sizes. For example, if £ = 4 and 3 constraints are
imposed, the sample size decreases approximately 36%, independent of
effect size. In addition, we compared the results of hypothesis test Type
J with the results of hypothesis test Type A (not shown here). The
results are almost identical and show only some minor fluctuations, which
confirms that hypothesis test Type B only plays a significant role when
the means are not in line with the imposed order.

2.3.2 Incorrect order of the means

The preceding calculations have all been for sets of means which satisfy
the order constraints. Its power (read pseudo power) when the order of
the means is not satisfied is also of our concern. In particular we would
like to know about the power when the means are not perfectly in line
with the ordered hypothesis. In this vein, we focus on the scenario that
k=4, f = 0.10, 0.25, 0.40 and three order constraints. The two outer
means are fixed and only the two middle means are varied. For each value
of f five variations are investigated according to the rule p;y (i = 2,3),
where v = 0, -0.25, -0.50, -0.75, -1, and reflects minor to larger violations.

The results reveal that the power for Hypothesis test Type A (Hag
vs. Hap) is largely dominated by the extremes (here the first and last
mean). This means that, irrespective of the deviations of the two middle
means, the power is almost not affected. The results for hypothesis test
Type B (Hpo vs. Hpy) clearly show that the power to detect mean
deviations increases with sample size. We can conclude that the pseudo
power for Type J is less affected by minor mean deviations, where large
violations may affect the pseudo power severely. This effect becomes more
pronounced with larger effect sizes.
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2.4 Sample-size tables for Inequality
constrained linear regression

In this section we calculate again the sample size according to a power of
0.80 for hypothesis test Type J. But now we impose only an increasing
number of correctly specified inequality constraints on the regression coef-
ficients. We consider the model y; = S1zin+...+ Bpxip+€i, i =1,...,n,
where we assume that the residuals are normally distributed. Data are
generated according to this model with correlated independent variables
and with fixed and all equal regression coefficients (/5; = 0.10). This is be-
cause in a non-experimental setting, correlated independent variables are
the rule rather than the exception. Therefore, we investigate this for the
situations where the predictor variables are weakly (p = 0.20) and strongly
(p = 0.60) correlated. To make a fair comparison with the ANOVA re-
sults, we also take p = 0 into account. Let f2 be the effect size with f2
= 0.02 (small), 0.05, 0.08, 0.10 (medium), 0.15, 0.20, 0.25, 0.35 (large),
where f is defined according to|Cohen| (1988] pp. 280-281). All remaining
steps are identical to the ANOVA setting. A detailed description of the
simulation procedure is given in Appendix [El

The first observations that can be made on the Tables|2.2] 2.3|and 2.4
are that all Type I error values (see second column) are close to the pre-
defined value of a = 0.05. The values are computed based on the smallest
sample given in the last column. Second, in accordance with the ANOVA
results, for any value of f2, the sample size decreases with the restric-
tiveness of the hypothesis. Third, the relative decrease is independent of
effect size.

Table [2.2| presents the results for p = 0. When we compare these
results with the ANOVA results in Table [2.1] it is clear that imposing
inequality constraints (e.g., 8; > 0) on the regression coefficients leads
to a lower power compared to order constraints (e.g., g1 > o). For
example, for the case that ¥ = p = 5 and 4 constraints, the sample
size reduction is approximately 40% and 29%, respectively. Moreover, at
the maximum number of inequality constraints (here 5 constraints) the
sample-size reduction of about 36% is still less than when the parameters
are fully ordered. The results for a more realistic scenario (p = 0.20) are
shown in Table 2.3l The findings at a maximum number of inequality
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constraints are comparable with the ANOVA results. For example, the
total sample size decrease for p = 3,5,7 is approximately 34%, 42% and
47%, respectively.

2.5 Guidelines

If researchers want to use our sample-size tables, then we recommend the
following 5 steps:

1. Formulate the hypothesis of interest.

2a. Formulate any expectations about the order of the model parameters
in terms of order constraints (i.e. means in an ANOVA setting and
regression coefficients in a linear regression setting). For example,
the expectation that the first mean (pq) is larger than the second
(u2) and third mean (u3) can be formulated in terms of two order
constraints, namely p; > po and py > ps.

2b. Formulate any expectations about the sign of the model parameters
in terms of inequality constraints. For example, the expectation
that three (continuous or dummy) predictor variables are positively
associated with the response variable. This can be formulated in
terms of three inequality constraints, namely 8, > 0,82 > 0 and
Bs > 0.

3. Count the number of non-redundant constraints in step 2a and/or 2b
and lookup the needed sample-size in one of the sample-size tables.

4. Collect the data.

5. Evaluate the constrained hypothesis.

2.6 Illustrations

To illustrate our method, we consider the CBT and IQ examples. We
demonstrate how to use the sample-size tables in practice and we present
the R code for the restriktor package for testing the constrained hy-
potheses. The results of the analyses are also briefly discussed. The
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Table 2.3: Sample-size table for linear regression model - total sample size at a power of 0.80
for Type J (o = 0.05) for p = 3,5,7, p = 0.20, and an increasing number of correctly specified
inequality-constraints. The value between parentheses is the relative decrease in sample size.

Type I 2 =0.02 0.05 0.08 0.10 0.15 0.20 0.25 0.35

np3, 049 549 222 142 114 78 60 49 37

np3, 049 498 (-09.3%) 200 127 103 (-09.6%) 71 53 43 32 (-13.5%)
Np3, 048 441 (-19.7%) 177 113 090 (-21.1%) 61 47 38 28 (-24.3%)
Np3s 051 370 (-32.6%) 150 094 076 (-33.3%) 52 39 32 24 (-35.1%)
nps,  -050 648 263 168 136 93 72 58 44

nps, 049 605 (-06.6%) 247 156 125 (-08.1%) 85 65 53 39 (-11.4%)
Nps, 046 563 (-13.1%) 226 143 117 (-14.0%) 79 61 50 37 (-15.9%)
npss 049 509 (-21.5%) 207 130 105 (-22.8%) 72 55 44 33 (-25.0%)
Nps, 053 451 (-30.4%) 180 115 093 (-31.6%) 62 48 39 29 (-34.1%)
Npss 045 387 (-40.3%) 156 098 080 (-41.2%) 54 41 33 24 (-45.4%)
np7, 050 723 296 188 153 105 8 66 50

np7, 049 694 (-04.0%) 282 179 144 (-05.8%) 099 76 62 46 (-08.0%)
npr, 048 651 (-09.9%) 265 169 136 (-11.1%) 092 71 58 43 (-14.0%)
nprs 047 612 (-15.4%) 246 158 126 (-17.6%) 086 66 54 40 (-20.0%)
np7, 049 565 (-21.8%) 229 145 117 (-23.5%) 080 61 50 37 (-26.0%)
nprs 044 514 (-28.9%) 206 132 106 (-30.7%) 072 55 44 33 (-34.0%)
npre 047 453 (-37.3%) 186 116 094 (-38.5%) 064 49 39 29 (-42.0%)
npr, 049 393 (-45.6%) 159 100 081 (-47.0%) 055 42 34 25 (-50.0%)
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output of the conTest () function for the ANOVA and regression exam-
ple is provided in Appendix [F| and |G| respectively. The example datasets
are available online at http://github.com/LeonardV/CSI_1m,

2.6.1 ANOVA

In the introduction, we discussed the following order-constrained hypoth-
esis (step 1):

Hepr: Hnew_drug_ CBT < Hold_drug_CBT < Hno_drug_CBT; (23)

where the researchers had clear expectations about the order of the three
means. These expectations were translated into two order constraints
between the parameters (step 2). The next step, before data collection, is
to determine the necessary sample size to obtain a power of say 0.80 («
= 0.05) when the two order constraints are taken into account (step 3).
Sample-size tables based on the classical F' test show that in case of k = 3
and f = 0.25 53 subjects per group (159 subjects in total) are necessary.
If the researchers plan to use the F test instead of the classical F' test,
then it can be retrieved from Table [2.1] that with two order constraints
37 subjects (111 subjects in total) are needed (see row ngs,). That is a
total sample-size reduction of about 48 subjects or about 30%. Then, in
order to evaluate the order constrained hypothesis, using the conTest ()
function, the following lines of R code are required (step 5):

R> library(restriktor)
R> data <- read.csv("depression.csv")

R> model <- "depression ~ -1 + group"
R> fit.anova <- 1lm(model, data = data)
R> myConstraintsl <- " groupl < group2

group2 < groupd "
R> conTest(model = fit.anova, constraints = myConstraintsl)

In the first line the restriktor package is loaded into R. In the second line
the observed data are loaded into R. The data should be a data frame con-
sisting of two columns. The first column contains the observed depression
values, the second column contains the group variable. The third line is
the model syntax and it is identical to the model syntax for the R func-
tion Im(). The intercept was removed from the model (-1) so that the
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regression coefficients correspond to the means as in an one-way ANOVA.
An ANOVA model is just a special case of the linear model. Therefore,
in the forth line we can make use of the linear model 1m() function in
R. The fifth line shows the constraint syntax. The constraints can be
specified using a text-based description. In case of a categorical predictor
constraints can be specified using the factor-level name (here 1, 2 and 3)
preceded by the factor name (here group). The sixth line calls the actual
conTest () function for testing the order-constrained hypothesis. The ar-
guments to conTest () are the fitted unconstrained model (fit.anova)
and the constraint syntax (myConstraintsl).

The results (see Appendix F|) show that for Hypothesis test Type B the
order constrained hypothesis is not rejected in favor of the unconstrained
one, Fg = 0.000, p = 1.000 (an Fp value of zero implies that the means
are completely in line with the imposed order). The results for hypothesis
test Type A indicate that the classical null hypothesis is rejected in favor
of the constrained hypothesis, Fy = 4.414, p = 0.038. Thus, the results
are in line with the expectations of the researchers. Noteworthy, when the
order is completely ignored, then the omnibus F' test is not significant, F’
= 1.718, p = 0.168 (not shown here). This clearly demonstrates that the
F test has substantially more power than the classical F' test.

2.6.2 Multiple regression

The use of the linear regression sample-size tables is comparable with the
ANOVA sample-size table. Recall, that in the IQ example, a group of re-
searchers wanted to investigate the relation between the response variable
IQ and five predictor variables (step 1), namely social skills (1), interest
in artistic activities (2), use of complicated language patterns (fs), start
walking age (84), and start talking age (85). Their hypothesis of interest
was that the first three predictor variables are positively associated with
higher levels of IQ (81 > 0, B2 > 0 and B3 > 0) and that the last two pre-
dictors are negatively associated with IQ (84 < 0, 85 < 0) (step 2). Thus
a total of five inequality constraints were imposed on the regression coef-
ficients (step 3). Furthermore, the researchers expected a medium effect
size (f? = 0.10) for the omnibus F test and a weak correlation (p = 0.20)
among the predictor variables. All things considered, classical sample-size
tables based on the F' test reveal that at least 136 subjects are necessary
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to obtain a power of 0.80 (« = 0.05). However, when the expected posi-
tive and negative associations are taken into account, then from Table 2.3
it can be retrieved that by means of imposing five inequality constraints,
only 80 subjects are needed to maintain a power of 0.80 (see row nys, ).
That is a substantial sample-size reduction of about 40% or 56 subjects.

The R code to evaluate this inequality constrained hypothesis is ana-
logue to the ANOVA example (step 5):

R> library(restriktor)
R> data <- read.csv("IQ.csv")
R> model <- "IQ ~ social + artistic + language +
walking + talking"
R> fit.1lm <- 1lm(model, data = data)
R> myConstraints2 <- " social > 0
artistic > 0O
language > O
walking < O
talking < 0 "
R> conTest(model fit.lm, constraints = myConstraints2)

The results (see Appendix |G) show that the inequality constrained
hypothesis is not rejected in favor of the unconstrained hypothesis, Fg =
0.211, p = 0.847, and that the null hypothesis is rejected in favor of the
constrained hypothesis, Fy = 10.707, p = 0.019. Thus, the results are in
line with the expectations of the researchers. The results for the classical
F test are again not significant, F' = 2.184, p = 0.067.

2.7 Discussion and Conclusion

In this paper we presented the results of a simulation study in which we
studied the gain in power for order/inequality constrained hypotheses.
The presented sample-size tables are comparable with the sample-size ta-
bles described in|Cohen| (1988]) but with the added benefit that researchers
will be able to look up the necessary sample size with a predefined power
of 0.80 and number of imposed constraints.

We included an increasing number of order constraints in the one-way
ANOVA hypothesis test and inequality constraints in the linear regression
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hypothesis test. The ANOVA results, for k = 3, ..., 8 groups, showed
that a substantially amount of power can be gained when constraints are
included in the hypothesis. Depending on the number of groups involved,
a maximum sample-size reduction between 30% and 50% could be gained
when the full ordering between the means is taken into account. For
k > 4 it is questionable whether imposing less than two order constraints
is sufficient for the minor gain in power; for k£ > 7 this may be questionable
for less than three constraints. Furthermore, we also investigated the effect
of constraint misspecification on the power. The results showed that small
deviations have only a minor impact on the power.

The linear regression results reveal that, for p = 3,5,7 parameters, the
power increases with the restrictiveness of the hypothesis independent of
effect size. Again, a substantial power increase between approximately
30% and 50% can be gained when taking a correlation (p) of 0.20 between
the independent variables into account. These findings are comparable
with the ANOVA results, but only apply to the maximum number of
constraints. In all other cases, the results showed that an ordering of
the parameters leads to a higher power compared to imposing inequality
constraints on the parameters. Nevertheless, full ordering of the param-
eters may be challenging, while imposing inequalities on the parameters
may be an easier task. Hence, combining inequality constraints and order
constraints may be a solution for applied users.

The current study has some limitations. In the data generating process
(DGP) for the ANOVA model, we made some simplifying assumptions:
the differences between the means are equally spaced, the sample size is
equal in each group, there are no missing data, and the residuals are nor-
mally distributed. For the linear regression model, the DGP assumes that
the correlations between the independent variables are all equal. In future
research, the effects of these assumptions on a possible power drop should
be studied. Moreover, we only investigated a limited set of possibilities
and extensions for a = 0.01 and different power levels are desirable. How-
ever, because it is impossible to cover all possibilities, we are currently
working on a user-friendly R package for constrained hypothesis testing
which will include functions for sample-size and power calculations. De-
spite these limitations, we believe that the presented sample-size tables are
a welcome addition to the applied user’s toolbox, and may help convinc-
ing applied users to incorporate constraints in their hypotheses. Indeed,
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notwithstanding the substantial gain in power, constrained hypothesis
testing is still largely unknown in the social and behavioral sciences, al-
though the social and behavioral sciences are a good source for ordered
tests. For example, in an experimental setting, the parameters of interest
(e.g., means) can often be ordered easily. In a non-experimental setting
variables such as ‘self-esteem’, ‘depression’ or ‘anxiety’ do not conveniently
lend themselves for such ordering, but attributing a positive or a negative
sign can often be done without much difficulties.

In conclusion, including prior knowledge into a hypothesis, by means of
imposing constraints, results in a substantial gain in power. Researchers
who are dealing with inevitable small samples in particular may bene-
fit from this gain. Therefore, we recommend applied users to use these
sample-size tables and corresponding software tools to answer their sub-
stantive research questions.
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Hypothesis test Type A and Type B

Consider the standard linear regression model,

yi=0xin+ ...+ 0hzip+e, i=1,...,n

p
Al
= Zé?jxij +€i- ( )
j=1

Hypothesis test Type A and hypothesis test Type B can be summarized
as follows:

Type A:
gﬁ? Efezzcc , (4.2)

Type B:
S s
If r is the number of inequality constraints imposed on 8 = (01,...,0,)T,

and p the number of parameters involved, then let R be an r X p ma-
trix with known constants, and ¢ an r x 1 vector with known constants

37



38 CSI: sample-size tables for ANOVA and regression

(often this vector contains zeros). In an ANOVA, each row of matrix R
is typically a permutation of the p-vector (—1,1,0,...,0) and represents
one pairwise constraint. In a linear regression model R is typically a
permutation of the p-vector (1,0,...,0) and represents a one parameter
constraint. Let R; be a submatrix of R of order g x p, where ¢ < 7.
For example, suppose that p = 4 and Hag : 61 = 65 = 03 = 04 and
Hay i 01 < 6y < {03, 04} (in Hyy no specific order between 65 and 6 is
expected), then

—1 1 0 0

(1) j (1) 8 1 10 0
R = and Ry = 0 1 1 0

0 1 -1 0 0 -1 0 1

0 0 -1 1

0 0 1 -1

Furthermore, at least one of the inequality signs in hypothesis test Type
A must be a strict inequality so that the null hypothesis is not included
in the constrained hypothesis.



The F test statistic

In the statistical literature, several approaches have been proposed for
testing constrained hypotheses. [Silvapulle and Sen| (2005) present the
state-of-the-art with respect to constrained statistical inference, see also
Barlow et al.|(1972) and [Robertson et al.|(1988). In addition to the F test
statistic, some other test statistics in the framework of linear models are
the E-square-bar test (E?), the Score test, the Wald test and the likelihood
ratio test (LRT) (Gouriéroux, Holly, & Monfort, 1982} Silvapulle & Sen|

2005).

The F test can be calculated as follows:

F = {RSS(010) — RSS(0111)}/S” (B.1)

where RSS(0) is the residual sum of squares under the hypothesis H and
can be computed as follows:

n

RSS(0) = e, (B.2)

i=1

where e; = (y; — §;) and §; = Or2i1 + ...+ épxip. This term is the main
building block for the F' test statistic.

39
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In the unconstrained setting, the solution to 0 can be obtained ana-
lytically. In case of constraints, we need to find é, which is the solution
to the constrained optimization problem. There are efficient computer
algorithms for this optimization problem. For example, the subroutine
solve.QP in the R package quadprog (Turlach & Weingessel, [2013) works
well in our experience.

The F test finds its roots in [Kudd (1963) who stated its null distri-
bution, but pioneering steps were made in [Bartholomew| (1959a |1959b),
1961b)) which discussed the ¥? (chi-square-bar) statistic, for the situation
where the covariance matrix V has the form V = ¢?W and is completely
known. Kudé suggested the F-statistic in case of k independent normal
means with known covariance matrix W but unknown o2, see also Niiesch
(1966). Kudoé’s work was extended by [Kudé and Choi (1975) who gener-
alized the result to the case when the covariance matrix is singular. This
occurs when the number of imposed inequality constraints on the means
exceeds the number of means involved. |Yancey, Judge, and Bock| (1981)
discussed tests of the null hypothesis that a subset of the parameter vector
lies in the positive orthant |!|for the special case in which the design matrix
in the linear model is orthogonal. It was Wolak| (1987) who generalized
the results of Yancey et al. to the case of an arbitrary design matrix and
general equality and inequality constraints. |Silvapulle| (1996)) elaborated
the results of [Wolak| for the case where the hypotheses are more general
than the linear ones.

More recent developments in the context of linear models are for ex-
ample inequality constrained generalized mixed models, and non-normal
models such as logistic and Poisson regression, time series, and propor-
tional hazard models (Davis, [2012)). In addition, constrained robust tests
have been discussed by [Silvapulle| (1992a), (1992b), and |[Van de Schoot,
Hoijtink, and Dekovi¢| (2010) presented a method for testing constrained
hypotheses in structural equation models. The problem of constrained
tests when there are missing data has been studied by [Kim and Taylor
(1995); [Shi, Zheng, and Guo| (2005) and |Zheng, Shi, and Guo| (2005).

1An orthant is any of the n-regions into which n-dimensional Euclidean space is
divided by the coordinate planes. For example, in two dimensional space there are
four orthants. The positive orthant exists of all vectors with positive coordinates.



The null distribution of the F test

To compute the tail probabilities of the F statistic, we cannot rely on
the null distribution of F' as in the classical F' test. This is because its
null distribution has become a mixture of F' distributions. Closed form
expressions for the mixing weights for p < 4 can be found in |Kudo| (1963).
The exact computation of the weights for p > 4 is a difficult task in
general. To deal with this issue, we discuss two suitable approaches. In
the first approach, the p value can be computed easily and sufficiently
accurately by a simulation approach. Let G denote the cumulative distri-
bution function of the residuals where G is assumed known but o may be
unknown. For example the distribution of the residuals may be normally
distributed. Then, the p value for the F statistic can be computed by
using the following four steps [Silvapulle and Sen| (2005, pp. 98):

1. Generate independent observations {y;; : 4 =1,...,n;,j=1,...,p}
from G.

2. Compute the F statistic.

3. Repeat the previous two steps say B = 100,000 times.

41
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4. Estimate the p value by M/B, where M is the number of times the
F statistic in the second step exceeded its sample value.

Note that in the first step the observations may be generated from a
distribution with any value for the mean and variance because the null
distribution of the F' does not depend on them, see Theorem 3.9.1 in
Silvapulle and Sen| (2005, pp. 97-98). The advantage of this method is
that any error distribution may be used for computing the p value. The
disadvantage is an increased computational cost. In the second approach,
the p value may be computed economically by first simulating the mixing
weights (w;). The weight w; is some nonnegative value and is the proba-
bility that 6 has exactly ¢ positive elements. The sum of the weights from
0 to q is one. These weights explicitly depend on the covariance matrix
of 6 (Wolak, (1987). If the constrained set is the nonnegative orthant,
then the weights can be computed by using the following five steps (see
Silvapulle & Sen) 2005, pp. 79):

1. Generate independent observations {y;; : i =1,...,n;,7 =1,...,p}
from G.

2. Compute 6 subject to 8 > 0.
3. Count the number of elements of the vector greater than zero.
4. Repeat the previous three steps say B = 10,000 times.

5. Estimate w; by the proportion of times 6 has exactly ¢ positive
elements, ¢ =0,...,q.

In addition, if the residuals are normally distributed, then the weights can
be computed by using the multivariate normal probability distribution
function. This method is implemented in the ic.weight () function in
the R package ic.infer (Gromping} [2010).

Then, the p value for hypothesis test Type A can be computed as
follows |Silvapulle and Sen| (2005, pp. 99):

q

Pr(Fa > fa,,) = > wi(Ho, i) Prl(r—q+i)Fr—giiv > fa,.), (C.1)
=0
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where v is the error degrees of freedom and the fus is the sample value of
the F'. For hypothesis test Type B, with only order/inequality constraints,
the p value is computed as |Silvapulle and Sen| (2005, pp. 100):

q
Pr(Fp > fg,,) = > wi(Ho, Hy) PrliFi, > fg,.]. (C2)
1=0



Simulation 1 - correctly specified
order constraints

In a one-way ANOVA, the populations differ only in their means. Let
0 = (u1, pa, ..., pi) and let f be a measure of the true deviation from the

null hypothesis, where f is defined according to (1988, pp. 274—

275). Next, we discuss our six step simulation procedure.

In step 1, data are generated according to the model specified in Equa-
tion with uncorrelated independent variables, for k = 3,...,8 groups
and for a variety of real differences among the population means, f =
0.10 (small), 0.15, 0.20, 0.25 (medium), 0.30, 0.40 (large). Let the dif-

ferences between the means, d, be equally spaced. Then d is defined as
d= 21k

\/= under the restriction that Zle i =0and o = 1.
S i-1-k)2

The smallest mean, 1, is determined by p; = @. For example, if

k = 4 and the effect size f = 0.25, then d = % and gy = —0.335. Then,
e = p1 +d, p3 = p1 + 2d and pyg = p1 + 3d.
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In step 2, we generate S = 20,000 datasets according to the data gener-
ating process described in step 1 for N = 6,...,n, where n is eventually
the sample size per group at a power of 0.80.

In step 3, we fit the equality-constrained model (H o), the order-con-
strained model (H4;) and the two-sided unconstrained model (Hp1) and
calculate for each model the RSSy. The imposed order constraints are
of the form H: pu; — ps > 0.

In step 4, we calculate the F values for hypothesis test Type A and Type
B according to Equation B.1|

Then, in step 5, we compute the p-value for hypothesis test Type A and
hypothesis test Type B. This is done according to Equation |C.1| for hy-
pothesis test Type A and according to Equations |[C.2| for hypothesis test
Type B, which are provided in Appendix |C|

Finally in step 6, we calculate the power for hypothesis tests Type A, Type
B, and Type J. The power is simply the proportion of p-values smaller
than the predefined significance level. In this study we choose the arbi-
trary value a = 0.05. The conditional power is computed by P(b) x P(a|b),
where P(a) is the proportion of significant results for hypothesis test Type
A, and ]5(5) is the proportion of non-significant results for hypothesis test
Type B.



Simulation 2 - correctly specified
inequality constraints

In a linear regression analysis, let @ = (31, B2, ..., 3,)T and let f2 = %,
where R? is the determination coefficient. Again, a six step simulation

procedure is used, similar as for the ANOVA setting.

In step 1, data are generated according to Equation [A.1) with fixed and
all equal parameters (3; = 0.10). Let f? indicate the effect size with f2
= 0.02 (small), 0.05, 0.08, 0.10 (medium), 0.15, 0.20, 0.25, 0.35 (large).
Since we hold the parameters fixed, generating data for a predefined R?
boils down to determining o2, where 02 = (8"Xx60)(1 — R?)/R? and
3 x is the covariance-matrix for the covariances between the independent
variables. We take this latter into account because in a non-experimental
setting, correlated independent variables are the rule rather than the ex-
ception. Therefore, we investigate this for the situations where ¥x is a
compound symmetry matrix with ones on the diagonal and values of p
(p =0, 0.20 and 0.60) elsewhere. We take the value p = 0 into account
to make a fair comparison with the ANOVA model. Furthermore, in this
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study we will limit ourselves to p = 3, 5, and 7 variables.

In step 2, we generate S = 20,000 datasets according to the data gener-
ating process described in step 1 for N = 6,...,n, where n is the total
sample size at a power of 0.80.

Step 3 corresponds to the ANOVA setting with the exception that we
impose an increasing number of correctly specified inequality constraints

of the form H: (3; > 0 on the model.

Step 4, 5 and 6 are again identical to the ANOVA setting.



Output of the conTest() function for
the CBT example

Restriktor: restricted hypothesis tests ( 108 residual degrees of freedom ):

Multiple R-squared remains 0.046

Constraint matrix:

factor(group)1 factor(group)2 factor(group)3 op rhs active
1: -1 1 0 = 0 no
2: 0 -1 1 > 0 no

Overview of all available hypothesis tests:
Global test: HO: all parameters are restricted to be equal (==
vs. HA: at least one inequality restriction is strictly true (>)
Test statistic: 4.4144, p-value: 0.03814
Type A test: HO: all restrictions are equalities (==

vs. HA: at least one inequality restriction is strictly true (>)
Test statistic: 4.4144, p-value: 0.03814
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Type B test: HO: all restrictions hold in the population
vs. HA: at least one restriction is violated
Test statistic: 0.0000, p-value: 1

Type C test: HO: at least one restriction is false or active (==
vs. HA: all restrictions are strictly true (>)
Test statistic: 0.9968, p-value: 0.1605

Note: Type C test is based on a t-distribution (one-sided),
all other tests are based on a mixture of F-distributions.



Output of the conTest() function for
the IQ) example

Restriktor: restricted hypothesis tests ( 65 residual degrees of freedom

Multiple R-squared reduced from 0.144 to 0.141

Constraint matrix:

(Intercept) social artistic language walking talking op rhs active
1: 0 1 0 0 0 0 > 0 no
2: 0 0 1 0 0 0 >> 0 no
3: 0 0 0 1 0 0 > 0 no
4: 0 0 0 0 -1 0 >> 0 no
5: 0 0 0 0 0 -1 > 0 yes

Overview of all available hypothesis tests:
Global test: HO: all parameters are restricted to be equal (==

vs. HA: at least one inequality restriction is strictly true (>)
Test statistic: 10.7071, p-value: 0.01934
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Type

Type

Type

Note:

test: HO: all restrictions are equalities (==
vs. HA: at least one inequality restriction is strictly true (>)
Test statistic: 10.7071, p-value: 0.01934

test: HO: all restrictions hold in the population
vs. HA: at least one restriction is violated
Test statistic: 0.2109, p-value: 0.8472

test: HO: at least one restriction is false or active (==
vs. HA: all restrictions are strictly true (>)
Test statistic: -0.4593, p-value: 0.6762

Type C test is based on a t-distribution (one-sided),
all other tests are based on a mixture of F-distributions.
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Comparing inequality-constrained
robust and non-robust regression
estimation methods for one-sided

hypotheses

In many situations, researchers have specific expectations about the order
of the parameters in their statistical model. For example, a researcher
might expect that the regression coefficients follow a simple order (e.g.,
01 < 03 < 03). Contaminated data, such as extreme observations in the
response and the predictor space are ubiquitous in research. Both may
have a great negative impact on the least squares estimator resulting in
bias and loss in power. Robust estimation of the linear model, where
extreme observations are down-weighted to have less influence on the pa-
rameter estimates is a powerful alternative to least squares. The result is a
robustly estimated constrained linear model. We investigate by means of
a simulation study the performance of inequality-constrained (IC) regres-
sion OLS-, M- and MM-estimators in terms of their mean squared error
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(MSE). Moreover, we investigate the size and power of one-sided robust
and non-robust hypothesis tests (Wald, score and likelihood ratio). The
results show that IC MM-estimation produces the most precise estimates,
while the M- and OLS-estimates are negatively affected for higher levels
of contamination. The power of the OLS- and M-tests fails dramatically,
while the power of the robust MM-tests remains adequate. An empir-
ical example about child and parental adjustment following a pediatric
burn event illustrates the application of these robust tests and shows that
ignoring extreme observations in the analysis may result in spurious con-
clusions regarding the direction of the effects. Therefore, we advise robust
techniques if the data are potentially contaminated.

3.1 Introduction

Small samples and extreme observations are often encountered in research.
The easiest way to overcome the problem of too small samples and related
lack of power is to find a way to increase the sample size. Unfortunately,
this is often impossible due to limited resources (e.g., in expensive fMRI
studies), ethical issues (e.g., in case of vulnerable groups) or small popula-
tions (e.g., in clinical trials). Research into the psychological consequences
of pediatric burns concerns a typical example of a research field in which
problems with regard to sample size arise. Burn centers often comprise
small units, resulting in the need for prolonged multi-center studies in
order to obtain a sufficient sample size. Consequently, many research
questions remain unanswered.

Inequality-constrained (IC) hypothesis testing (Barlow, Bartholomew,
Bremner, & Brunk| [1972; Robertson, Wright, & Dykstral, 1988} [Silvapulle
& Sen| 2005), also known as ‘informative hypothesis testing’ (Hoijtink|
2012) might be an easy solution. Researchers often have a-priori expec-
tations about the sign or ordering of the parameters in their statistical
model. Most researchers are familiar with this fact in the context of the
one-sided t-test, where one mean is restricted to be larger or smaller than
a fixed value (e.g., 1 > 0) or another mean (e.g., u1 < o). This readily
extends to the setting where more than one constraint can be imposed
on the statistical parameters. For example, a researcher might expect
that a subset of 0, e.g., 61,605, where 0 is a vector containing regression
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coefficients, is larger than zero H : {01,062} > 0 (or any other constant
value). In other words, researchers may have clear expectations about the
sign (positive or negative) of the parameters in their statistical models.
Alternatively, researchers may have clear a-priori expectations about the
order of the parameters in a statistical model. For example in a regression
model, they may expect that the regression coeflicients are subject to order
constraints, e.g., #; < 03 < 3. A major advantage of including inequal-
ity constraints in the hypothesis is that power can be gained. This has
been shown repeatedly (Barlow et al., [1972; Bartholomew) [1961al |1961b;
Kuiper & Hoijtink|, [2010; [Meyer & Wang], 2012} [Perlman| [1969}; [Robert-
son et al.| [1988; [Rosen & Davidov], 2012} [Vanbrabant, Van de Schoot, &
Rosseel| 2015) for the linear model using OLS estimators and normal dis-
tributed data. In particular, Vanbrabant et al.| (2015) have shown that a
sample size reduction up to 50% can be achieved if a maximum number
of constraints is imposed on the regression coefficients.

Unfortunately, data collected from a wide range of applications often
contain irregularities that deviate from the majority of the data (Hampel,
1973; [Maronna, Martin, & Yohail 2006), such as response outliers and
bad-leverage points in a regression setting. Response outliers are defined
as extreme observations in the response space and bad-leverage points
are defined as observations that are extreme in both the response and
predictor space. Both may largely affect the OLS-estimator, resulting
in biased estimates and a decline in power (Schrader & Hettmansperger,
1980; Silvapulle, [1992a), [1992b)). To deal with these issues, various robust
estimators have been proposed. Among these are the commonly used M-
estimators (Huber| [1973)), S-estimators (Rousseeuw & Yohail 1984) and
MM-estimators (Yohai, [1987). Robust estimators achieve their robust-
ness by modifying the loss function, making it less increasing than the
squared loss in OLS. Robustness of these estimators can be investigated
via their breakdown point (BDP) while performance can be studied by
their relative efficiency. Simply put, the BDP of a parameter estimate
éj is the largest proportion of irregularities that the data may contain
such that éj still gives some information about §; (Maronna et al., 2006)).
Thus, the higher the BDP the more robust is the estimator. The non-
robust OLS has a zero BDP, which means that a single data-point can
already distort the OLS estimator. The relative efficiency of an estima-
tor is the ratio of its variance compared to that of the optimal (smallest
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variance) estimator. Since the OLS estimator is, under the Gauss-Markov
assumptions a best (smallest variance) linear unbiased estimator, robust
estimators are frequently compared to OLS, in the ideal case of normally
distributed errors. M-estimators can attain a high relative efficiency (over
95%) and can handle response outliers, but unfortunately they can still
be unduly influenced by even a single extreme bad-leverage point and
therefore have a zero BDP as well. S-estimators have a high BDP of 50%,
but they can only attain a relative efficiency up to 33%. MM-regression
estimators combine the strengths of M- and S-estimators, so that MM-
estimators can simultaneously achieve a high BDP and a high efficiency.
In MM-estimation, the initial regression coefficients and final scale esti-
mate are computed by an S-estimator; this determines the BDP. The final
estimator of the regression coefficients is an M-estimator with fixed scale
equal to the S-scale estimate. This MM-estimator inherits the BDP from
the S-estimator in the first step while the M-estimator in the second step
determines its relative efficiency (Yohai) |[1987).

The natural result of combining both fields of constrained statistical
inference and robust estimation results in robust constrained inference for
the linear model. Robust Wald, score and likelihood ratio type (LRT)
tests for one-side hypotheses based on IC M-estimators have been intro-
duced by Silvapulle (Silvapulle, 1992a), [1992b| {1996) and Silvapulle and
Silvapulle (Silvapulle & Silvapullel [1995). These authors showed in a
small simulation study for n = 18, two inequality constraints and several
error distributions that substantial power can be gained. However, as
discussed above, bad-leverage points may have a negative impact on the
BDP of the M-estimator. Therefore, we extend their research to IC MM-
estimators. The objective of the current paper is to investigate by means
of a simulation the performance of IC OLS-, M- and MM-estimators and
corresponding tests when the data are contaminated with outliers and
bad-leverage points. We show by means of an empirical example about
a pediatric burn event that ignoring extreme observations in the analysis
may result in spurious results regarding the direction of the effects.

The remainder of this article is organized as follows. First, we describe
the linear model using OLS-, M- and MM-estimators and IC hypothesis
tests. Second, we describe three non-robust test-statistics and three ro-
bust test-statistics that can deal with inequality constraints and we discuss
their null-distributions. Third, we present the results of our simulation
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study. Our analysis shows that MM-estimation produces the most accu-
rate estimates, while the estimates for OLS- and M-estimation are severely
negatively affected for higher levels of contamination. The power fails dra-
matically for OLS- and M-tests, while the power for MM-tests remains
adequate. In addition, for all tests, incorporating order/inequality con-
straints yield a substantial improvement of the size and power. Next, we
present an empirical data example about pediatric burn events. The ex-
ample shows that ignoring extreme observations in the analysis may result
in spurious conclusions regarding the direction of the effects. Therefore,
we advise robust techniques if the data are potentially contaminated. Fi-
nally, we present a conclusion of our research.

3.2 Linear model and inequality constrained

hypotheses
Consider the standard linear regression model,
_ T S
yi=x; 0+¢,i=1,...,n, (3.1)
where 6 = (01, ...,0,)7 is the parameter vector of interest, x; = (z;1,. ..,
z;)T are vectors of covariates, and ¢; = (e1,...,¢;)7 are the random

errors. In case the model contains an intercept, we set z;; = 1 and the
vector of regression coefficients can be split in an intercept component
«a = 601 and a slope component 3 = (6, ..., OP)T. Moreover, in this case
we write z; = (1,2z])7 and we assume that the covariates are centered,
ie. > z;; =0for j =1,...,p— 1. In absence of an intercept, we set
B = 0. We consider the following methods to estimate 6.

3.2.1 OLS-estimation

Unconstrained OLS estimates O are obtained as the solution which min-

imizes
n

S ole) (32)

i=1

over all @ € RP, where the loss function equals p(e;) = e;(0)? and e;(0) =
T
yi —x; 0.
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3.2.2 M-estimation

The letter M indicates that it is an extension of the maximum likelihood
estimation method. The unconstrained M-estimator 8 is obtained as
the solution which minimizes the loss function

3 () o3
=1

over all 8 € RP. In contrast to OLS, the estimation of oM is dependent
on an initial scale estimate 6. To obtain a robust solution, a robust scale
estimator needs to be used to obtain 6. Typically, the MAD (Median
Absolute Deviation) of the residuals with respect to an initial estimator
(OLS) is used. For the loss function p, a common choice is the redescend-
ing Tukey biweight (bisquare) family of loss functions, given by

p(e,-;c)_{ 1— (1= (e/e)?)®  iffes| < e } (3.4)

1 if le;] > ¢

with derivative p/(e;;c) = 61(e;;¢)/c? where,

2
Y(esc) =e (1 - (61/0)2> X Ifje;1<c}s (3.5)

The indicator function I equals 1 if the expression inside the curly
brackets is true and 0 otherwise. Setting the tuning constant ¢ > 0 equal
to ¢ = 4.685 yields an M-regression estimator with 95% efficiency at the
central model with normal errors. It is important to note that equation|3.3
can be written as a weighted least-squares problem with weights equal to
w; = w(e;) = ¥(e;)/e; and can be solved using iteratively reweighted
least-squares (IRLS).

3.2.3 MM-estimation

MM-estimators are based on two loss functions p; and ps which deter-
mine the BDP and the efficiency of the estimator respectively. Both loss
functions are taken from the Tukey biweight family of loss functions which
yields an MM-estimator that is robust to both response and (bad)-leverage
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points. Similarly as for the M-estimator, the MM-estimator OMM g ob-
tained as the solution which minimizes the loss function

>0 (35) 39

over all @ € RP. Here, 6° is a scale S-estimate. A scale S-estimator is
defined as the solution #° which minimizes the M-scale 6™ () over all
0 € R?, where for any 6 € R? the corresponding M-scale () is defined
implicitly by the equation

1 - €;

- ;pl (UM@) =b. (3.7)
The constant b is usually chosen to obtain a consistent estimator in case
of normal errors. The associated S-regression estimator is the solution
65 which minimizes 6™ (6) over all 8 € R?, that is 65 = 6 (0°). This
S-regression estimate is used as initial value to calculate oMM using an
IRLS procedure to minimize the loss function in 3.6l The constant c¢ in
p1 equals 1.548 to obtain an S/MM-estimator with a BDP of 50% while
the constant ¢ in ps equals 4.685 to obtain an MM-regression estimator
with 95% efficiency in case of normal errors.

3.2.4 Inequality constrained hypotheses

Let the null and alternative hypotheses be
Hy:0e M and H,:0€C,0¢ M, (3.8)

where M is a subspace in C, and M and C are subsets of the p-dimensional
Euclidean space RP. If we only consider linear hypotheses, then the null-
and alternative hypotheses can be written in the more familiar form H :
RO =0 and H; : R160 > 0, respectively. If r is the number of inequality
constraints imposed on @, and p the number of parameters involved, then
let R be an r x p matrix with known constants. Let R; be a submatrix
of R of order ¢ x p, where ¢ < r. Note that at least one of the inequality
signs must be a strict inequality so that the null hypothesis is not included
in the alternative hypothesis. For a detailed discussion of this type of
hypotheses see |Silvapulle and Sen| (2005).
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When the error distribution is asymmetric, the intercept and the center
of the error distribution are confounded (Silvapulle, [1992b). Therefore,
we restrict ourselves to the case where the hypotheses involve the slope
component 3 of @ only, i.e. Hy: R3 = 0 against H; : Ry3 > 0. This
restriction should not pose any issues since in most practical situations
we only have prior knowledge about the signs of the slope components
3, while the sign of the intercept §; = « can be changed arbitrarily by
shifting the response y.

Calculating least squares estimates @% of the linear regression coef-
ficients under constraints is a well-studied problem (Nocedal & Wright,
2006)) and routines are widely available in software, for example in the R (R,
Development Core Team, 2016) package quadprog (Turlach & Weinges-
sel, [2013). To calculate constrained M-estimates 8" and MM-estimates
OMM e exploit that in absence of constraints both estimators can be cal-
culated by IRLS. To incorporate the constraints, we replace the IRLS steps
by iteratively reweighted constrained least squares optimization steps (IR~
CLS). In Algorithm |1 we show the core steps of the IRCLS algorithm in
pseudo code.

3.3 Test-statistics and null-distributions

First, we describe a non-robust F test (Kudd, [1963), a likelihood ratio
(LR) test and a score test (Silvapulle & Sen| 2005) based on IC OLS-
estimators. Then, we describe robust counterparts for these tests. We
consider a robust Wald test (Silvapulle, 1992b)), a likelihood ratio type
(LRT) test (Silvapulle, 1992a) and a score test (Silvapulle, |1996) based
on IC M- and MM-estimators. Finally, we discuss the null-distributions
of these test-statistics.

3.3.1 Non-robust F, LR and score test-statistic

Denote the OLS-estimates for the null, unconstrained and IC model by
BOL, BL, and ﬁL, respectively. Let us denote the IC F test by F, the LR
test by LR and the score test by S. The bar in the notation indicates
that we use the IC counterpart of the corresponding unconstrained test-
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statistics. Then, the F test-statistic is given by

F = inf{(B" - b)"W-(B" —b): Rb=0}—
U 3.9
i%f{(BL —b)TW=BY —b): Rib >0}, (39)

with W = 62(ZT Z)~! where the matrix Z contains the vectors z; as its
rows. Moreover, 62 is a consistent estimate of the asymptotic variance o
of the estimator BL.

The LR test-statistic is given by

LR = —2[inf{L(b) : Rb = 0} —inf{L(b) : Rab > 0}, (3.10)

where L(b) = >0 e? with ¢; = y; — &% — 2T'b.
The score test-statistic is given by

S = inf{(S(B") —b)" Wy '(S(B") ~b) : Rb =0}~
— 11
inf{(S(B*) — b)" Wy (S(B") — b) : Rub > 0}, 1)

where S (,@L) is the vector of the unconstrained scores vector and ﬁ\/o =
652Z" Z and 632 consistently estimates the asymptotic variance o2 of the
estimator 3%.

3.3.2 Robust Wald, score and LRT test-statistic

Let us denote the robust Wald test by RW, the robust score test by
RS and the robust LRT test by RF. Denote the null, unconstrained
and inequality constrained robust estimates by Bo, ,@, and ,é, respectively
where the robust estimates can be either M-estimates or MM-estimates.
Denote the information matrix by U = #2Z7Z and #2 consistently
estimates the asymptotic variance 72 of the unconstrained estimator ,5
Then, the robust Wald test-statistic is given by

RW = inf{(8 - b)"U(8—b) : Rb=0}—
\. o (3.12)
irgf{(ﬁ -bTU(B-b): Rib>0}.

Let the slope vector B be partitioned as ( (71), ,fa’(g))T7 where under H
ﬂ(Tl) is unspecified and ﬁ(g) € M, while under Hy, ,B(Tl) is unspecified and
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ﬁg) € C. Then, the robust score test-statistic is given by
RS = igf{(S(B(m) —b)"C(S(Bz)) —b) : Rb=0}—

R . . (3.13)

nf{(5(B) — b)"C ' (S(B(z)) — b) : R1b > 0},
where S(ﬁ(g)) is the corresponding subvector of the scores vector S(3) =
S ha(ei)6)zizl /n with e; = y; — 27@. The information matrix is
denoted by C = {M35.1) Voo M3, ,)}, where V = M 'QM™T with
M =30 ¥h(es/6)ziz] [n, Q = T, W3 (ei/6)ziz] In, e = yi — @] 0,
and & is the scale estimate in the unconstrained model.

At this point, it is worth mentioning that the matrices M and Q can
be computed both under the null or unconstrained model to get a consis-
tent estimator of the information matrix C' in equation [3.13] The choice
depends on the main focus of the test. When sequences of local alterna-
tives (approaching the null hypothesis when the sample size grows) are
considered it is perfectly valid to estimate M,Q and C under the null
model. In this case, the power of these tests is only studied for alterna-
tive hypotheses that are close to the null hypothesis. However, despite
its computational attractiveness, the power decreases for alternative hy-
potheses that are further away from the null hypothesis. To avoid this,
we shall evaluate the matrices M and @ under the unconstrained model.

The LRT statistic is defined by

RF = X‘l[irgf{L(b, 6): Rb =0} —inf{L(b,5) : R1b > 0}], ~ (3.14)
where L(b,6) = Y. pa(e;/6) with e; = y; — & — «!'b is the loss function
in M- and MM-estimation and let A be the asymptotic covariance ma-
trix standardizing constant which equals A = 271 (n — p)"H{Zy3(e; /5)}
{n~ 1S e /)1
3.3.3 How to find the null-distribution

The null distribution of each of these test-statistics takes the form of a
mixture of y2-distributions. In particular, the asymptotic null distribution
of the test-statistics is given by

q
Pr(T >t |RO =0)~ Y wi(q, %) Pr(x{,_gs = 1), (3.15)
1=0
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where T is any of the test-statistics given in Equations|3.9to[3.14]and X
equals the covariance matrix. It is important to note that the calculation
of the mixing weights w; is invariant for positive constants such like 72
(known or unknown) (Silvapulle & Sen| 2005, p. 32).

Closed form expressions for the mixing weights w;(¢q, %) can be found
in|Gouriéroux, Holly, and Monfort|(1982)); [Kudo|(1963)) and |Shapiro| (1988])
for ¢ < 4. The exact computation of the weights for ¢ > 4 is a difficult
task in general because the weights can no longer be expressed in closed
form. An exception is when the block in the information matrix associ-
ated with the inequality constraint parameters is diagonal. In this case
the weights follow a Binomial distribution with ¢ trials (i.e., the number of
inequality constraints) and probability of success equal to 0.5 (Gouriéroux
et al., [1982)). For the case of correlated parameter estimates, the weights
can be approximated by using the multivariate normal probability distri-
bution function with additional Monte Carlo steps (Gromping, 2010) or
they can be computed easily and sufficiently precise by Monte Carlo sim-
ulation (Silvapulle & Sen| |2005; [Wolak) [1989)). Note that the p-value can
also be computed directly using parametric or non-parametric bootstrap
(Silvapulle & Sen| 2005]).

3.4 Simulation study

3.4.1 Design of the simulation study

We generated 2999 samples of sizes N = 30, 50, 75, 100, 200, 400 accord-
ing to the linear regression model y = 1 + Z3 + e, where 3 € R*, with
Z ~ N(0,1;), independent from e ~ N(0,1). The vector with regression
parameters was set to 3 = (81, B2, 83, 84) = (0,d, d, d), where d was varied
to obtain samples from the null hypothesis (d = 0) and from alternative
hypotheses (d = 0.05,0.10,...,0.5). We restricted the regression coeffi-
cients to be unconstrained, positively-constrained (8; > 0,7 = 1,2,3,4)
or order-constrained (0 < 81 < 2 < 3 < (4) and estimated the co-
efficients via OLS-, M- and MM-estimation. To investigate the perfor-
mance of the different hypothesis tests we considered three hypotheses,
namely the unconstrained hypothesis (Hyupe), the positively-constrained
hypothesis Hpos : 8; > 0,7 = 2,3,4 and the order-constrained hypothesis
Horder : 0 S 62 < 53 < 64-
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To examine the robustness of the estimators, we investigated the im-
pact of leverage points on the performance of the estimators. To generate
contaminated samples, ten percent of the values of the first column of Z
were replaced by observations following a A/(5,0.12) distribution while the
corresponding response y had a N'(n,0.12) distribution, with 7 taking the
values 0,1,2,3...,16, respectively. Larger values of 7 yield more severe
bad leverage points. Note that the contaminated variable is not involved
in the hypotheses. This ensures that the contamination affects both the
estimation of the parameters under the null- and alternative hypothesis.
A similar simulation design is used in [Salibidn-Barrera, Van Aelst, and
Yohai| (2014). All results are obtained using the R package restriktor
(version 0.1-80). The R code to run the simulations is given in Appendix
H.

3.4.2 (Root) mean squared errors

To investigate the robustness of the estimators, Figure|3.1/shows the influ-
ence of the outlier configurations on the root mean squared error (RMSE)
of the estimators for 8, and the sample-size N = 50. From the plot we
see that the MM-estimator (dashed-lines) is the more ‘precise’ estima-
tor. Its good performance for large values of 7 is due to the redescending
weight-function that is used, which ensures that large residuals get weight
zero. On the other hand, the OLS-estimator (solid lines) is clearly non-
robust. Its RMSE continues to increase with n. This is also the case
for the M-estimator (dotted-lines), except when the regression coefficients
are subject to order constraints. For all three estimators, incorporat-
ing the order-constraints yields a substantial improvement of the RMSE
compared to the corresponding positively-constrained and unconstrained
estimators.

To further compare the robustness of the estimators, Table [3.3| gives
for all regression parameters the relative mean squared errors (MSE) for
uncontaminated samples and contaminated samples for different values
of n, d = 0 and sample sizes N = 50 and N = 100. A relative MSE
less than 1 indicates that the robust estimator is more precise than the
OLS-estimator. Moreover, if MSEyn < MSEy then the MM-estimator
is more precise than the M-estimator. The results show that the OLS-
estimator always performs best for uncontaminated samples. However,
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with contaminated samples its performance quickly deteriorates when n >
6. In the presence of bad leverage points, MM-estimation outperforms
both OLS and M-estimation. Again, order-constraints outperforms the
positively-constrained and unconstrained estimators.

3.4.3 Size and (adjusted) power

The exact finite sample distributions of the non-robust F, LR and score
test-statistics based on OLS-estimates and normally distributed errors,
are a mixture of F distributions under the null hypothesis (Wolak] |1987)).
In agreement with [Silvapulle| (1992b), we found that these mixtures of F
distributions also better approximate the tail probabilities of the robust
tests than their asymptotic distributions. Therefore, the size and power
values presented in this section are based on mixtures of F distributions.

First, we investigated the size of the robust and non-robust tests. Fig-
ures [3.2a),[3.2bl and [3.2¢| show the influence of the sample-size on the size
of the tests when the samples do not contain any irregularities and with
a nominal size of 5%. The results show that the accuracy of the tests in-
creases with the sample-size and that the empirical sizes are close to the
nominal size for sufficiently large samples. The robust and non-robust
F test-statistics are the most accurate tests, even in small samples. On
the other hand, the robust Wald and robust score tests are too liberal
in smaller samples. For all test statistics the improvement is substantial
for constrained hypotheses, where the order-constrained hypothesis again
outperforms the positively-constrained hypothesis.

To investigate the power we varied the value of the parameter d. To
make the power values comparable, we computed size-adjusted power lev-
els. This adjustment ensures that the empirical level is 0.05 for all tests.
The results for N = 50,100, and 200 are shown in Figures |3.2d| to 3.2L.
As expected, the OLS-tests have the highest power in this setting. The
difference is largest for N = 50. The robust F-test is the best performing
robust test even in small samples. In the unconstrained setting, the robust
tests perform somewhat worse than the OLS-tests but these differences
become smaller in the constrained settings. Note that the improvement
of the order-constrained results are perhaps less severe than expected but
this is because we sampled from a model where 85 to 54 are taken to be
equal.
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To investigate the robustness of the tests, Figure 3.3alto (3.3l show the
influence of the outlier configurations on both the size (d = 0) and power
of the unconstrained, the positively-constrained and the order-constrained
hypothesis tests for the case d = 0.10, 0.20, 0.30 and N = 100. The results
show that in these settings the size for OLS-tests is hardly affected by
the contamination. The size for M- and MM-tests are somewhat more
liberal but the results are not alarming, except for the most damaging
outlier configurations 7 = 6 and n = 7 for the robust Wald statistic
based on MM-estimation. For all tests the improvement is substantial
for constrained hypotheses, where the order-constrained hypothesis again
outperforms the positively-constrained hypothesis.

Figures|3.3d to 3.3 show that only MM-tests are capable of maintain-
ing high power, while the power for the M- and OLS-tests drops severely
with increasing value of 77. Again, the improvement is substantial for con-
strained hypotheses, where the order-constrained hypothesis outperforms
the positively-constrained hypothesis.

Overall, we can conclude that the MM-based F-test performs good in
terms of size and power in the presence and absence of contamination,
except for the situation of the most damaging outlier configuration (n =
7). In this case the MM-based score test performs best. The OLS- and
M-tests are size robust but their power free-falls towards zero for extreme
outlier configurations. However, robustness does not come for free but at
the expense of a larger sample-size to maintain equal size and power.

3.5 Illustrative example

In the aftermath of a burn event and subsequent hospitalization, both
children and parents may experience traumatic stress reactions. Pedi-
atric burn research focuses on this impact of a burn event on parents and
between parents and their child (Bakker, Van der Heijden, Van Son, &
Van Loey, [2013). Several predictors have been found to be related to
parental post-traumatic stress symptoms (PTSS), such as parental emo-
tions in relation to the burn event (e.g., guilt) and the percentage of total
body surface area burned (TBSA) (De Young, Hendrikz, Kenardy, Cob-
ham, & Kimble| [2014; Hall et al., 2006).

The data in our example are based on two cohort studies in children
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from 0 to 4 and 8 to 18 years old with burns and their parents (e.g., Bakker
et al., 2013/ and Egberts et al.| [2016)). For illustrative reasons we focus
only on the data provided by the mother. The final sample consists of
mothers of 278 children. The response variable is parental post-traumatic
stress symptoms (PTSS) and was measured with the Impact of Event
Scale. Moreover, for the current illustration we included five predictor
variables in the dataset: a child’s gender (0 = boys, 1 = girls) and age,
the estimated percentage total body surface area affected by second or
third degree burns (i.e., TBSA, with a range of 1-72% in the current
sample), and the parent’s guilt [0-4] and anger [0-4] feelings in relation
to the burn event.

Clinical evidence and a previous study suggest that mothers may re-
port higher PTSS levels for girls compared to boys (McGarry et al., [2013).
Hence, we are interested in whether the gender-effect increases for simul-
taneously higher levels of guilt, anger and TBSA. In other words, we
are interested in the covariates-conditional effects (Mayer, Dietzfelbinger,
Rossel, & Steyer} |2016) of gender on PTSS. A prominent approach to esti-
mate conditional effects is based on multiple regression with interactions.
The model with interactions can be written as a linear function

PTSS ~ a + figender + foage + [3guilt + Bianger + 5 TBSA
+ Bggender x guilt
+ fBrgender X anger
+ Bggender x TBSA.

The conditional effects can be obtained at certain values of the covari-
ates. We selected three different values for the covariates guilt, anger and
TBSA, namely a small, a medium and a large level. For a small level,
we chose the values 0, 0, 1 for guilt, anger and TBSA respectively. For
a medium level we chose their mean values which are 1.525, 1.309, and
8.354, respectively, and for a large level we chose 4, 4, and 35, respectively.
Note that these values are chosen for illustrative reasons. Different chosen
values may result in a different conclusion.

In contrast to common hypothesis tests which are usually about model
parameters (i.e., regression coefficients), effects are defined as a function
of the model parameters. The resulting three effects can be calculated as
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follows and each effect reflects a mean difference between boys and girls.

Effectl = 81 + 860 + 570 + Bsl (316)
Effect2 = 51 + 861.525 + 571.309 + [£38.354
Effect3 = 1 + 864 + B74 + Bs35.

Since, we expect that the gender differences would increase for simulta-
neously higher levels of guilt, anger and TBSA, the hypothesis of interest
is defined as

H, : Effect]l < Effect2 < Effect3. (3.17)

The matching constraint matrix Ry can be written as

a Bi P2 Bz Bs Ps Be B7 Bs
R, = 0 0 0 0O O 0 1525 1309 7.354 |, (3.18)
0 0 0 0 0 0 2475 2.691 26.646

where the first row refers to the constraint Effectl < Effect2 and the
second row to Effect2 < Effect3. Manually constructing the constraints
matrix as shown in Equation |3.18|can be a complex task. Fortunately, the
R package restriktor can be used for constrained estimation and infer-
ence for linear models and allows for easy specification of the constraints.
The R-code with the model-syntax and constraint-syntax can be found in
Appendix [I.

Based on outlier diagnostics we identified 12 irregular observations
in the data (approximately 4.7% of the data). The diagnostic results are
displayed in Figure (3.4l The figure reveals 12 (high)-leverage points which
were identified with robust Mahalanobis distances larger than the 99.5%
quantile of a x2 distribution. Therefore, robust estimation of the linear
model would be a natural choice. Otherwise we may draw misleading
conclusions.

Table 3.1: Constrained effect estimates

Estimator Effectl Effect2 Effect3

OLS 3448 < 3458 < 8.002
MM 3590 £ 3590 < 7158
. <

M 3.589 3.589 7.161
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In Table [3.1] the effect-estimates for the different regression meth-
ods are presented. The key difference is that in case of OLS-estimation
the constraints are in line with the data, while in case of M- and MM-
estimation the first constraint (Effectl < Effect2) is active. The latter
means that the value for Effect 1 is fixed on the boundary value that is
still in agreement with the constraint. The practical implication of the
results is that in case of OLS-estimation, evidence is found in favor of
the order-constrained hypothesis, while for M- and MM-estimation one
imposed constraint is not supported by the data. A test is needed to
determine whether the violation is severe enough to not reject the null-
hypothesis.

To test the order-constrained hypothesis, we used Hy : Effectl =
Effect2 = Effect3 as competing null-hypothesis. The test-statistics are
computed as discussed in Equations (3.9 to [3.14. To obtain the p-values,
the weights in the mixtures were calculated by using the multivariate nor-
mal distribution function with additional Monte Carlo steps. The results
are summarized in Table 3.2, First, the power gain for the constrained
tests is clearly visible as the p-values for the unconstrained tests are all
bigger than their constrained counterpart. Second, all IC non-robust re-
sults are significant, while all IC robust results are not significant. Given
that the data are clearly contaminated, as shown in Figure (3.4, we pro-
claim that the robust results are more reliable. The example illustrates
that we may draw misleading conclusions if we ignore the presence of con-
tamination. In particular, we would be led to believe that the data do
provide enough evidence that the gender-effect increases for higher levels
of guilt, anger and TBSA, while this is not supported by careful analysis
of the data.

3.6 Summary and discussion

We investigated the performance of inequality constrained (IC) OLS-, M-
and MM-estimators when the data are contaminated. The mean squared
error (MSE) indicates that MM-estimation produces the most precise es-
timates. On the other hand, the MSE for the OLS- and the M-estimator
can be seriously affected by contamination in the data and increase rapidly
for higher levels of contamination (bad leverage points). For all estima-
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Table 3.2: Results from the illustration.

p value
Test-statistic  constrained unconstrained

OLS-estimation:

F 5.445 0.040 0.068
LR 5.571 0.038 0.062
S 5.377 0.042 0.068
Me-estimation:

RF 3.289 0.123 0.194
RW 3.244 0.125 0.194
RS 4.488 0.065 0.105
MM-estimation:

RF 3.295 0.122 0.193
RW 3.253 0.125 0.195
RS 4.494 0.065 0.105

tors, it holds that the MSE improves most if the regression coefficients
are subject to order constraints.

We mainly investigated the performance of IC (non)-robust likelihood
ratio type (LRT), Wald/F, and score tests in terms of size and power.
We found that all non-robust tests are size accurate and yield the highest
power for uncontaminated samples, as could be expected. The robust LRT
test based on M- and MM-estimates is the most accurate robust tests, ex-
cept when 7 = the most damaging outlier configuration. In this situation,
the robust score test performs best. While the non-robust tests are size
robust in our contamination settings, their power is severely affected by
contaminated (n > 7) samples. This is also the case for the M-tests. Only
MNM-tests are capable of maintaining high power, where the robust LRT-
test performs adequately. Again, in case of the most damaging outlier
configuration, the score test performs best. In addition, order/inequality
constraints have a positive effect in diminishing (extreme) outliers in the
analyses, where order constraints outperform positive constraints. To im-
prove the size in smaller samples, the residual bootstrap might be a good
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alternative estimator. However, the residual bootstrap is not very robust
in the presence of outliers. In future research, it should be investigated
how alternative methods such as the fast and robust bootstrap (Salibian-
Barrera), [2005) can be adapted to the case with constrained hypotheses.

We used an empirical example about child and parental adjustment
following a pediatric burn event to show that ignoring outliers may result
in spurious conclusions regarding the direction of the effects. We like to
emphasize that the application of constrained statistical inference is not
limited to the context of burns data. For example, Rosen and Davidov
(2012) discusses the constrained linear mixed model applied to the natural
history of hearing loss, and |Van de Schoot and Strohmeier| (2011)) discusses
the constrained structural equation model applied to psychosocial data.

In the literature, two types of hypothesis tests are often described for
testing IC hypotheses, which are often denoted as hypothesis test Type
A and hypothesis test Type B (see, e.g. |Silvapulle & Senl [2005). We fo-
cused only on hypothesis test Type A where the null hypothesis contains
equality constraints and the alternative hypothesis contains inequality
constraints. As mentioned earlier, rejecting the null-hypothesis does not
mean that the constrained hypothesis is true. Therefore, in practice we
often evaluate hypothesis test Type B as well. In hypothesis test Type B,
the null hypothesis contains inequality constraints and is tested against
the unconstrained hypothesis (some constraints may be preserved in the
alternative hypothesis). However, evaluating the power of hypothesis test
Type B is less straightforward then evaluating the power of hypothesis
test Type A. There is not one obvious choice for the population param-
eters, since samples are drawn from the unconstrained model and any
selected parameters will be arbitrary to some extent. Notwithstanding
this, hypothesis test Type B plays a primarily role in constraint misspec-
ification. Results from a previous simulation study (Vanbrabant et al.,
2015) have shown that small deviations have only a minor impact on the
power. In practice we recommend to evaluate hypothesis test Type B as
well to catch severe constraint violations.

In conclusion, many researchers have a-priori knowledge about the or-
der of the parameters in their statistical model. Including order/inequality
constraints in the hypothesis has major benefits, such as testing the hy-
pothesis of interest more directly and a substantial gain in power. Never-
theless, ignoring outliers and/or high-leverage points in the analysis may
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result in severe power loss and biased estimates. Therefore, in the presence
of constraints and data contamination, we advise to use IC robust tech-
niques. Moreover, these methods are now available in the user-friendly R
package restriktor and ready to be used.
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Algorithm 1 Iteratively Reweighted Constrained Least Squares opti-
mization steps.

for (iter in 1L:maxit) do
w < psi.bisquare(resid / scale) > compute Tukey’s bisquare weights

W+ diag(sqrt(w)) > matrix with the weights on the diagonal
Dmat + t(X) W X > matrix to be minimized
dvec + t(X) Wy > vector to be minimized
Brestr < SOLVE.QP(Dmat, dvec, Amat, bvec, meq) > call

quadratic optimizer
resid.new <— y — X Byestr > compute residuals under the constraints
if (abs(resid - resid.new) < absval) then > check for convergence

break
else
resid < resid.new
end if
end for
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Figure 3.1: The influence of different outlier configurations n on the RMSE
for By, for N = 50.
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Table 3.3: Relative MSE for N = 50 and N = 100, and d = 0.

N =50 N =100

>< Relative MSE Bo B1 B2 B3 Ba Bo B1 B2 B3 Ba
T unc MSEym / MSEons  0.999  1.021  1.049 1.034  1.006 1.006 1.059 1.068 1.035 1.028
5 MSEym / MSEoLs — 0.998  1.019  1.039  1.035  1.002 1.006 1.058 1.064 1.035 1.031
g MSEym / MSEoLs  0.997 1.066 1.036  1.037  1.030 1.005 1.042 1.055 1.027 0.993
§ P9 MSEwm / MSEors 0.996 1.050 1.023 1.022 1.023 1.005 1.034 1.050 1.030 0.996
£ 4 MSEy / MSEors  0.997  1.037  1.069 1.062  1.031 1.005 0.989 1.020 1.034 1.007
m Order  MSEmm / MSEoLs  0.995  1.039  1.050 1.062  1.026 1.006 0.999 1.031 1.036 1.010
= e MSEym / MSEoLs  1.003  1.065 1.049 1.017  0.997 1.011  1.067 1.032 1.020 0.989
MSEmm / MSEons  1.002  1.057  1.042 1.023  0.991 1.010 1.065 1.027 1.015 0.997
o MSEym / MSEons  1.002  1.074 1.072  0.982  1.013 1.009 1.070 0.988 0.994 0.974
P PO MSEym / MSEons  1.002  1.069 1.036 0.974 1.011 1.008 1.066 0.983 0.993  0.980
order MSEy / MSEors  1.008  1.083  1.083 1.083  1.077 1.011  1.059 1.059 1.059 1.055
MSEmm / MSEoLs  1.010  1.117  1.117  1.116  1.107 1.017  1.093 1.093 1.093  1.088
ne MSEym / MSEons  1.005  1.035  1.027 1.045 1.018 1.010 1.034 1.014 1.058 1.016
MSEym / MSEoLs  0.902  0.703  0.889  0.980  0.931 0.900 0.605 0.837 0.907 0.958
= . MSEym / MSEoLs  1.005  1.037  1.025 1.014  1.037 1.009 1.034 1.015 1.058 1.016
P POS  MSEmm / MSEors  0.907  0.680 0.952 0.831  0.883 0.899 0.601 0.765 0.882  1.009
order MSEy / MSEors  0.775  0.499  0.501  0.507  0.564 0.788 0.512 0.514 0.552 0.534
MSEmm / MSEoLs  0.719  0.176  0.181  0.198  0.323 0.726 0.156 0.167 0.190 0.256
ne MSEym / MSEoLs  1.007  1.027 1.038  1.056  1.019 1.008 1.024 1.019 1.069 1.024
MSEmm / MSEoLs  0.812  0.282  0.662 0.739  0.790 0.812 0.151 0.614 0.710 0.786
@ MSEy / MSEors ~ 1.007  1.028  1.038  1.034  1.035 1.008 1.024 1.023 1.072 1.015
P PO MSEym / MSEons  0.812  0.235  0.628  0.606  0.720 0.809 0.072 0.568 0.654 0.865
order MSEym / MSEoLs  0.658  0.211  0.214  0.223  0.293 0.667 0.146 0.152 0.167 0.210
MSEmm / MSEoLs  0.649  0.063  0.071  0.095 0.213 0.659 0.051 0.070 0.099 0.162
ne MSEy / MSEors  1.007  1.017  1.042 1.067 1.012 1.005 1.016 1.026 1.186 1.034
~ MSEmm / MSEoLs  0.736  0.109  0.532 0.578  0.581 0.754 0.070 0.488 0.577 0.612
— ] MSEym / MSEoLs  1.006 1.018 1.050 1.059  1.035 1.005 1.015 1.030 1.092 1.016
I POS  MSEmum / MSEors 0.739  0.076  0.504 0.485  0.525 0.753 0.052 0.444 0.533  0.702
S rder MSEy / MSEors  0.573  0.045 0.053 0.070  0.156 0.583 0.037 0.051 0.072 0.118
MSEmm / MSEoLs ~ 0.573  0.046  0.051  0.069 0.115 0.583 0.037 0.051 0.072 0.118

1

unc = unconstrained, pos = positively-constrained, order = order-constrained.
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Figure 3.2: The influence of sample size on the size and the influence of
effect-size on the adjusted power levels, when no contamination is present.
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Figure 3.3: The influence of different outlier configurations 7 on the size
(d = 0) and power (d = 0.10,0.20,0.30), for N = 100 and the uncon-
strained, positively-constrained and order-constrained hypothesis.
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Standardized residuals
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Robust Mahalanobis distances

Figure 3.4: Plot of standardized residuals against robust Mahalanobis dis-
tances for the burns data. The vertical dashed line indicates the 99.5%
quantile of a x2 distributions. Observations beyond this line are consid-
ered as (high)-leverage points.



Simulation R-code for N = 50, 10%
contamination and order constraints

library(restriktor)
library (MASS)

# number of parameters

p <-4

# 10% contamination

cont <- 0.10

# order constraints

myConstraints <- "x2 > 0; x2 < x3; x3 < x4;"

seed <- 3013073
parallel <- "multicore"
ncpus <- 8

sample-size

<- 100

effect-size

<=0

damaging outlier configurations

H o H =2 H

80
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eta <- c¢(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)

result <- 1list()

nsims <- 2999

pvalues <- matrix(NA, nsims, 9)

for (1 in 1:length(eta)) {
cat("iteration eta =", 1, "\n")
betas <- ¢(0,d,d,d)

fn <- function(b) {
set.seed(seed + b)
X <- mvrnorm(N, mu = rep(0, p), Sigma = diag(p)
colnames(X) <- c("x1","x2","x3","x4")
y <= 1 + X/xY%betas + rnorm(N)

idx <- sample(l:nrow(y), N*cont, replace = FALSE)
X[idx,1] <- rnorm(length(idx), 5, 0.1)

y[idx,1] <- rnorm(length(idx), eta, 0.1)

sim.data <- data.frame(y, X)

# ols-estimation
fit.ols <- 1Im(y ~ x1 + x2 + x3 + x4, data = sim.data)

restrl.ols <- iht(fit.ols, constraints = myConstraints, type = "A",
test = "F")

restr2.ols <- iht(fit.ols, constraints = myConstraints, type = "A",
test = "LRT")

restr3.ols <- iht(fit.ols, constraints = myConstraints, type = "A",
test = "score")

# MM-estimation
fit.mm <- rlm(y ~ x1 + x2 + x3 + x4, data = sim.data, method = "MM")

restrl.mm <- iht(fit.mm, constraints = myConstraints, type = "A",
test = "F")

restr2.mm <- iht(fit.mm, constraints = myConstraints, type = "A",
test = "Wald")

restr3.mm <- iht(fit.mm, constraints = myConstraints, type = "A",
test = "score")

# M-estimaion

fit.m <- rlm(y ~ x1 + x2 + x3 + x4, data = sim.data, method = "M",
psi = psi.bisquare)

restrl.m <- iht(fit.m, constraints = myConstraints, type = "A",
test = "F")
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restr2.m <- iht(fit.m, constraints = myConstraints, type = "A",
test = "Wald")

restr3.m <- iht(fit.m, constraints = myConstraints, type = "A",
test = "score")

out <- c(restrl.ols$pvalue, restr2.ols$pvalue, restr3.ols$pvalue,
restrl.mm$pvalue, restr2.mm$pvalue, restr3.mm$pvalue,

restrl.m$pvalue, restr2.m$pvalue, restr3.m$pvalue)
out

}

res <- if (ncpus > 1L) {
parallel::mclapply(seq_len(nsims), fn, mc.cores = ncpus)
} else {
lapply(seq_len(nsims), fn)
}
error.idx <- integer(0)
for (b in seq_len(msims)) {
if (lis.null(res[[b]])) {
pvalues[b, 1l:ncol(pvalues)] <- res[[b]l]

}
else {
error.idx <- c(error.idx, b)
}
}
result[[1]] <- pvalues

# compute power
power <- matrix(NA, length(eta), 9)
for (1 in 1:length(eta)) {
for (i in 1:9) {
power[1,i] <- sum(result([[1]][,i] <= 0.05) / nsims
}
}



R-code burns data example

library(restriktor)
library(MASS)

## fit unconstrained linear model using OLS-, M- and

## MM-estimation OLS-estimation

fit.ols <- rlm(PTSS ~ gender*guilt + gender*anger +
gender*TBSA + age, data = burnsData)

# MM-estimation

fit.mm <- rlm(PTSS ~ gender*guilt + gender*anger +
gender*TBSA + age, data = burnsData,
method = "MM")

# M-estimation

fit.m <- rIm(PTSS ~ gender*guilt + gender*anger +
gender*TBSA + age, data = burnsData,
method = "M", psi = "psi.bisquare")

83
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# defining the effects and specifying the constraints

constraints <- "Effectl

Effect2

Effect3 :

gender + O*gender.
O*gender.
1xgender.

guilt +
anger +
TBSA

gender + 1.53*gender.guilt +

1.31*gender.anger +
8.35*gender.TBSA

gender + 4xgender

35*gender

Effectl < Effect2; Effect2 <

# compute test-statistic
iht(fit.ols, constraints
iht(fit.mm, constraints
iht(fit.m, constraints

and pvalue.

= constraints, test
= constraints, test
= constraints, test

.guilt +
4*gender.
.TBSA

anger +

Effect3"

= Wgn s type =
= WEn s type =
= ngn s type =

|IAI|)
|IAII)
|IAII)



robust regression estimation methods for one-sided hypotheses 85

References

Bakker, A., Van der Heijden, P., Van Son, M., & Van Loey, N. (2013).
Course of traumatic stress reactions in couples after a burn event
to their young child. Health Psychology, 10(32), 1076-1083. doi:
doi{10.1037/a0033983

Barlow, R., Bartholomew, D., Bremner, H., & Brunk, H. (1972). Statis-
tical inference under order restrictions. New York: Wiley.

Bartholomew, D. (1961a). Ordered tests in the analysis of variance.
Biometrika, 48(3/4), 325-332. doi: doij10.2307/2332754

Bartholomew, D. (1961b). A test of homogeneity of means under re-
stricted alternatives. Journal of the royal statistical society. Series
B (Methodological), 23(2), 239-281.

De Young, A. C., Hendrikz, J., Kenardy, J. A., Cobham, V. E., &
Kimble, R. M. (2014). Prospective evaluation of parent dis-
tress following pediatric burns and identification of risk factors
for young child and parent posttraumatic stress disorder. Jour-
nal of Child and Adolescent Psychopharmacology, 1(24), 9-17. doi:
doif10.1089/cap.2013.0066

Egberts, M. R., van de Schoot, R., Boekelaar, A., Hendrickx, H., Gee-
nen, R., & N.E.E.; V. (2016). Child and adolescent internalizing
and externalizing problems 12 months postburn: the potential role
of preburn functioning, parental posttraumatic stress, and infor-
mant bias. Child & Adolescent Psychiatry, 25(7), 791-803. doi:
doif10.1007/s00787-015-0788-z

Gouriéroux, C., Holly, A., & Monfort, A. (1982). Likelihood ratio test,
wald test, and kuhn-tucker test in linear models with inequality
constraints on the regression parameters. Econometrica, 50, 63-80.
doi: doif10.2307/1912529

Gromping, U. (2010). Inference with linear equality and inequality con-
straints using R: The package ic.infer. Journal of statistical software,
33, 1-31. doi: doii10.18637/jss.v033.i10

Hall, E., Saxe, G., Stoddard, F., Kaplow, J., Koenen, K., Chawla, N.,
... King, D. (2006). Posttraumatic stress symptoms in parents of
children with acute burns. Journal of Pediatric Psychology, 31(4),
403-412. doi: doii10.1093/jpepsy/jsj016

Hampel, F. (1973). Robust estimation: A condensed partial survey.
Probability theory and related fields, 27(2), 87-104.

Hoijtink, H. (2012). Informative Hypotheses: Theory and Practice for
Behavioral and Social Scientists. Boca Raton, FL: Taylor & Francis.


http://dx.doi.org/10.1037/a0033983
http://dx.doi.org/10.2307/2332754
http://dx.doi.org/10.1089/cap.2013.0066
http://dx.doi.org/10.1007/s00787-015-0788-z
http://dx.doi.org/10.2307/1912529
http://dx.doi.org/10.18637/jss.v033.i10
http://dx.doi.org/10.1093/jpepsy/jsj016

86 robust regression estimation methods for one-sided hypotheses

Huber, P. (1973). Robust regression: asymptotics, conjectures and
monte carlo.  The annals of statistics, 1(5), 799-821.  doi:
doiidoi:10.1214 /a0s/1176342503

Kudo, A. (1963). A multivariate analogue of the one-sided test.
Biometrika, 50(3/4), 403-418. doi: doii10.2307/2333909

Kuiper, R., & Hoijtink, H. (2010). Comparisons of means using ex-
ploratory and confirmatory approaches. Psychological Methods,
15(1), 69-86. doi: doii10.1037/a0018720

Maronna, R., Martin, D., & Yohai, V. (2006). Robust statistics: Theory
and methods. John Willey and Sons, New York.

Mayer, A., Dietzfelbinger, L., Rossel, Y., & Steyer, R. (2016).
The effectliter approach for analyzing average and conditional
effects. Multivariate Behavioral Research, 51(2-3). doi:
doii10.1080/00273171.2016.1151334

McGarry, S., Girdler, S., McDonald, A., Valentine, J., Wood, F., &
Elliott, C. (2013). Paediatric medical trauma: The impact
on parents of burn survivors. Burns, 6(39), 1114-1121. doi:
doi{10.1016/j.burns.2013.01.009

Meyer, M., & Wang, J. (2012). Improved power of one-sided
tests.  Statistics € probability letters, 82(8), 1619-1622. doi:
doij10.1016/j.spl.2012.04.016

Nocedal, J., & Wright, S. (2006). Numerical Optimization (2nd ed.;
V. Mikosh, S. Resnick, & S. Robinson, Eds.). Spring-Verlag: New
York.

Perlman, M. (1969). One-sided testing problems in multivariate anal-
ysis. The Annals of Mathematical Statistics, 40(2), 549-567. doi:
doi{10.1214 /aoms/1177697723

R Development Core Team. (2016). R: A language and environment for
statistical computing [Computer software manual]. Vienna, Austria.
(ISBN 3-900051-07-0)

Robertson, T., Wright, F. T., & Dykstra, R. L. (1988). Order Restricted
Statistical Inference. New York: Wiley.

Rosen, S., & Davidov, O. (2012). Order-restricted inference for multi-
variate longitudinal data with applications to the natural history
of hearing loss. Statistics in Medicine, 31(16), 1761-1773. doi:
doii10.1002/sim.5335

Rousseeuw, P.; & Yohai, V. (1984). Robust regression by means of S-
Estimators. In J. Franke, W. Hérdle, & D. Martin (Eds.), Robust
and nonlinear time series analysis (pp. 256-272). Spring-Verlag:
New York.


http://dx.doi.org/doi:10.1214/aos/1176342503
http://dx.doi.org/10.2307/2333909
http://dx.doi.org/10.1037/a0018720
http://dx.doi.org/10.1080/00273171.2016.1151334
http://dx.doi.org/10.1016/j.burns.2013.01.009
http://dx.doi.org/10.1016/j.spl.2012.04.016
http://dx.doi.org/10.1214/aoms/1177697723
http://dx.doi.org/10.1002/sim.5335

robust regression estimation methods for one-sided hypotheses 87

Salibian-Barrera, M., Van Aelst, S., & Yohai, V. (2014). Robust tests
for linear regression models based on 7-estimates. Computational
Statistics and Data Analysis. doi: doii10.1016/j.csda.2014.09.012v

Salibidn-Barrera, M. (2005). Estimating the p-values of robust tests
for the linear model. Journal of statistical planning and inference,
128(1), 241-257. doi: doij10.1016/j.jspi.2003.09.033

Schrader, R., & Hettmansperger, T. (1980). Robust analysis of variance
based upon a likelihood ratio criterion. Biometrika, 67(1), 93-101.
doi: doii10.2307/2335321

Shapiro, A. (1988). Towards a unified theory of inequality constrained
testing in multivariate analysis. International Statistical Review,
56, 49-62. doi: doii10.2307,/1403361

Silvapulle, M. (1992a). Robust tests of inequality constraints and one-
sided hypotheses in the linear model. Biometrika, 79(3), 621-630.
doi: doif10.2307/2336793

Silvapulle, M. (1992b). Robust wald-type tests of one-sided hypotheses in
the linear model. Journal of the American Statistical Association,
87(417), 156-161. doi: doif10.2307/2290464

Silvapulle, M. (1996). Robust bounded influence tests against one-sided
hypotheses in general parametric models. Statistics & probability
letters, 31(1), 45-50.

Silvapulle, M., & Sen, P. (2005). Constrained statistical inference: Order,
inequality, and shape restrictions. Hoboken, NJ: Wiley.

Silvapulle, M., & Silvapulle, P. (1995). A score test against one-sided al-
ternatives. American statistical association, 90(429), 342-349. doi:
doi{10.2307/2291159

Turlach, B., & Weingessel, A. (2013). quadprog: Functions to
solve quadratic programming problems (version 1.5-5). [Computer
software manual]. Retrieved from |http://CRAN.R-project.org/
package=quadprog

Van de Schoot, R., & Strohmeier, D. (2011). Testing informative hy-
potheses in SEM increases power: An illustration contrasting clas-
sical hypothesis testing with a parametric bootstrap approach. In-
ternational Journal of Behavioral Development, 35, 180-190. doi:
doi310.1177/0165025410397432

Vanbrabant, L., Van de Schoot, R., & Rosseel, Y. (2015). Constrained
statistical inference: sample-size tables for anova and regression.
Frontiers in Psychology, 5, 1-8. doi: doi310.3389/{psyg.2014.01565

Wolak, F. (1987).  An exact test for multiple inequality and
equality constraints in the linear regression model.  Journal


http://dx.doi.org/10.1016/j.csda.2014.09.012v
http://dx.doi.org/10.1016/j.jspi.2003.09.033
http://dx.doi.org/10.2307/2335321
http://dx.doi.org/10.2307/1403361
http://dx.doi.org/10.2307/2336793
http://dx.doi.org/10.2307/2290464
http://dx.doi.org/10.2307/2291159
http://CRAN.R-project.org/package=quadprog
http://CRAN.R-project.org/package=quadprog
http://dx.doi.org/10.1177/0165025410397432
http://dx.doi.org/10.3389/fpsyg.2014.01565

88 robust regression estimation methods for one-sided hypotheses

of the American statistical association, 82(399), 782-793. doi:
doi{10.1080/01621459.1987.10478499

Wolak, F. (1989). Testing inequality constraints in linear econo-
metric models. Journal of Econometrics, 41(2), 205-235. doi:
doij10.1016,/0304-4076(89)90094-8

Yohai, V. (1987). High breakdown-point and high efficiency robust esti-
mates for regression. The annals of statistics, 15(2), 642—656. doi:
doi{10.1214 /a0s/1176350366


http://dx.doi.org/10.1080/01621459.1987.10478499
http://dx.doi.org/10.1016/0304-4076(89)90094-8
http://dx.doi.org/10.1214/aos/1176350366

robust regression estimation methods for one-sided hypotheses

89




Evaluating an order-constrained

hypothesis against its complement
using the GORIC

An order-restricted information criterion such as the GORIC can be used
to rank the competing order-restricted hypotheses from best to worst.
The unconstrained hypothesis, where no restrictions are placed on the
model parameters is usually included as safeguard in the set of hypothe-
sis to avoid selecting a weakly supported hypothesis. The GORIC values
themselves are not interpretable. To improve the interpretation regarding
the strength, GORIC weights and related evidence ratios can be com-
puted. However, if the unconstrained hypothesis is used as competing
hypothesis, the evidence ratio is not affected by sample-size or effect-size
in case the hypothesis of interest is (also) in agreement with the data.
In practice, this means that strong support for the order-constrained hy-
pothesis is not reflected by a high evidence ratio. Therefore, we introduce
the evaluation of an order-constrained hypothesis against its complement
using the GORIC (weights). In a small simulation study, we show that
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the evidence ratio for the order-constrained hypothesis versus the comple-
ment increases for larger samples and effect-sizes, while the evidence ratio
for the order-constrained hypothesis versus the unconstrained hypothesis
remains bounded. An empirical example about facial burn injury illus-
trates our method and shows that using the complement as competing
hypothesis results in much more support for the hypothesis of interest
than using the unconstrained hypothesis as competing hypothesis.

4.1 Introduction

Consider the hypothesis Hy : puy < po < pz < pg, where p reflects the
population mean for each group. This form of hypothesis is known as an
order-constrained hypothesis or informative hypothesis (Hoijtink, |2012)
because the order of the means is restricted based on theory and/or aca-
demic reasoning. To evaluate such order-constrained hypothesis, three
methods can be distinguished, i.e. hypothesis testing, model selection
using information criteria and Bayesian model selection. In this current
article, we focus on model selection using information criteria. The AIC
(Akaikel [1998)) is probably the most familiar and widely used information
criterion employed in the social and behavioral sciences. Nevertheless, the
AIC is not suitable when the model parameters (e.g., means and regres-
sion coefficients) are subject to order constraints. A modification of the
AIC that can deal with simple order constraints in the exponential family
was proposed by [Anraku| (1999) and is called the order-restricted informa-
tion criterion (ORIC). Kuiper, Hoijtink, and Silvapulle| (2011) generalized
the ORIC (GORIC) to accommodate any linear inequality constraints in
multivariate normal linear models (except for range restrictions, which
bounds a parameter to a specific interval, e.g., —1 < g < 1). Informa-
tion criteria like the AIC, ORIC and GORIC are calculated as minus two
times the log-likelihood plus twice a penalty term value. The difference
between the methods is in calculating the penalty term value, which is
less straightforward to compute in case of order constraints.

The evaluation of an order-constrained hypothesis (e.g., Hy) requires a
competing hypothesis. To avoid selecting a weakly supported hypothesis
as the best one, the unconstrained hypothesis H,, is usually included as a
safeguard in the set of M hypotheses. Sometimes researchers have another
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hypothesis of interest, for example Hs : p1 < po < pug = pg but often
they do not have such a specific competing hypothesis. In that case,
only H, is used as competing hypothesis. Therefore, we focus solely on
the set of hypotheses with one order-constrained hypothesis H,, and H,.
The hypothesis with the lowest GORIC value is the preferred one. The
GORIC values themselves are not interpretable and only the differences
between the values can be inspected. To improve the interpretation, so-
called GORIC weights (w,,) can be computed, which are comparable to
the Akaike weights (Burnham & Anderson) 2002). The GORIC weight
w,, represents the relative likelihood of hypothesis m given the data and
the set of M hypotheses (Kuiper, 2011, p. 106). For example, if we
compare hypothesis H; against hypothesis H,, we can examine the ratio
of the two corresponding weights, that is w;/w,. This relative evidence
reflects how many times hypothesis H; is more likely than hypothesis H,,.

However, if the order-constrained hypothesis of interest H,, is in agree-
ment with the data, increasing the sample-size and/or effect-size does not
affect the relative evidence if the unconstrained hypothesis is used as com-
peting hypothesis. In that case, both hypotheses H,, and H, are in line
with the data, since H,, is always in line with the data, and consequently
both hypotheses have the same maximized likelihood value. Then, the
difference in GORIC values equals the difference in penalty term values,
which are independent of sample-size and effect-size. The latter case is
illustrated in Figure 4.1, where we generated 500 data sets according to
an ANOVA model with two uncorrelated ordered means Hs : p1 > puo
with a sample-size of n = 50 per group and various effect-sizes f. The
effect-size f is defined according to |Cohen| (1988, pp. 274-275). The re-
sults show that at first the mean evidence ratio of ws/w, increases for
increasing effect-sizes and that afterwards it stabilizes at an upper-bound
value of approximately 1.65. It is at this point that the data are in agree-
ment with Hs and thus the maximized log-likelihood values of Hs and
H, are the same. The boundary value equates the exponential difference
of the penalty term values between Hs and H,, that is, exp(2.00 - 1.50)
= exp(0.50) = 1.65; as will become clear later on. Consequently, strong
support for the order-constrained means is not expressed in a high relative
evidence and many research questions may be erroneously dismissed as
irrelevant.

Therefore, the objective of this study is to show that this upper bound
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issue can be solved by replacing the unconstrained hypothesis by the
complement of the hypothesis of interest. The complement is defined as
H. = —-H,,, where - denotes ‘not’. For example, for the order-constrained
hypothesis H; with 4 means there are 24 ways (i.e., 4! =4 x 3 x 2 x 1)
in which the four means can be ordered. Hypothesis H; consists of 1 of
these 24 combinations, therefore the complement represents the 24 - 1 =
23 remaining ways in which the four means can be ordered [!| In a small
simulation study, we show for larger sample-sizes and effect-sizes that,
averaged over the samples, the relative evidence for H,, versus H. (i.e.,
W /w,) is boundless and thus the evidence for a true hypothesis increases
with increasing sample-size and effect-size. An empirical example about
facial burn injury illustrates the application of this method.

The remainder of this article is organized as follows. First, we pro-
vide some technical background about how to compute the GORIC and
the corresponding penalty term value for the unconstrained hypothesis
and the order-constrained hypothesis. Next, we show how to evaluate an
order-constrained hypothesis against its complement using the GORIC
(weights). Third, we investigate the performance of the relative evidence
weight w,, /w. by means of a simulation study. Fourth, we illustrate our
method with an empirical example. Finally, we give some concluding
remarks and recommendations.

4.2 Technical background

The results given in this part are for the linear regression model, where
the regression coefficients are subject to linear inequality and/or linear
equality constraints.

4.2.1 Linear model and order-constrained hypotheses

Consider the standard linear regression model,

Y=zl 04¢, i=1,...,n, (4.1)

INote that it is often a cumbersome or even impossible task to write up all pos-
sible combinations that belong to the complement, since the number of combinations
increases excessively with the number of parameters.
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where 6 = (61, ...,0,)7 is the parameter vector of interest,
x; = (T, .. ,xl-p)T are vectors of predictor variables |2, and
€ = (€1,...,€,)T are normally distributed random errors, that is €; ~

N(0,0?). Let the unconstrained maximum likelihood estimates (mle’s)
denoted by 0 and the order-restricted mle’s denoted by 6.

We consider three types of hypotheses, namely H, : 8 € RP, where RP
is the p-dimensional Euclidean space, H,, : @ € C, where C is also a space
in R? and is a (reallocated) closed convex cone, and H, : = H,,, which is
not necessarily a (reallocated) closed convex cone. Since, most applica-
tions only involve linear constraints, we only consider linear hypotheses,
then H,, can be written in the more familiar form RO > r and H, can
be written as =RO > r (which is mostly not solely equal to RO < r).
Let R be a matrix of order ¢ x p with known constants and of rank(R)
= ¢, where R is of full row-rank if ¢ < p, and r an ¢ x 1 vector with
known constants (often this vector contains zeros). Let us assume that
the g restrictions are ¢; > 0 inequality constraints and gz > 0 equality
constraints. Then, let R; be a matrix of order ¢; X p and r; a matrix of
order ¢; X 1, and Ry be a matrix of order g2 X p and ro a matrix of order
g2 x1,and R=[RT RI|T and r = [rT, v]7.

4.2.2 GORIC
The GORIC for the unconstrained hypothesis H, is defined as
GORIC, = -2 x LL, + 2 x PTy, (4.2)

where LL,, is the maximized log-likelihood value for the unconstrained
hypothesis and the penalty term value is defined as PT,, = 1 + p. Note
that GORIC,, equals the AIC for H,,.

The GORIC for the order-constrained hypothesis H,, is defined as

GORIC,, = —2 x LL,, + 2 x PT,,, (4.3)

where LL,, is the maximized log-likelihood value for the order-constrained
hypothesis m. The penalty term value equals
PT,, =1+ Y%, LP;j(p,%, Hy)j, where ¥ = (X7X) ™" is the unscaled

2In case of an intercept x;1 = 1 for all i’s and 61 is interpreted as the intercept.
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covariance matrix [*| of the parameters with X = (z7,... 27

x p and LP;(p, 3, H,,) are the level probabilities (chi-bar-square weights)
and sum up to one. A level probability LP;, is the probability that 6 has
j levels, which corresponds to j inactive constraints under R = r, where
j = p—the number of active constraints. To clarify, in case of an inactive
constraint the mle’s do not change if the constraint is removed, while the
mle’s do change if an active constraint is removed. From the above it

)T of order n

follows that for ¢; equality constraints (i.e., g2 constant parameters) and
(p — ¢2) non-constant parameters, the penalty term value for the uncon-
strained hypothesis is PT,, = 1+ (p — ¢2), which equals the penalty term
value of the AIC. In case of inequality constraints, the exact computa-
tion of the level probabilities when ¥ # I (I is an identity matrix) and
for ¢ > 4 is a difficult task in general because the probabilities can no
longer be expressed in closed form. Fortunately, the probabilities can be
approximated by using the multivariate normal probability distribution
function with additional Monte Carlo steps (Gromping), [2010)) or they can
be computed easily and sufficiently precise by Monte Carlo simulation
(Silvapulle & Sen, 2005; |Wolak, [1987).

To illuminate the computation of the penalty term value PT,,, con-
sider Figure [4.2a, where the unrestricted parameter space is determined
by the two parameters ¢; and 65 and is divided into four quadrants (Q
to Q4). Note that we have only depicted the parameter space between -4
and 4 and not the whole parameter space. If we assume that 6, and 05 are
independent of each other (i.e., 3 = I), then each quadrant gets assigned
a level probability of 0.25. The permissible gray-shaded area is defined
by the order constraints Hy : 81 > 0,02 > 0. Then, the probability that
j =0, that is, that both constraints are active (i.e., j =p—2=2-2=0)
is 0.25 (Q1). The probability that j = 1, that is, that one constraint
is active and that the other constraint is inactive (i.e., j =2 —1 = 1)
is 0.25 + 0.25 = 0.50 (Q2 and Q4). The probability that j = 2, that
is, that both constraints are inactive (ie., j =2 -0 = 2) is 0.25 (Q3).
Then, the penalty term value for the order-constrained hypothesis H, can
be computed as PTy = 14+ 0.25 x 0+ 0.50 x 1+ 0.25 x 2 = 2. In ad-
dition, consider Figure [4.2b, where the parameter space is restricted by

3The calculation of the level probabilities is invariant for positive constants like
o2 (known or unknown) (Silvapulle & Sen| [2005, p. 32) or even for &2, the order-
constrained mle of o2.
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the order constraint Hs : 61 > 6. Since the order constraint divides the
unrestricted parameter space into two spaces, Q1 and Q2 are now two
half-spaces. Again, we assume that 3 = I. To compare with the penalty
term for H,, again we have two parameters (i.e., p = 2) but now we
only have one order constraint. Since, the minimum number of inactive
constraints is equal to p — ¢ = 2 — 1 = 1, the probability that 5 = 0,
that is, that we have no inactive constraints is 0. This is because, if we
impose one order constraint on two parameters, one parameter is allowed
to vary freely (i.e., be inactive), while the other parameter is restricted by
the value of this free parameter. Stated otherwise, the probability of two
active constraints (i.e., j = 0) is 0 in case of only one available constraint.
The probability that j = 1, that is, that the free parameter is inactive and
that the order constraint is active is 0.5 (Q2). The probability that j = 2,
that is, that the free parameter and the order constraint are inactive is 0.5
(Q1). Hence, the penalty term value for the order-constrained hypothesis
Hy is computed as PT; =14+0x0+4+0.5x140.5 x2=2.5.

4.3 The complement

Here we introduce our method for computing the GORIC for the comple-
ment of H,,, which is computed as follows

GORIC, = —2 x LL, + 2 x PT,, (4.4)

where LL, is the maximized log-likelihood value for the complement of
H,, and PT, is the penalty term value. Recall that for the computation
of the GORIC value for H,, the constraints are required to be a closed
convex cone. However, the complement H, is in many cases not a closed
convex cone. Moreover, it is often not an easy task (or even impossible)
to write out the complement. Consequently, the LL. and the PT. values
cannot be computed directly like we did for the LL,, and the PT,, values.
Next, we will show how to compute the LL. and the PT, values based on
the components determined under H,, and H,.

To compute the LL. value, we first need to ascertain whether the
constraints in H,,, are in line with the data or not. If at least one inequality
constraint is violated, then the data are automatically in line with the
complement and the LL. value equals the LL,, value. This is illustrated
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for Hy : 61 > 0, 03 > 0 in Figure [4.3al where the permissible area is
Q1 and the quadrants Q2, Qs and Q4 form the complement. Since, the
unconstrained mle’s  lay in Qs (here both constraints are violated), the
data are in line with the complement and the LL, is equal to LL,,. Note
that the same applies if the mle’s lay in Q2 or Q4. On the other hand, if
the data are in line with the constraints in Hy, then we have to find the
mle’s of @ that are closest to @ € H,., given 3. Clearly, the solution is on
the boundary of the restricted parameter space H,, and is denoted by 6..
This is illustrated in Figure |4.3b|for the bivariate normal distribution and
3> = 1. This latter is depicted by the round circles of the contour plot,
which indicate that the two parameters #; and 0 are uncorrelated. As
a reminder, the lines of the contour plot correspond to parameter values
which have equal log-likelihood values and lines closer to 6 result in a
higher log-likelihood value, since 8 is the value for which the log-likelihood
is maximized (without imposing restrictions on the parameters). Since
there are many boundary solutions (see thick black lines), we have to
search for a solution that has the shortest distance between @ and the
two boundaries, given ¥. Fortunately, we do not have to investigate each
point on the thick black lines but only the points 8., and 6.2. The point
0.1 is computed by treating the inequality constraint for 6, as equality
constraint (i.e., §; = 0, 63 > 0). Analogously, for the point 6.2, where
05 is treated as equality constraint (i.e., §; > 0, 83 = 0). Thus, in total
there are ¢ possibilities to be investigated. Notable, in case of equality
constraints, all go-equalities are ‘freed’. The point that results in the
highest log-likelihood value, given ¥, equals the LL. value (here éd) 4
As mentioned above, the solution of 8. is dependent on the covariance
matrix ¥. To clarify this, consider Figure [4.3c|for the parameters 6; and
0>, which are subject to the order constraint Hs : 6; > 6. The solid
contour lines show the solution of @, if 3 is an identity matrix (here 6.1)
and the dot-dashed contour lines show the solution (here 6.5) of 6, if the
off-diagonal elements of 3 equal 0.1. In Algorithm [2| we show how the
above steps are implemented in R (R Development Core Team) 2016)) in

4Calculating restricted least squares estimates 6 under the assumption of a closed
convex cone is a well-studied problem (Nocedal & Wright| [2006). Unfortunately, max-
imizing the likelihood for the complement of a closed convex cone is often not a convex
optimization problem and may have multiple local optima. Therefore, we cannot com-
pute the restricted estimates directly. We need to go through all g; possibilities and
select the boundary solution that results in the highest log-likelihood value.
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pseudo code.

To compute the penalty term value for the complement, PT, two parts
are needed, namely the probability that the order-restricted estimates are
in agreement with the complement and the number of free parameters in
the complement. Both will be explained next. Reconsider Figure|4.2ajand
also assume again that X = I. The complement of Hy : 61 > 0, 65 > 0,
that is, H., is constructed by the quadrants @2, @3, and @4, and can be
written as

01 <0& 60, >0 (Q2)
and
HC . 91 S 0 & 92 S 0 (Q3) (45)
and
01 >0& 602 <0 (Qq).

In this case the complement can be written out easily but, for many
hypotheses, it is a difficult or even impossible task to write up the com-
plement. The constraints in Equation 4.5/ show that if an estimate is not
in agreement with H, (i.e., does not lay in Qp), then the estimate is au-
tomatically part of the complement of Hy. Thus, the probability (under
RO =r) that both estimates are in agreement with the complement (i.e.,
the probability that j¢ = 2, that is, LP§) equals one minus the probability
that the estimates lay in @1, that is, 1 - 0.25 = 0.75. If the estimates lay in
@1, then it is per definition impossible that the estimates are in agreement
with H. and j¢ =0 and LF§ = 0.25. In other words, the mle’s are either
completely in agreement with H, or completely not in agreement with H,
(i.e., LPf = 0), it is impossible that one parameter is in agreement with
H_. and that the other parameter is not in agreement with H. as is the
case when evaluating H,,. To determine the number of free parameters
in the complement, first, note that Hy : 61 > 0, 62 > 0 (see Figure |4.2a)
does not have any free parameters and equalities but that there is one
free parameter (and no equality) in Hs : 67 > 02 (see Figure [4.2b). In
cases where there are F' > 1 free parameters and/or g > 1 equalities in
H,,, we have to account for these in PT,.. Notable, in general in H,,,
there are ¢; restrictions that can be active or inactive and ¢ restrictions
that are active (since they are equality restrictions). Therefore, in case
of p parameters, there are F' = p — q1 — g2 = p — q free parameters in
H,,, see Table [4.1| for examples. These will remain free in H,., as can
be deduced from the example in Figure [4.2bf The complement of Hs,
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that is, H. : 61 < 0 is also a closed convex cone and has also one free
parameters following from the reasonings used for H,,. Furthermore, the
q2 equalities in H,, will become free parameters in H.. Hence, there are
F¢=F+q, =p— q free parameters in H.. These have to be taken into
account (with probability one) when computing PT.. Additionally, there
are ¢ inequality constraints in H,, that can be active or inactive. As
briefly discussed before, in H. there are either ¢; active (i.e., 0 inactive)
constraints with probability LFPj§ or g; inactive constraints with probabil-
ity LP; = 1— LEFg§; and the latter equals 1 — LPpi4, = 1— LP,_g, ol
Hence, the penalty term value for the complement is defined as

PT.=1+LP;x0+LP; xq +1xF° (4.6)
=1+(1-LPg)xq+@—aq)
=1+p—LPy_g, X q1.

Note that PT, also reduces to PT,, if there are no inequalities (i.e., g = 0)
and g2 < p equalities in H,,, thatis, H,, : 01 = ... =04,,04,41,...,0, and
thus H, = H,,. Then, LP,_,, =1land PT. =14+p—LP, ¢, x0=14+p=
PT,. The penalty term value for the complement of Hy : 6; > 0, 82 >0
is computed as PT, =1+ 2 — 0.25 x 2 = 2.5 and the penalty term value
for the complement of Hs : 61 > 65 is computed as PT, =142—-0.5x1 =
2.5. The latter is a closed convex cone and as is to be expected PT,, for
the complement of Hs and equals 2.5 like the PT. does. In Appendix |J]
we illustrate the computation of the PT,, and the PT. values in case of
three parameters.

5If there are F' > 0 free parameters in H,,, then the first F' level probabilities of
Hy,, that is, LPy to LPr_1, are zero. When there are ¢ inequalities in Hy,, the g1 +1
level probabilities LPp to LPpq, sum to 1 (when g1 = 0 this reduces to LPr = 1,
also for F' = 0). In case of g2 equalities (and thus g2 constant parameters), the last
g2 level probabilities of H,,, that is, LP,_q,+1 to LPp, are zero (stated otherwise,
LPpq,+1 to LPpq, 14, are zero). Thus, the probability that there are g; inactive
constraints in H,, (together with F free parameters and g2 active constraints due
to equalities, and in total thus p = F + q1 + g2 parameters) is LPp4q, = LPp_g,,
where p — g2 is the number of non-constant parameters in H,,. Consequently, the
probability that there are g1 inactive constraints in H. (the complement of H,) is
LPg =1—LPpyg =1—=LPp_g,.
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4.3.1 GORIC weights

Once the GORIC values are known, the GORIC weights can be easily
obtained as follows

o — exp{—0.5(GORIC,)} @7)
* " exp{—0.5(GORIC,,)} + exp{—0.5(GORIC,)}’ '

where the subscript s equals m or ¢ for hypothesis H,,, and hypothesis H,,
respectively. From these weights, we can determine the relative evidence
for H,, against its complement w,,/w.. This ratio is interpreted as the
weight of evidence for H,, given the data and H. (Kuiper} 2011} p. 106).
For example, for Figure|4.3c/ with ¥ # I, n = 50 and f = 0.20, the relative
evidence for Hj : 61 > 65 compared to H,. equals ws/w. = 0.92/0.08 =
11.50. This means that the order-constrained hypothesis Hy is 11.50 times
more likely than its complement. To contrast, if we want to determine the
evidence ratio for Hy against the unconstrained hypothesis H,, that is,
ws /Wy, we have to replace the GORIC,. by the GORIC,, in Equation 4.7
and s equals m or u for hypothesis H,, and hypothesis H,, respectively.
Note that ws now not equates the ws from above, since the weights depend
on the set of hypotheses. Therefore, if H. is replaced by H,, the weights
must be recomputed for the two hypotheses in the set. Then, the evidence
ratio equals ws /w, = 0.62/0.38 ~ 1.63. This clearly shows the advantage
of using the complement as competing hypothesis. Next, we investigate
the performance of these evidence ratio weights by means of a simulation
study.

4.4 Simulation study

4.4.1 Design

We generated 500 samples according to the ANOVA model [%|y; = py2i1 +
oo+ ppTip + €, © = 1,...,n, where we assume that the residuals are
normally distributed. We considered the order-constrained hypothesis
Hy @ < pe < ps < py, its complement H. : =H; and the uncon-
strained hypothesis H, : p1 ,p2 , 3 ,pe. Note that H. does not equal

6Note that the ANOVA model is a special case of the multiple regression model
discussed in the previous section.
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H1 > pa > p3 > pg; it does contain this but also the other (22) or-
derings of combinations of uq to us (excluding the one ordering in H,,).
Data were generated under hypothesis H; with uncorrelated independent
means, for p = 4 groups of size n = 30, 50, 100, 200, 500 per group and
for a variety of differences among the population means, using effect-size
f=0,0.10,0.20,...,1. Notably, f = 0 corresponds to sampling from the
boundary of both H,, and H.. If we sample values from a H; population
with increasing effect-size, this will evidently lead to more and more sup-

port for Hy. Let the differences between the means, d, be equally spaced,
2f /P

Zf=1(2i—1—p)2

P wi=0and o =1. Then, the p ordered means can be computed as

where d is defined as d = under the restriction that

i = w + (i — 1)d. Table 4.2 shows the computed population means
for the various effect-sizes (f). The GORIC and the related weights are
obtained using the procedure discussed in the previous section. The R
code to run the simulations is given in Appendix K|

4.4.2 Results

All results are obtained using the R package restriktor (see http://wuw
.restriktor.org) employing the goric function. The results of the sim-
ulation study are presented in Figures 4.4, 4.5, 4.6 and [4.7| and are ob-
tained by computing the mean value of the relative evidences in each of
the 500 simulation runs. Furthermore, to improve the visibility we took
the natural logarithm values of the means and the range of sample-sizes
and effect-sizes may vary in the figures.

The results clearly illustrate the benefits of evaluating H,, versus its
complement. The mean relative evidence for H; versus H,. (mean w; /w.)
increases rapidly for larger effect-sizes (see Figures |4.4aj |4.4b| 4.4c| and
4.4d) and sample-sizes (see Figures |4.5a, |4.5b} |4.5¢| and |4.5d)), while the
mean relative evidence using the unconstrained hypothesis as competing
hypothesis (mean wi/w,) is clearly bounded after a certain value. To
illustrate, consider for example Figure [4.4c, where the mean relative evi-
dence for Hy versus H. (mean w;/w,.) for a medium effect-size (f = 0.30)
is exp(2.63) ~ 13.87 (on the original scale), while the mean relative evi-
dence for Hy versus H, (mean w;/w,) is bounded at exp(1.92) ~ 6.82.
The value 1.92 equals the difference in penalty term values; with PT,, -
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PT,, = (1.00+4.00) — (1.00+2.08) ~ 1.92, since the log-likelihood values
are here the same (i.e., LL, = LL,,).

For small effect-sizes and small samples (see Figures |[4.4a and |4.5a)),
the complement is slightly lower than the unconstrained hypothesis. For
example, for f = 0.10 and n = 30 the mean relative evidence for wy /w, is
exp(1.50) & 4.48 and for w; /w, the mean relative evidence is exp(1.61)
= 5.00. In this case, using the complement is a bit more conservative; al-
though the conclusion is not different of course. Furthermore, the relative
evidence for small effect-sizes (f < 0.20) does not increase very rapidly
(see Figures [4.4, |4.5a and |4.5b), independent of sample-size. This is
because, when examining small effects using small sample-sizes, the com-
plement is often true (even though the data were generated under Hy).
This is illustrated in Figure 4.6. For example, if f = 0, the mle’s are
(except from some sampling variation) in 23/24 (approximately 95.8%)
of the time not in agreement with H; (and thus in agreement with H.).
Thus, both hypotheses H, and H,, have the same maximized log-likelihood
value with a probability of prob., = 23/24. When f increases, the data
/ the mle’s will be more and more in agreement with Hy, and thus not
with its complement H, and hence the proportion of equal maximized log-
likelihood values of H,, and H,. (and thus prob.,) decreases. Logically,
the proportion of equal maximized log-likelihood values of H; and H,,
that is 1 - prob,,, then increases.

In Figure [4.7, the results are shown for the situation that the com-
plement is true. Data were generated under the complement of H;, for
which we choose H. : p1 > ps > ps > pg and for the means given in
Table 4.2, Note that the means are now in reversed order compared with
the previous simulation. Again, we considered the order-constrained hy-
pothesis Hi, its complement H. and the unconstrained hypothesis H,.
The results in Figure |4.7ajand |4.7b|show that the mean relative evidence
for Hy versus H. (mean wy/w,) and for H; versus H, (mean wy/w,) de-
creases rapidly for larger f. This is because, when the effect-size and/or
the sample-size increases, the data / mle’s will be more and more in agree-
ment with the complement H. and therewith also with the unconstrained
hypothesis H,,. The results shown in Figure 4.7c|and [4.7d| are based on
the same numerical results shown in Figure [4.7al and [4.7b| but now for
H, versus Hy (mean w./wy) and for H, versus H; (mean w,/wy). They
clearly show the nice property that if the complement (and also H,,) is
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true, both evidence ratios w./w; and w, /w; are boundless.

4.4.3 Conclusion

The results show the benefits of evaluating an order-constrained hypoth-
esis against its complement. While, for small effect-sizes and/or sample-
sizes, the difference between the evidence ratio for the true H,, when
using the complement as competing hypothesis is minimal, the difference
increases rapidly and profoundly for larger effect-sizes and/or sample-
sizes. More importantly, the evidence ratio for the true H,, against its
complement is boundless for increasing effect-sizes and/or sample-size,
whereas when using the unconstrained hypothesis as competing hypoth-
esis the evidence ratio has an upper bound. Therefore, in case that the
unconstrained hypothesis is used as competing hypothesis, we recommend
to replace it by the complement of the hypothesis of interest. In the next
section, the method is illustrated using an empirical example about facial
burn injury.

4.5 Burns example

To illustrate the method, we analyzed an empirical sample in which we
sought to determine possible risk factors for ruminating thoughts after
a burn injury. The data are based on a cohort study consisting of 245
individuals with burns, aged 18 to 74 years old. The response variable is
rumination. Moreover, for the current illustration, we included gender (0
= men, 1 = women) and facial burns (0 = no, 1 = yes) together with its
interaction as predictor variables and Hospital Anxiety and Depression
Scale (HADS; Mean = 3.85, SD = 3.66), age (Mean = 41.06, SD = 13.94)
and the number of surgical operations, which is a measure of severity of
the burns (SO; Mean = 1.14, SD = 1.76) as covariates.

A burn event can have an avers impact on a person’s quality of life.
The scars can affect physical appearance and may constitute a source
of rumination acting as a reminder to the event. The aim of this study
example was to investigate factors that may enhance or maintain ruminat-
ing thoughts, a central concept related to depression (Nolen-Hoeksema,
Wisco, & Lyubomirsky| 2008) with special interest in the role of fa-
cial burns as a risk factor for rumination. Evidence is emerging that
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environmental characteristics may also contribute to the activation or
maintenance of rumination. For example, in an earlier study in pa-
tients with burns a relationship between burn severity and rumination
was observed (Van Loey et al., |2013). This suggests that there may
be environmental triggers that influence how people cope with an ad-
verse event. Therefore, it is expected that injury characteristics that
may be perceived as distressing such as facial burn injury and larger
burns may be triggers for the activation and prolongation of rumina-
tion. In addition, a gender effect is also expected because disfiguring
scars resulting from burns may be of greater importance to woman as
compared to men (Ghriwati et al.l [2017). Then, the hypothesis of inter-
est is Hg : {p%Y ad) adj 1<

men; no facial burns’ /’cmen; facial burns? 'Lj’women; no facial burns

adj ; . o
ac) where p®4 are the population means for rumination

luwomen; facial burns?
for the four groups determined by gender and facial burns, adjusted for

the population effects of the covariates. This order-constrained hypothesis
states that the means of rumination for men with and without facial burn
injury and the mean of rumination for women without facial burn injury
would be lower than the mean of rumination for women with facial burn
injury. Note that no particular order is assumed among the first three
means.

A natural choice to evaluate the order-constrained hypothesis Hg would
be an order-restricted 2 x 2 ANCOVA model. Since an ANCOVA is just
a special case of the linear regression model, the model can be written as
a linear function. To obtain adjusted means for a person with an average
score on the covariates, the covariates HADS, age and SO are centered
at their average and are denoted by Z_ HADS, Z_age and Z_ SO, respec-
tively. Then, the model can be written as follows:

Rumination; = 6;+ 6sfacialBurns; + fsgender; + f4gender; x facialBurns;
+ 95Z_HADSZ + ng_agei + 97Z_SOz + €,
where i = 1,...,245.

On the left-hand side of the = operator, we have the response variable
rumination and on the right-hand side we have the factors facial burns and
gender and its interaction, and the centered covariates Z_HADS, Z_ age
and Z_ SO. The interaction between gender and facial burns is included
using the x operator. Then, the four adjusted means with average scores
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on the covariates are computed as:

ad]j —9
men; no facial burns — U1
ad]j _
/j‘men; facial burns — 01 + 92
adj o
Mwomen; no facial burns — 91 + 93

adj =01 + 05 + 05 + 64

Iu‘women; facial burns

Next, we show in 7 steps how to compute the relative evidence for

hypothesis Hg compared to its complement. Again, we use the restriktor

package for the analysis.

Step 1:

Step 2:

Step 3:

Step 4:

Load your data set into R.

burns <- read.csv("burns.csv", header = TRUE, sep = " ")

More information about how to get your data into R, can be found
online at http://restriktor.org/tutorial/importdata.html|

Center the covariates HADS, age and SO at their average. This can
be done in R as follows:

burns$Z_HADS <- burns$HADS - mean(burns$HADS, na.rm = TRUE)
burns$Z_age <- burns$age - mean(burns$age, na.rm = TRUE)
burns$Z_S0 <- burns$S0 - mean(burns$S0, na.rm = TRUE)

Fit the unconstrained linear regression model using the 1m() func-
tion.

fit.1lm <- Im(Rumination ~ 1 + gender + facialBurns +
gender:facialBurns +
Z_HADS + Z_age + Z_S0O,
data = burns)

For clarity reasons, we explicitly added an intercept term by speci-

fying the value 1. The interaction between gender and facial burns
is included using the : operator.

Create the constraint syntax for restriktor. Now that the model is
defined in R, we are left with specifying the order constraints. This
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is done in restriktor by specifying a so-called constraint syntax. Or-
der constraints are defined by means of inequality constraints (< or
>) or by equality constraints (==). In addition, a convenient feature
of the restriktor constraint syntax is the option to define new pa-
rameters that are linear in the original model parameters. This can
be done using the := operator. In this way, we can compute the four
adjusted means and impose order constraints among these means.
The constraint syntax is enclosed within single quotes. Then, for
hypothesis Hg the constraint syntax might looks as follows:

myConstraints <- ’

ml := .Intercept.

m2 := .Intercept. + facialBurns

m3 := .Intercept. + gender

m4 := .Intercept. + facialBurns + gender +
gender.facialBurns

ml < m4

m2 < m4

m3 < m4d ’

It is important to note that variable/factor names of the interaction
effects in objects of class 1m contain a semi-colon (:) between the
variable names (e.g., gender:facialBurns). To use these parame-
ters in the constraint syntax, the semi-colon must be replaced by a
dot (.) (e.g., gender.facialBurns). In addition, the intercept of
a fitted objects of class 1m is denoted in the output as (Intercept)
and not as 1 anymore. To use the intercept in the constraint syntax,
the parentheses must also be replaced by a dot (i.e., . Intercept.).
More information about the constraint syntax can be found online
at http://restriktor.org/tutorial/syntax.html}

Step 5: Fit the restricted linear model using the restriktor () function.

Hl.restr <- restriktor(fit.lm,

constraints = myConstraints)


http://restriktor.org/tutorial/syntax.html

Order-constrained hypothesis versus its complement 107

The first argument to the restriktor () function is the fitted un-
constrained 1m object from Step 3 (fit.1lm). The second argument
is the constraint syntax created in Step 4 (myConstraints).

Step 6: Compute the GORIC weights and the relative evidence using the
goric() function.

goric(Hl.restr, complement = TRUE)

The first argument to the goric() function is the fitted object of
class restriktor (H1.restr). To compare Hg with its complement
H,., the argument complement has to be set to TRUE (by default it
is set to FALSE).

Step 7: Interpret the results.

model loglik penalty goric goric.weights
1  Hml.restr -660.02415 6.98673 1334.02176 0.89130
2 complement -661.94222 7.17279 1338.23002 0.10870

The order-restricted hypothesis Hml.restr is 8.200 times more
likely than its complement.

The results show that the order-constrained hypothesis Hg is 0.89/-
0.11 = 8.20 times more likely than its complement. For comparison,
the results for the unconstrained hypothesis (not shown here) show
that hypothesis Hg is only 0.73/0.27 ~ 2.70 times more likely than
the unconstrained hypothesis.

In the example the sample-size equals n = 245 and the effect-size is
approximately equal to f = 0.10 but to investigate the overall performance
we ran an extra simulation study for Hg, : {p1, p2, 3} < pg with n =30
and n = 250, and effect-sizes ranging from f = 0 to f = 0.6. The
results are presented in Appendix L. The results are comparable with
the simulation results shown in Figure 4.4l The mean relative evidence
for Hg, against H, is boundless, and the mean relative evidence for Hg,
against H, stabilizes at an upper-bound from a certain effect-size and
sample-size (the latter is not shown here). The main difference is that,
the mean relative evidence for Hg, against H. increases more rapidly for
smaller effect-sizes, then for H; against its complement. At last, if we
compare the result from the example with the simulation results (n = 250
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and f = 0.10) shown in Figure |[L.1b, then we can see that the relative
evidence for wg/w. =~ 8.20 is close to the simulation results we, /w. ~ 9.97
(on the original scale).

4.6 Summary and recommendations

In this paper, we introduced the evaluation of an order-constrained hy-
pothesis against its complement using the GORIC (weights). The GORIC
is an information criterion that can be used to evaluate competing hy-
potheses in univariate and multivariate normal linear models, where the
regression parameters are subject to inequality constraints of the type
RO > r, where R is a matrix with known constants, 8 a vector with
the regression parameters and r a vector with known constants. The in-
terpretation can be improved by computing GORIC weights and related
evidence ratios reflecting relative evidence for one hypothesis versus an-
other.

We advise that one should evaluate their theory against its comple-
ment H, instead of the unconstrained hypothesis H,. The advantage of
our method is that the relative evidence for an order-constrained hypoth-
esis H,, compared to its complement is boundless, whereas the relative
evidence for H,, compared to H, is nor increased by a larger sample-size
neither by a larger effect-size, if the data are in agreement with the hy-
pothesis of interest (i.e., theory). In a small simulation study, we showed
for a true Hy : pp < ps < pug < pg versus H. that the mean relative
evidence increases for larger sample-sizes and effect-sizes, while the rel-
ative evidence for a true H; versus H, remains bounded. The method
was illustrated using an empirical example about facial burn injury. In
seven easy steps, we showed how to compute the relative evidence of the
researchers theory against its complement using the R package restrik-
tor. The results show that using the complement as competing hypothesis
lead to much more support for the hypothesis of interest when it is true,
compared to using the unconstrained hypothesis as competing hypothesis.

We assumed that researchers often do not have specific competing hy-
potheses. While, this is probably often the case, it is conceivable that the
set of hypotheses contains more than one competing hypothesis. In these
cases, the problem that the relative evidence for H,, against H, is not
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affected by increasing sample-size and/or effect-size after a specific value
can still occur. For example, consider the set with three hypotheses, Hy,
Hy i p1 < pg < pg = pg (which is a subset of Hy) and the unconstrained
hypothesis H,. If H; is true, then all three hypotheses are true and all ev-
idence ratios are bounded (Kuiper et al.} 2011} p. 107). However, further
research is needed to investigate the evaluation of a set of multiple order-
constrained hypotheses against its complement because determining the
complement might not always be trivial (especially for software).

The results presented in this article are for the univariate linear re-
gression model but fortunately they can easily be adapted for the mul-
tivariate normal linear model. One should keep in mind that, unlike in
the univariate setting, where 6 does not depend on the order-restricted
covariance matrix, denoted by f], in the multivariate normal linear model
6 does depend on ¥ and ¥ on 6 Kuiper, Hoijtink, and Silvapulle| (2012).
Hence, an iterative procedure is needed to calculate them. The procedure
is implemented in restriktor.
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Figure 4.2: Illustration to illuminate on the computation of the penalty
term value of H,,. The gray-shaded area is the permissible area under
H,,.



112 Order-constrained hypothesis versus its complement

s

2
s 0

BE
2
-4
= 3 gz 3 3

(a) Hy : 61 > 0, 62 > 0. The mle’s

0 lay in (3 and is thus in agreement
with H..

4

(¢) Hs : 01 > 02, for 3 = I (solid line)
and X # I (dot-dashed line).

4
2
""""" 10
i
1
s 0 +
-2
-4
4 2 0 2 4

(b) H4 . 01,\2 07 02 Z 0, fOI‘ =1
The mle’s 8 lay in Q1 and is thus not
in agreement with H..

Figure 4.3: The gray-shaded area is the permissible area under H,,.



Order-constrained hypothesis versus its complement 113

Algorithm 2 Compute the log-likelihood, value.

if not all (R0 - r; > 0) and/or not all (R26 - ro = 0) then > Check
if any constraint is violated.
return log-likelihood,, > LL, = LL,
else> Note that equality constraints are freed. Hence, we only use the
constraint matrix R.
nr < 1 to nrow(R;) > Vector from 1 to the number of rows of R;.
¢1 < length(nr) > Length nr vector: ¢;.
for b + 1 to ¢; do
idx < vector(nr[b], nr[-b])
R, .idx < R;[idx,] > Put row b of matrix Ry on top.
LL < RESTRIKTOR(model, constraints = R;.idx, neq = 1)
> The first row of R;.idx is treated as equality constraints.
log-likelihood[b] <= LL > Store the LL value at the b*" position
of the log-likelihood vector.
end for
log-likelihood,. < max(log-likelihood) > Select the highest value in
the log-likelihood vector for the log-likelihood. value.
return log-likelihood,
end if
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Table 4.1: Examples of the number of free parameters F' for various order-constrained hypotheses H,,.

H,, Number of free parameters Comments
Frn=p—gi—¢
H,: 0, <0, <03 F,=3-2-0=1 Fix one parameter and the other two are
bounded.
Hy: 0, <05+ 03 F,=3-1-0=2 Fix one and the others are still free. Fix two
and the other one is bounded.
H.:00 <05+ 05,04 F.=4-1-0=3 Additional free parameter 64, thus F. = F,+1.

101 <60y+63,0,=0.5

1601 <0.5,0, <05
”%H m va%m m Om
“%H MO@“%MHD

Fy=4-1-1=2

F,=2-2-0=0
Ff=2-2-0=0
Fp=2-1-1=0

Additional constant parameter 04, thus Fy; =
F,+0.

Both parameters are bounded.

Both parameters are bounded.

The first parameter is bounded and the second
parameter is a constant.
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Figure 4.4: Mean of the relative evidence (on a log scale) for the situ-
ation that the order-constrained hypothesis H; is true. Hypothesis H;
is compared to its complement H. (mean w;/w.) and to the uncon-
strained hypothesis H,, (mean w;/w,) for various effect-sizes (f) and for
n = 30,50, 100 and 200.
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Figure 4.5: Mean of the relative evidence (on a log scale) for the situ-
ation that the order-constrained hypothesis Hi is true. Hypothesis H;
is compared to its complement H. (mean w;/w.) and to the uncon-
strained hypothesis H, (mean w;/w,) for various sample-sizes (n) and
for f =0.10,0.20,0.30 and 0.40.
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Figure 4.6: Proportion of data sets that result in equal log-likelihood
values for the complement of Hy : pu1 < po < usz < ug4, that is, H., and
the unconstrained hypothesis H, (i.e., LL. = LL,,), for various effect-sizes
(f) and n = 30, 50, 100, 200.
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Figure 4.7: Mean of the relative evidence for the situation that the com-
plement H. of the order-constrained hypothesis H; is true, for various
effect-sizes (f) and for n = 30 and 200. (a,b) H; versus H. (mean wy /w,),
and H; versus the unconstrained hypothesis H, (mean wy/w,). (c,d) He
versus Hy (mean w,./wy), and H, versus H; (mean w,/wi). Both ¢ and
d are on a log-scale.
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Table 4.2: Population means for first simulation study.

Effect-size population means
f p1 2 K3 fa
0 0 0 0 0
0.1 -0.134 -0.044 0.044 0.134
0.2 -0.268 -0.089 0.089 0.268
0.3 -0.402 -0.134 0.134 0.402
1 -1.341 -0.447 0.447 1.341

Note: in the second simulation, we used the reverse
ordering of these means.



Example of computing the PT. in
case of 3 parameters

In the example of Figure Al, the unrestricted parameter space is de-
termined by the three parameters 6y, 65 and 3 (and is of course the
whole space and not just the one depicted in Figure Al). The gray-
shaded area is a closed convex cone and is defined by the order con-
straints Hay @ 07 < 65,07, < 63. The penalty term value for the un-
constrained hypothesis equals PT, = 1 +p = 1+ 3 = 4. The level
probabilities corresponding to Hay equal LPy = 0,LP; = %,LPQ = %
and LP3 = §. A level probability of LPy = 0 means that it is impossi-
ble that the vector with order-constrained estimates 8 has zero inactive
constraints (i.e., 5 = 0). This is because, we have one free parameter
F=p—qg—q =3—-2-0 =1, which is per definition inactive. The
level probability LPs = % is the probability that the vector with order-
constrained estimates 6 is identical to the unconstrained estimates (i.e.,
6 = 6 and j = 3). This probability corresponds to the proportion of the
gray-shaded area compared to the whole cube in Figure Al and of course
also of H,,, versus the whole space. Hence, the penalty term value for H 41

120
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Figure J.1: The permissible gray area is defined by Ha; : 61 < 05,60, < 63,

depicted for 6y, 6 and 035 between -1 and 1.

equals PT 41 = 1+O><O+% X 1+% X 2—&—% X3 = 3%. For the complement
H_., which corresponds to the not gray-shaded area in the cube, the prob-
ability that there are ¢1 = 2 inactive constraints is LP; =1 — LP,1g,.
Since, there are go = 0 equality constraints, the penalty term value for

HcequalsPTczl—&—p—LPp,q?xq1:1+3—%x2:3%.



R-code simulation (for n = 200)

# install the restriktor package
install.packages("restriktor")

# load restriktor library
library(restriktor)

# sample-size

n <- 200
# number of parameters
p <-4

# define constraints

Rl <- ’x1 < x2; x2 < x3; x3 < x4’
# effect-sizes

es <- seq(0,1,.1)

# identity covariance matrix
Sigma <- diag(p)

# number of simulation runs

nsim <- 500

# create list for storing the relative weights from the simulation
out.goric.wt <- list()

for (k in 1:length(es)) {
# compute the p=4 population means

j <= 1:p

122
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# compute equal difference scores, d, between the means
d <- (2*sqrt(p)*eslk]) / sqrt(sum((2*j-1-p)~2))

# compute p means

means <- ((-(p-1)*d ) / 2) + (j - 1)xd

# Run the nsim = 500 simulations/iterations
for (i in 1:msim) {
cat("iteration =", k, "... =", i, "\n")
set.seed (3013073 + i)

# generate data

y <- cbind(c(matrix(MASS:::mvrnorm(n, mu = means, Sigma = Sigma,
empirical = FALSE), nrow = n)))

# create p groups

x <- factor(rep(l:p, each = n))

# fit linear model
fit.Ilm <- 1m(y ~ -1 + x)

# fit order-constrained model
# to speed-up the simulations we switched off the computation of

# the standard errors (se = "none").

Hm.restr <- restriktor(fit.lm, constraints = R1, se = "none")
# fit unconstrained model

Hu.restr <- restriktor(fit.lm, se = "none")

## compute goric

# Hm versus Hc

GORICc <- restriktor:::goric(Hm.restr, complement = TRUE)
# Hm versus Hu

GORICu <- restriktor:::goric(Hm.restr, Hu.restr)

# goric value Hm.

# Note: this value is of course the same value as in GORICu$goric[1]
goric[i,1] <- GORICc$goric([1]

# goric value Hc

goric[i,2] <- GORICc$goric[2]

# goric value Hu

goric[i,3] <- GORICu$goric[2]

goric.wt <- matrix(NA, nsim, 2)

# compute the goric weights for Hm versus Hc and for Hm versus Hu for each
# of the 500 data sets.
for (j in 1:nsim) {

goric.Hm <- goricl[j,1]

goric.Hc <- goric[j,2]

goric.Hu <- goric[j,3]

delta.Hc <- c(goric.Hm, goric.Hc) - min(c(goric.Hm, goric.Hc))
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delta.Hu <- c(goric.Hm, goric.Hu) - min(c(goric.Hm, goric.Hu))
goric.weights.Hc <- exp(-delta.Hc / 2) / sum(exp(-delta.Hc / 2))
goric.weights.Hu <- exp(-delta.Hu / 2) / sum(exp(-delta.Hu / 2))
goric.wt[j,1] <- goric.weights.Hc[1] / goric.weights.Hc[2]
goric.wt[j,2] <- goric.weights.Hu[1] / goric.weights.Hu[2]

}

out.goric.wt[[k]] <- goric.wt



Simulation results for hypothesis Hg,
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Figure L.1: Mean of the relative evidence (on a log scale) for the situation
that the order-constrained hypothesis Hg, is true. Hypothesis Hg, is
compared to its complement H,. (mean wg,/w.) and to the unconstrained
hypothesis H,, (mean wg,/w,,) for various effect-sizes (f) and for n = 30
and 250.
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A General Procedure for Testing

Inequality Constrained Hypotheses in
SEM!

Researchers in the social and behavioral sciences often have clear expecta-
tions about the order and/or the sign of the parameters in their statistical
model. For example, a researcher might expect that regression coefficient
(1 is larger than 2 and (3. To test such a constrained hypothesis special
methods have been developed. However, the existing methods for struc-
tural equation models (SEM) are complex, computationally demanding
and a software routine is lacking. Therefore, in this paper we describe a
general procedure for testing order/inequality constrained hypotheses in
SEM using the R package lavaan. We use the likelihood ratio statistic to
test constrained hypotheses and the resulting plug-in p value is computed
by either parametric or Bollen-Stine bootstrapping. Since the obtained

1This chapter is published as Vanbrabant, L., Van de Schoot, R., Van Loey, N., &
Rosseel, Y. (2017). A General Procedure for Testing Inequality Constrained Hypothe-
ses in SEM. Methodology, 13: 61-70. DOI: 10.1027/1614-2241/a000123.
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plug-in p value can be biased, a double bootstrap approach is available.
The procedure is illustrated by a real-life example about the psychosocial
functioning in patients with facial burn wounds.

5.1 Introduction

Structural equation modeling (SEM) software such as lavaan (Rosseel,
2012a) and Mplus (Muthen & Muthen| [2010) can be used to impose or-
der/inequality constraints on the parameters of a statistical model. For
example, there might be a hypothesis stating that regression coefficient
(1 is larger than regression coefficient 52 and (3, which is denoted by

H: p1={B2,0s}, (5.1)

and is called an (order) constrained hypothesis (Barlow, Bartholomew,
Bremner, & Brunk] (1972} Hoijtink| [2012; [Klugkist, Laudy, & Hoijtink]|
2005; [Kuiper, Klugkist, & Hoijtink], [2010; [Mulder, Hoijtink, & de Leeuw]
2012; [Robertson, Wright, & Dykstral, (1988} [Silvapulle & Sen| [2005; [Van!
de Schoot, Hoijtink, Mulder, et al., [2011). In the literature, two methods
are known for evaluating constrained hypotheses in SEM, namely the
frequentist method proposed by (Van de Schoot, Hoijtink, & Dekovié,
2010) and the Bayesian method proposed by [Van de Schoot, Hoijtink,
Hallquist, and Boelen| (2012)). In this article, we focus on the frequentist
procedure. However, the procedure is rather complex, since an abundant
number of steps have to be carried out in Mplus and R (R Development
Core Team), [2016)). Besides, the procedure is computationally demanding,
limited to the parametric bootstrap, and no software routine is available.

Therefore, in the current paper we describe the R function Infor-
mativeTesting(). We will show that the InformativeTesting() func-
tion is easy to use and more flexible than the procedure described in [Van
de Schoot et al.[ (2010). Moreover, the InformativeTesting() function
has some additional features, namely the Bollen-Stine bootstrap (Bollen
& Stinel [1993) for non-normal data, parallel processing to reduce compu-
tational time, an option to produce high-quality plots based on the results,
and the procedure does not depend on third-party commercial software
but uses the open-source package lavaan.



132 Testing Inequality Constrained Hypotheses in SEM

The remainder of the paper is organized as follows. First, we describe
the general structural equation model and its parameters on which con-
straints can be imposed. Furthermore, two hypothesis tests are introduced
for testing constrained hypotheses and an illustration is presented to show
how theoretical expectations can be converted into a constrained hypoth-
esis. Second, we present a procedure for testing constrained hypotheses.
We introduce the parametric and Bollen-Stine bootstrap approaches and
we discuss the genuine double bootstrap method. Third, an overview of
the InformativeTesting() function is presented. We show by means of
a five step procedure how to convert the statistical model and the con-
straints into lavaan syntax and we show how to set up the necessary
function arguments. In addition, we describe the output of the print ()
and plot () methods using the results of the illustration. Finally, we make
some concluding remarks.

5.2 Structural equation model with
constraints

A SEM with latent variables consists of two parts, namely a structural

model and a measurement model. The structural model represents the

structural equations that summarize the relationships between latent vari-
ables and can be written as:

T'g = af + Bgng + 799 + C‘Q , (52)

where the superscript g denotes group membership and runs from g =
1,...,G. The measurement model represents the link between the latent
and observed variables and is written as

y9 =v9 + A9 + K929 + €9, (5.3)
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where

Yy —  p x 1 vector of dependent variables.

n — m x 1 vector of factors / latent variables.

v and o — are vectors of intercepts.

A —  p X m matrix of factor loadings.

K and I’ — matrices that contain slopes for exoge-
nous covariates in the (¢ x 1) vector x.

B — m X m vector of structural regression
slopes.

€ and ¢ —  vector of error terms.

P —  p X p covariance matrix of €.

v — m X m covariance matrix of (.

Furthermore, € and ¢ are multivariate normal distributed with means zero
and covariance matrices ® and W respectively.

The non-redundant free parameters of the model are collected in the
parameter vector 8. Order/inequality constraints can be imposed on all [?
parameters of a structural equation model but in practice, only a subset
of the free parameters are constrained. Then, let 8 = {62, 6%}, where
0% includes all parameters on which we impose constraints and where §°
includes the remaining unconstrained parameters.

To test constrained hypotheses we consider two types of hypothesis tests,
namely Type A and Type B (Silvapulle & Senl [2005, pp. 61-62):

Type A:

HAO . LA =c

HAl . LB°® Z C, (54)
Type B:

Hpy: LO*>c

Hpi: 6% ¢R". (5:5)

If [ is the number of inequality constraints imposed on 8¢, and k the num-
ber of parameters involved, then let L be an [ x k matrix with known
constants, and ¢ an [ x 1 vector with known constants (often this vector
contains zeros). In hypothesis test Type A the null-hypothesis H 49, in
which all parameters are constrained to be equal, is tested against the

2In this article, we focus on imposing constraints on B,T', K, A, v, a and ®.



134 Testing Inequality Constrained Hypotheses in SEM

constrained hypothesis H 41. In hypothesis test Type B the constrained
hypothesis Hpg is tested against the unconstrained model Hpi, which
has no restrictions on 8%. In order to find affirmative evidence for the
constrained hypothesis, hypothesis test Type B plays a crucial role. Se-
vere constraint violations result in rejecting the constrained hypothesis,
since it is tested against the best fitting (i.e. unconstrained) hypothesis.
Hypothesis test Type A is required to avoid false conclusions in case the
inequality constraints are in fact equality constraints. In other words,
hypothesis H4o in test Type A should be rejected and the constrained
hypothesis Hpg in test Type B not. If this is the case, loosely speaking
this means that the constraints are in accordance with the data.

5.2.1 Illustration

To illustrate constrained hypothesis testing we use an example based on
a cohort study in patients with facial burns (Hoogewerf, van Baar, Mid-
delkoop, & van Loey, 2014). The example concerns a multiple group
model with two groups, men and women. The sample consists of 77 re-
spondents (Myge = 39.95, SD = 14.05) with facial burns, 78% of the re-
spondents were men (Mg, = 38.96, SD = 13.76) and 22% were women
(Myge = 44.04, SD = 14.81). The aim of the study was to examine
psychosocial functioning in patients with facial burn wounds. More in
particular, in this part of the study the researchers wanted to test the hy-
pothesis that the impact of burn severity on self-esteem would be higher
in women compared to men after controlling for symptoms of anxiety
and depression. Burn severity was measured by the total body surface
area burned (TBSA) which is the percentage of partial and full thickness
burns on the total body. Anxiety and depression symptoms, and self-
esteem were measured using the HADS (Spinhoven et al.; [1997) and the
Rosenberg’s self-esteem scale (Rosenberg) |1965)) respectively.

Previous studies have emphasized the greater importance of appear-
ance on self-esteem and body image in women compared to men. One
study (Strahan, Wilson, Cressman, & Buote, |2006) reported that women
made more upward social comparisons than men on the body domain. In
the aftermath of a burn injury that can cause lifelong disfigurement, it
was empirically confirmed that female patients with burns are more dis-
satisfied with their appearance, leading to worse psychosocial functioning
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Figure 5.1: Multiple group SEM for the relation between total burned
surface area (TBSA), self-esteem and symptoms of depression and anx-
iety (HADS) for men and women, controlling for age and coping style
rumination.

(Thombs et al., [2008)). Women with facial burns in particular showed to
be at higher risk for long term depression symptoms (Wiechman et al.|
2001). However, irrespectively of gender, depression symptoms are as-
sociated with low self-esteem and feelings of worthlessness (APA} [2000)
and with maladaptive coping styles. Rumination (RUM) in particular
has been strongly related to depression and anxiety symptoms (Nolen-
Hoeksema, Wisco, & Lyubomirsky, 2008). The theoretical assumptions
between these variables are shown in Figure 5.1

Since we are not interested in the intercepts, we can ignore the vec-
tors a and v in equations 5.2/ and |5.3. In the theoretical model we are
dealing only with observed rather than latent variables. In the LISREL
tradition, all observed variables involved in a structural equation, are up-
graded to latent variables. Hence, the matrices I' and K are not involved
in estimating the model. Thus, we can write the model in Figure [5.1] as:

n9 = BIn9 + (9

yg — Agng + eg s (5'6)

where 8 8 8
_ 11 P12 P13
BY= 1 6y Bu Bas | (5:7)
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Y11

0 Yo

0 0 iu , (5.8)
0 0 Ya3  thaa

0 0 Y53 Ysa Pss

U9 =

and AY is an identity matrix I and ®9 = 0. In our example G = 2, where
g = 1 refers to men and g = 2 to women.

Based on previous research on body image issues in patients with
burns, the researchers hypothesized, first, that the impact of burn severity
on self-esteem would be higher in women with facial burns compared
to men with facial burns, after controlling for symptoms of depression
and anxiety (HADS) and age. More precisely, the researchers expected a
negative relation between TBSA and self-esteem for both men and women,
and they expected the effect to be stronger for women. Those expectations
can be converted directly into inequality and order constraints, namely
B <0, B2 <0and B3 < Bi;. Second, the researchers hypothesized
a positive relation between TBSA and anxiety and depression symptoms
for both men and women after controlling for rumination and age, and
that the impact of TBSA on anxiety and depression symptoms would be
higher in women. Therefore, the constraints for the second hypothesis
are 3, >0, 83, > 0 and 53, > 3,. Using Equations 5.4 and 5.5, these
constraints can be written as:

0 -1 0 0000 00000
0 00 0000 10000
0 10 0000 100 00
=10 00 1000 00000/ 69
0 00 0000 00100
0 00 -1 000 00100
.
0 = [ B Bi1 Bis Bo B2z By P31 BT Bis ¥31 B3 B35 | (5.10)

and ¢ = 0. Then by multiplying matrix L by vector 8% we can write the
constrained hypothesis as:
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- B, >0 Bl <0
- BH >0 B <0

: B — B =0 _ B < BhL
B3>0 B3>0

— B3+ 63, =0 831 > By

In the next section we will discuss a procedure for testing such a con-
strained hypothesis. It is important to note that, the Informative-
Testing() function does not require to construct the complex L matrix
in Equation [5.9] manually. After the next section, we show that the con-
straints can be specified by a user-friendly text-based description.

5.3 Procedure for testing constrained
hypotheses in SEM

First, we start to discuss the parametric (Efron & Tibshirani, (1993, pp. 53—
56) and the Bollen-Stine (Bollen & Stinel 1993, pp. 120-122) bootstrap
approaches for obtaining a plug-in p value. Second, we introduce the
genuine double bootstrap (Beran, [1988) method for adjusting the plug-in
p value or alpha level.

5.3.1 Bootstrapping

An often used procedure for comparing the fit of nested models, for exam-
ple Hag versus H 41, is the likelihood ratio (LR) statistic for hypothesis
test Type A. This is defined as:

L(%(0n4) | Y)
L(Z(0m.) | V)]

LR = —2log (5.12)
where L is the likelihood probability of the observed data Y as a function
of 3(0) and where 3(8) is the estimated model implied covariance matrix
under Hag and H4y. For hypothesis test Type B, Hag and H4; are
replaced by Hpg and Hpy respectively.
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When the null and/or alternative hypothesis involves order/inequality
constraints on the parameters, then the null-distribution of the LR statis-
tic with multivariate normal data turns out the be y2-distributed (chi-
square-bar) (Silvapulle & Sen, [2005). That is a weighted sum of chi-
squared distributions where the weights can be estimated via Monte Carlo
3|or via the procedure described in (Shapiro, |1988) when deal-
ing with linear regression and (only) linear constraints. Alternatively, the
p value of the statistic can be computed directly via bootstrapping (Van

simulations

de Schoot et al.| |2010), which is called a plug-in p value and is denoted
by p.

This can be done by two types of bootstrap methods, namely by para-
metric (Ppqr) and Bollen-Stine (pps) bootstrapping,*| The plug-in p value
usually refers to the parametric p value, however, for the sake of conve-
nience we use the term plug-in p value also for the Bollen-Stine p value.

First, plug-in p value ppq, can be obtained by parametric bootstrap-
ping and can be summarized by the following steps for a hypothesis test
of Type A:

1. Estimate @ under the null-hypothesis H 49 using the observed data,
resulting in 3X(0pga0). Also, estimate 8 under H4; resulting in
3 (0 41) and compute the LR value for the observed data as shown
in Equation |5.12, which is denoted by LR°%.

2. Draw B} = B},..., B} bootstrap samples of size N from a known
population distribution, say a multivariate normal distribution, us-
ing the estimated model implied covariance matrix 3(6@y 40). Su-
perscript 1 denotes the first-level bootstrap samples.

3. Estimate 0, for each bootstrap sample B} under H g and H 7.

3Monte Carlo simulation is defined as a resampling technique that randomly gen-
erates samples from a known population distribution, such as the multivariate normal
distribution (e.g., the parametric bootstrap). Non-parametric bootstrap procedures
are similar to Monte Carlo simulations but the samples are drawn from the actual
data and are therefore called resampling techniques (e.g., the Bollen-Stine bootstrap).

4A third procedure exists, called the naive, or simple, bootstrap, but as shown in
(Bollen & Stine| (1993 pp. 117-119) it is inaccurate for testing the LR statistic for
structural equation models, since the bootstrap sample should only reflect sampling
variability and possibly non-normality, but not model misfit.
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4. Compute for each B} sample the LR statistic. This results in a
vector of R LR values, denoted by LR2°" = LRY' .. LR%°.

5. To calculate the plug-in p value compute

R
I(LR)" > LR*)
1

r=

p = , 5.13
p R (5.13)
where I is the indicator function equaling 1 if the expression inside
the brackets is true and 0 otherwise.

Parametric bootstrapping is a powerful method when the underlying as-
sumption of the population distribution is satisfied. For example, for
continuous data following a multivariate normal distribution. If this as-
sumption holds the parametric bootstrap approach is expected to have
a better accuracy (Gentle, Hardle, & Mori, 2004, p. 469). When this
assumption is violated then the Bollen-Stine bootstrap approach would
lead to more accurate results, since no underlying population distribution
is assumed. The Bollen-Stine method is simply a non-parametric boot-
strap where data are transformed in accordance with the null-hypothesis.
Consequently, any non-normality of the data is preserved and therefore
also retained in each bootstrap sample.

For computing the Bollen-Stine plug-in p value pps only the first two
steps are different compared to the parametric bootstrap:

1. Transform the observed data matrix so that its covariance structure
is in accordance with the null-hypothesis.

2. Draw B! = B{,..., BL bootstrap samples of size N from the trans-
formed data, and proceed with step 3 from the parametric bootstrap
approach.

To transform the data, we can use

Z=YSV?5(8,,,)"% (5.14)

where Z is the transformed data, Y denotes the N x p data matrix of the
centered observed variables, and S denotes the sample covariance matrix
of Y (Bollen & Stine, (1993, pp. 120).
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5.3.2 Facial burn example continued

For the facial burns example Figure [5.2a] and [5.2b| display the result of
the bootstrap for hypothesis test Type A and Type B. Note that the re-
sult applies for both bootstrap approaches. On the x-axis the LR values
are given. Observe that most values are close to zero, since we sampled
from the null-distribution. The solid vertical line represents the location
of LR°*. The plug-in p value is the proportion of LR"°" values on the
right-hand side of the LR°%. For a graphical representation of the para-
metric bootstrap see (Van de Schoot et al., [2010) and (Van de Schoot &
Strohmeier, |2011). The two procedures previously described are repeated
for hypothesis test Type B. However, estimating € under the constrained
hypothesis Hpq is more complex than under the equally constrained hy-
pothesis H49. Computationally, linear equality constraints are generally
easier to deal with than linear inequality constraints. Linear equality
constraints result in a dimension reduction of the parameter vector. The
resulting unconstrained problem can be solved using simpler methods for
unconstrained optimization (Nocedal & Wright), 2006, Ch. 17).

5.3.3 Double bootstrapping

In the previous section we introduced the plug-in p value based on para-
metric and Bollen-Stine bootstrapping. A well-known property of the
p value, and also of our plug-in p value, is that it is asymptotically a
uniform distribution [0,1] under the Hy, such that P(p < o | Hao) = «.
This is also true for p when R — oco. However, when constraints are
imposed on 8%, it appears that P(p < a | Hag) # «. The parametric as
well as the non-parametric bootstrap are not consistent if a parameter is
on a boundary of the parameter space defined by (non)linear inequality
constraints or a mixture between (non)linear inequality and equality con-
straints (Andrews, 2000)). If this is the case either « needs to be adjusted
or p needs to be adjusted. Here, we discuss the genuine double bootstrap
approach to adjust e and p. We show how to obtain an adjusted alpha
level, denoted by a* and an adjusted plug-in p value, denoted by p*. In
cases where it is necessary to make a distinction between the parametric
and Bollen-Stine bootstrap we add the subscripts "par' and "bs" to p* or

*

a.
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Figure 5.2: (a) Result of bootstrapping the LR values for the facial burns
example for hypothesis test Type A. The solid line represents the LR
value. The proportion of LR?OOt values on the right-hand side of the
solid line is the plug-in p value p. (b) See (a), but now for hypothesis
test Type B. (¢) Result of the genuine double bootstrap for the facial
burns example for hypothesis test Type A. The non-uniform distribution
of plug-in p values means that adjustment of o or p is necessary. The
solid line represents the adjusted alpha level a* and the dashed line the
adjusted plug-in p value p*. (d) See (c¢), but now for hypothesis test Type
B.
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For the genuine double bootstrap the following steps are needed for
obtaining a* or p*:

1. Draw B! = B{,..., Bj bootstrap samples of size N using either
the parametric or Bollen-Stine bootstrap. Compute ppqr Or Pps as
defined in Equation |5.13!

2. Each of the B! is treated as an observed data set from which
second-level parametric or Bollen-Stine bootstrap samples B2, =

B2,,..., B2y are drawn [°,

3. Use the second-level B2, bootstrap samples to compute R plug-in
p values resulting in a vector of p,. = p1,...,Pr.

The result, so far, is a vector of R plug-in p values. The distribution of
these plug-in p values should be uniform when R — oo. If this is the
case then adjusting « or p is not necessary. For the facial burns example
the distributions for hypothesis tests Type A and Type B in Figure [5.2¢
and [5.2d| are clearly not uniform and adjustment is necessary. For test
Type A, P(p < .12 | Hap) # .05 and for test Type B, P(p < .11 | Hpg) #
.05. Now we continue with computing o* or p*:

4a. The adjusted alpha level a* is calculated by first ordering p, from
small to large followed by computing the " percentile, which is typ-
ically the 5! percentile at a significance level of 5%. In Figure |5.2c
and |5.2d| the solid lines show the adjusted alpha levels.

4b. According to (Nankervis,|2005)), the adjusted p value p* is calculated

by:
R
2 1o < 1)
pr = 5.15
p 7 (5.15)
In Figure 5.2c and |5.2d| the dashed lines show the adjusted plug-in
p values.

5The choice of S is always a tradeoff between precision and practical use. If we
use as many as 1000 samples for both R and S, then we would need as many as 10°
samples. (Davison & Hinkley} 2008, Ch. 5.6) suggest that S = 249 would be safe.
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For a graphical representation of the genuine double bootstrap see (Van
de Schoot et al.| |2010). The steps previously described are repeated for
hypothesis test Type B.

In the next section, we will discuss the InformativeTesting() func-
tion in more detail.

5.4 An overview of the InformativeTesting
function in R package lavaan

At the time of writing, the InformativeTesting() function is included
in lavaan, a free and open source R package for latent variable analysis
(Rosseel, 2012b)) (http://lavaan.org).
Before we can test the constrained hypothesis of our facial burns ex-
ample as defined in Equation [5.11| we need to go through 5 easy steps:
Step 1 is to call the lavaan library:

R> library("lavaan")

Step 2 is to load the observed data into R. The data can be a data frame
containing the observed variables or a sample covariance full matrix with
an optional mean vector. For our example the data are loaded into R as
follows:

R> FacialBurns <- read.csv("burns.csv")

Step 3 is to convert the theoretical model in Figure [5.1] into lavaan
syntax. The input model is specified by a text-based description called the
lavaan model syntax and includes the overall model without constraints.

R> burnsModel <- ’ Selfesteem ~ Age + c(ml, f£1)*TBSA + HADS
HADS ~ Age + c(m2, £2)*TBSA + RUM °

where m1, f1, m2 and f£2 are arbitrary labels which are necessary for
imposing the constraints.

Step 4 is to convert the constraints into lavaan syntax. For the sake of
convenience we do not use the Greek letter S with subscripts and super-
script, but simple labels. Therefore let 31, = m1, %, = £1, 83, = m2 and
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3, = £2. The constraints are specified by a text-based description, called
the lavaan constraints syntax and describe the linear order/inequality
constraints imposed on the model. A major advantage of this text-based
description is that users do not have to specify the complex L matrix (see
5.9) themselves. Then, the constraints are defined as follows:

R> burnsConstraints <- > ml1 < O

f1 <0
fl1 < mil
m2 > 0
f2 >0
f2 > m2 ’

Note that these constraints equal to the right hand side of equation [5.11.
Also note that, it is only necessary to specify the overall model and the
constraints, the equality constrained model H4¢ and the unconstrained
model Hp; are generated automatically by the InformativeTesting()
function and thus need not to be specified. For more information about
how to create the model and constraints syntax, see the lavaan manual
(Rosseel, 2012D)).

Step 5 is to set up the necessary InformativeTesting() function
arguments. For an overview of all function arguments see ?Informative-
Testing. The first argument to InformativeTesting() is the model
defined in step 3. The second argument is the observed data. The third
argument is the constraints imposed on the model in step 4. The fourth
and fifth arguments define the number of bootstrap draws and the number
of double bootstrap draws respectively. In our example we used R = 1000
and S = 249. The group argument specifies the grouping variable, which
is in our case the variable name "Sex" in the data frame. The parallel and
ncpus arguments are needed to use parallel processing. In this example
we used 8 cores for the computations.

R> burnsIT <- InformativeTesting(burnsModel, data = FacialBurns,
constraints = burnsConstraints,
R = 1000, double.bootstrap.R = 249,
group = "Sex",
parallel = "multicore", ncpus = 8)

The InformativeTesting() function bootstraps LR values and it
returns an object of class "InformativeTesting" for which a plot()
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method is available, which is discussed later. By default the Infor-
mativeTesting () function uses the Bollen-Stine bootstrap approach (ty-
pe = "bollen.stine") and the genuine double bootstrap for adjusting
the plug-in p value (double.bootstrap = "standard"). However, users
can easily switch to the parametric bootstrap (type = "parametric")
or turn the double bootstrap off (double.bootstrap = "no"). Further-
more, by default the InformativeTesting() function generates R = 1000
bootstrap draws and returns a vector with the bootstrapped LR values
(return.LRT = TRUE). For the genuine double bootstrap double.boot-
strap.R = 249 double bootstrap samples are drawn. Note that for the
"standard" double bootstrap by default S = 249 and a significance level
of 5% is used to compute a* (double.bootstrap.alpha = 0.05).

In the next section we will discuss the print () and plot() methods
for the InformativeTesting() function using the facial burns example.

5.4.1 Facial burn example continued: print() and
plot ()

Perhaps the most informative method to view the results is plot (). The
plot () function plots the distributions of the bootstrapped LR values
and also the distributions of the plug-in p values in case of the genuine
double bootstrap. The plot() method can be called without additional
arguments to plot all available plots.

Separate plots for the distribution of LR values or the plug-in p values
can be requested. For the distribution of LR values the argument type
= "1r" is added (see Figure [5.2a and 5.2b)) and for the distribution of
plug-in p values the argument type = "ppv" is added, see Figure |[5.2¢c
and |5.2d. The first argument to plot () is the returned object from the
InformativeTesting() function.

R> plot(burnsIT)

For the plot () results for the facial burn example see Figure [5.2a} [5.2b)
5.2c| and [5.2d. The default plot arguments can be overruled by the
user to adjust the plots. For example, the axes labels, main title, num-
ber of breaks, and colors can be adjusted. For all available options see
?plot.InformativeTesting.



146 Testing Inequality Constrained Hypotheses in SEM

A table of the print() function is displayed with the results of the
facial burn example.

R> burnsIT

InformativeTesting: Order/Inequality Constrained Hypothesis Testing:

Variable names in model : Selfesteem HADS Age TBSA RUM
Number of variables : 5

Number of groups : 2

Used sample size per group : 60 17

Used sample size 77

Total sample size : 118

Estimator : ML

Missing data : listwise

Bootstrap method : bollen.stine

Double bootstrap method : standard

Type A test: HO: all restriktions active (=)
vs. Hl: at least one restriktion strictly true (>)

Test statistic: 11.1374, adjusted p-value: 0.0011 (alpha = 0.05)
unadjusted p-value: 0.0182 (alpha = 0.1176)
Type B test: HO: all restriktions true
vs. Hl: at least one restriktion false
Test statistic: 0.0000, adjusted p-value: 0.9824 (alpha = 0.05)
unadjusted p-value: 0.9742 (alpha = 0.1055)

The results for hypothesis test Type A, see also Figures [5.2a] and [5.2¢|
show that the equality constrained hypothesis H 4 is rejected (LR =
11.1374, p* = .001, o = .05). In other words, the observed LR statis-
tic LR = 11.1374, see solid line Figure 5.2al is more extreme than we
would expect by chance. The adjusted plug-in p value p* is the proportion
of plug-in p values on the right-hand side of the dashed line. The results
for Type B, see also Figures [5.2b| and [5.2d, show that the constrained
hypothesis Hp cannot be rejected (LRObS =0, p* =.982, o = .05). The
observed LR statistic, LR = 0, indicates that the constrained hypothe-
sis does not fit significantly worse than the unconstrained. More precisely,
a LR value of 0 indicates that no constraints are violated. Therefore, we
can conclude that the results show strong evidence for the constrained hy-
pothesis stated in Equation |5.11. In other words, there exists a negative
relation between TBSA and self-esteem for both men and women, and
the relation is stronger for women. It is also confirmed that the relation
between TBSA and HADS is positive for both men and women and that
the relation is stronger for women. A visual inspection of the constrained
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or unconstrained model parameters reinforce our conclusion. This can be
done as follows for the unconstrained model. Some parts of the output
are removed due to its length.

R> summary(burnsIT$fit.B1)

Group 1 [1]:
Regressions:
Estimate
Selfesteem ~
Age 0.019
TBSA (m1) -0.148
HADS -0.475
HADS ~
Age 0.070
TBSA (m2) 0.143
RUM 1.036
Group 2 [2]:
Regressions:
Estimate
Selfesteem ~
Age 0.106
TBSA (f1) -0.241
HADS -0.453
HADS ~
Age -0.010
TBSA (£2) 0.254
RUM -0.656

The constrained parameter estimates can be requested as follows:
R> summary (burnsIT$fit.Al1)

A tutorial function with the R-code and the data from the facial burns
example is available online at [MASKED]. For more information and a
gentle introduction to informative hypotheses we recommend the book of
(Hoijtink} |2012), and also the papers from (Van de Schoot, Hoijtink, &
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Romeijn|, [2011; [Van de Schoot & Strohmeier} [2011) and (Van de Schoot
& Wong), [2011]) for more applied examples.

5.5 Concluding remarks

In classical null-hypothesis testing researchers can only find indirect evi-
dence for their specific hypotheses if the null-hypothesis is rejected. There-
fore, we believe that evaluating informative hypotheses, by means of
imposing order/inequality constraints on the parameters of a statistical
model, allow researchers to directly evaluate their expectations and get
more insightful results compared to testing the classical null-hypothesis
against catch-all rivals. In addition, (Vanbrabant, Van de Schoot, &
Rosseel, [2015) (and the references therein) have shown that substantial
power can be gained when an increasing number of order/inequality con-
straints is included into the hypothesis. Researchers who are dealing with
small samples in particular may benefit from this power gain.

Hypothesis test Type A can reject the null-hypothesis H 4¢ even if the
alternative hypothesis H4; is violated by the data. Rejecting H 40 does
not mean that Ha; is true. Note that, this applies also to classical null-
hypothesis testing. The power of hypothesis tests Type A and Type B is
centered in the alternative hypothesis Hi. It is only under Hy that their
type I errors is close to the nominal level. In spite of this, hypothesis
test Type A can be useful since hypothesis test Type B cannot make a
distinction between equality and inequality constraints. Hypothesis test
Type B plays a crucial role in constraint misspecification.

The InformativeTesting() function discussed in this paper is the
first software routine for testing order/inequality constrained hypotheses
in SEM. If researchers want to test a constrained hypothesis, then the
procedure with the InformativeTesting() function for lavaan is easier
to use and faster compared to the procedure proposed in (Van de Schoot
et al.l [2010)).

However, testing constrained hypotheses in SEM is due to the genuine
double bootstrap procedure computationally very expensive. Therefore,
computational time remains a limitation and procedures to decrease it
further are investigated.

Furthermore, we conducted a small simulation study in which we in-
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vestigated the performance of the Bollen-Stine and parametric bootstrap
approaches in terms of type I errors (o = .05). We have set up a sim-
ulation design in which we varied the sample size and the normality of
the data. We chose a small sample size of N = 50 and a large sample
size of N = 500. We generated normal and very non-normal data with
a skewness of 1.50 and a kurtosis of 3.75. The results show that the
Bollen-Stine bootstrap outperforms the parametric bootstrap in case of
non-normal data. We recommend to use the parametric bootstrap only in
case of normal distributed samples. Currently, the parametric bootstrap
for the InformativeTesting() function is only valid for continuous data
following a multivariate normal distribution.

Finally, we advise to use the genuine double bootstrap and only to
switch the double bootstrap off when exploration is the goal of the anal-
ysis.
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An introduction to restriktor:

informative hypothesis testing for
AN(C)OVA and linear models

Many researchers have specific expectations about the relation between
the means of different groups or between (standardized) regression co-
efficients. For example, in an experimental setting, the comparison of
two or more treatment groups may be subject to order constraints (e.g.,
Hy : py < po < pz = pg). In practice, hypothesis Hy is usually tested
using a classical one-way ANOVA with additional pairwise comparisons if
the corresponding F-test is significant. In this tutorial paper, we introduce
the freely available R package restriktor for evaluating order-constrained
hypothesis directly. The procedure is illustrated by seven examples.

6.1 Introduction

In almost all psychological fields, researchers have specific expectations
about the relation between the means of different groups or between (stan-
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dardized) regression coefficients. In experimental psychology, it is often
tested whether the mean reaction time increases or decreases for differ-
ent treatment groups (see e.g., Kofler et al., [2013). In clinical trials, it
is often tested whether a particular treatment is better or worse than
other treatments (see e.g., Roberts, Roberts, Jones, & Bisson, 2015). In
observational studies, researchers often have clear ideas about whether
the direction of the effects are positive or negative (see e.g., Richardson
& Abraham)| 2012). Testing such specific expectations directly is known
under various names, such as one-sided testing, constrained statistical in-
ference, isotonic regression, and informative hypothesis testing. For the
remainder of this paper, we will refer to this kind of analysis as informative
hypothesis testing (IHT, Hoijtink} 2012]).

Many applied researchers are already familiar with ITHT in the context
of the classical one-sided t-test, where one mean is restricted to be greater
or smaller than a fixed value (e.g., 41 > 0) or another mean (e.g., u <
2). This readily extends to the AN(C)OVA and multiple regression (e.g.,
linear, logistic, Poisson) setting where more than one constraint can be
imposed on the (adjusted) means or regression coefficients (Silvapulle &
Sen, [2005)).

THT has several benefits compared to classical null-hypothesis signifi-
cance testing. First, testing specific expectations directly does not require
multiple significance tests (Hoijtink| [2012; Klugkist, van Wesel, & Bullens;
2011; [Van de Schoot et al.| [2011). In this way, we avoid an inflated type
I error or a decrease in power when a significance level a correction is
used. Second, to avoid multiple testing issues with ordered means, an
ANOVA is often combined with contrasts to directly test the specific pat-
tern. However, contrast tests are not the same as informative hypothesis
tests (Baayen, Klugkist, & Mechsner} [2012). Third, incorporating order
constraints in the analysis will result in substantially more power (e.g.,
Bartholomew, [1961a), [1961b; Kuiper & Hoijtink| [2010}; [Perlman) [1969;
Robertson, Wright, & Dykstral [1988} [Van de Schoot & Strohmeier| [2011}
Vanbrabant, Van de Schoot, & Rosseel, |2015)). |Vanbrabant et al.| (2015)
showed for ordered means and multiple one-sided regression coefficients
that a sample-size reduction up to 50% can be gained.

Hypothesis testing in the linear model and in the AN(C)OVA model
assumes that the residuals are normally and independently distributed.
Although the well-known F-test statistic, which is often used in linear re-
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gression and AN(C)OVA is size robust (close to their nominal significance
level «) for deviations from the normality assumption, it can have sub-
stantial consequences for the power (Schrader & Hettmansperger, |1980;
Silvapulle| [1992; (Wilcox, [2016). The reason for the lower power is that
non-normal error distributions are more likely to contain extreme obser-
vations (e.g., outliers) and these outliers can increase the sample residual
variance estimate (i.e., the scale) substantially. Even when the devia-
tions are small enough to go undetected by distribution normality checks
(Rutherford, 2001, Chp. 9). Robust hypothesis testing is a powerful alter-
native. Robustness is achieved by down-weighting extreme observations
to have less influence on the estimates (Huber, [1981; Huber & Ronchetti,
2009; Maronna, Martin, & Yohai, [2006)). MM-estimation (Yohail [1987)),
is perhaps the most frequently applied robust regression technique today
and it is widely available in statistical software (e.g., SAS, Stata, various
R packages).

Several software routines are available for testing informative hypothe-
ses in the frequentist framework. Ordered means may be evaluated by
the software routine ‘Confirmatory ANOVA’ (Kuiper, Klugkist, & Hoi-
jtink, [2010). An extension for linear regression models is available in
the R (R Development Core Team| 2016) package ic.infer (Gromping)
2010). Order constraints may also be evaluated by the statistical soft-
ware SAS/STAT® (SAS Institute Inc, 2008) using the PLM procedure.
Model selection under order constraints can be performed using the soft-
ware routine ‘GORIC’ (Kuiper, Hoijtink, & Silvapulle| 2012)). However,
these procedures are rather complex, since the constraint matrix must
almost always be constructed manually. In addition, the procedures are
limited to ordered means or the standard linear regression model. In this
current paper we introduce the open-source and freely availabe R package
restriktor (http://restriktor.org). We will show that restriktor
is easy to use and more flexible than the existing procedures.

In the remainder of this article, we demonstrate for seven examples
how to evaluate informative hypotheses using restriktor. For each ex-
ample, we show (1) how to set up the constraint syntax, (2) how to test
the informative hypothesis, and (3) how to interpret the results. Many
of the restriktor options are discussed gradually over the various ex-
amples. In the first example, we impose order constraints on the means
of a one-way ANOVA model. In the second example, we reanalyze the
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first example but using robust methods to deal with outliers. In the third
example, we impose order constraints on the means of an ANOVA model,
where we take a small effect-size into account. In the fourth example, we
impose order contraints on the adjusted means of an ANCOVA model. In
the fifth example, we impose order constraints on the standardized regres-
sion coefficients of a linear model. In the sixth example, we impose order
constraints on three covariate-conditional effects of gender on the outcome
variable. In the last example, we demonstrate how to evaluate the infor-
mative hypothesis H; using model selection. Instead of comparing H;
only against the unconstrained hypothesis H,, we will also include com-
peting informative hypotheses. The corresponding models are evaluated
based on their fit and complexity using the generalized order-restricted
information criterion (GORIC). After the examples, we discuss some ad-
ditional options of restriktor. To ensure applicability of this paper, the
datasets for each of the examples are available in the restriktor package.

6.2 Example 1. order-constrained one-way
ANOVA

Consider the data in Table 6.1l These data denote a persons’ decrease
in aggression level between week 1 (intake) and week 8 (end of training)
for four different treatment groups of anger management training, namely
(1) no training, (2) physical training, (3) behavioral therapy, and (4) a
combination of physical exercise and behavioral therapy. The purpose of
the study was to test the assumption that the exercises would be asso-
ciated with a reduction in the mean aggression levels. In particular, the
hypothesis of interest was Hq : pno < {/tPhysical = HBehavioral} < [Both-
This hypothesis states that the decrease in aggression levels is smallest
for the “no training” group, larger for the “physical training” and “behav-
ioral therapy” group, with no preference for either method, and largest
in the “combination of physical exercise and behavioral therapy” group
(Hoijtink} 2012} p. 5-6).

In practice, hypothesis H; is usually evaluated with an ANOVA, where
the nuu_hypOtheSiS HO * UNo = HMPhysical = HBehavioral = HBoth is tested
against the unconstrained-hypothesis H, : not all four means are equal.
The results from the global F-test revealed that the four means are not
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equal (F(436) = 18.62, p < .001). At this point, we do not know anything
about the ordering of the means. Therefore, the next step would be to use
pairwise comparisons with corrections for multiple testing (Westfall, To-
bias, & Wolfinger} 2011, e.g., Bonferroni, FDR, Tukey). The results with
FDR (False Discovery Rate) adjusted p-values showed three significant
(p < .05) mean differences (MD), namely between the ‘Behavioral-No’
exercises (MD = 3.3, p = .001), the ‘Behavioral-Physical’ exercises (MD
= 2.3, p = .018) and the ‘Both-Physical’ exercises (MD = 3.3, p = .001).
A graphical representation of the means is shown in Figure |6.1| (see filled
circles). Based on the results of the global F-test and the pairwise com-
parisons, it would not be an easy task to derive an unequivocal conclusion
about hypothesis H;.

In what follows, we show all steps and the restriktor syntax to
evaluate the informative hypothesis H; directly. Before we continue, we
need to install the R package restriktor. To install restriktor, start
up R, and type:

install.packages("restriktor")

If the restriktor package is installed, the package needs to be loaded
into R. This can be done by typing:

library(restriktor)

If the package is loaded, the following startup message should be dis-
played:

## This 1s restriktor 0.1-80.711
## restriktor is BETA software! Please report any bugs.

A more detailed description about how to get started with restriktor
can be found online at http://restriktor.org/gettingstarted.html,

Step 1. set up the constraint syntax

In R, categorical predictors are represented by ‘factors’. For example, the
‘Group’ variable has four factor levels: ‘No’, ‘Physical’, ‘Behavioral’ and
‘Both’. In addition, the factor levels are presented in alphabetical order


http://restriktor.org/gettingstarted.html

Order-constrained hypothesis versus its complement 159

and it may therefore be convenient to re-order the levels. This can be
done in R by typing:

AngerManagement$Group <- factor (AngerManagement$Group,
levels = c("No","Physical",
"Behavioral",
"Both"))

In restriktor there are two ways to construct the constraint syntax.
First, and probably also the easiest way is to use the factor-level names
preceded by the factor name (e.g., GroupNo). Order constraints are defined
by means of inequality constraints (<, or >) or by equality constraints
(==). The constraint syntax is enclosed within single quotes. Then, for
hypothesis H; the constraint syntax might looks as follows:

myConstraintsl <- ’ GroupNo < GroupPhysical
GroupPhysical == GroupBehavioral
GroupBehavioral < GroupBoth °’

A second method is to construct the constraint matrix manually. The
corresponding restriktor code might look as follows:

myConstraintsl <- rbind(c( 0, 1, -1, 0),
c(-1, 1, 0, 0),
c(0, 0, -1, 1))

Note that the first row should be treated as an equality contraint. This can
be done in the restriktor () function by setting the neq = 1 argument.
We will not further elaborate on this method because it is error prone to
inexperienced users. For the interested reader we refer to the restriktor
website or to the restriktor () function help file, which can be found in
R by typing ?restriktor.

Step 2. test the informative hypothesis

The iht () function is used for informative hypothesis testing. The min-
imal requirements for this function are a constraint syntax (e.g., see
myConstraintsl) and a fitted unconstrained model. Currently, iht () can
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deal with the standard linear model (1m), the robust linear model (rlm)
and the generalized linear model (glm). Since, an AN(C)OVA model is a
special case of the multiple regression model we can use the linear model
for our ANOVA example. Then, we can fit the unconstrained linear model
as follows:

fit_ANOVA <- 1lm(Anger ~ -1 + Group, data = AngerManagement)

The tilde ~ is the regression operator. On the left-hand side of the oper-
ator we have the response variable Anger and on the right-hand side we
have the factor Group. We removed the intercept (-1) from the model
so that the estimates reflect the group means. The AngerManagement
dataset is build-in the restriktor package and can be called directly.
Information about importing your own dataset into R can be found online
at http://restriktor.org/tutorial/importdata.html|

Next, we can test the informative hypothesis using the iht () function.
This is done as follows:

iht (fit_ANOVA, constraints = myConstraintsi)

The first argument to iht () is the fitted unconstrained linear model. The
second argument is the constraint syntax myConstraintsl. By default,
the function prints an overview of all available hypothesis tests. The
results are shown below.

Restriktor: restricted hypothesis tests ( 36 residual degrees of freedom ):
Multiple R-squared reduced from 0.674 to 0.608

Constraint matrix:

GroupNo GroupPhysical GroupBehavioral GroupBoth op rhs active
1: 0 1 -1 0 = 0 yes
2: -1 1 0 0 > 0 no
3: 0 0 -1 1 > 0 no

Overview of all available hypothesis tests:

Global test: HO: all parameters are restricted to be equal (==
vs. HA: at least one inequality restriction is strictly true (>)
Test statistic: 25.4061, p-value: <0.0001
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Type A test: HO: all restrictions are equalities (==
vs. HA: at least one inequality restriction is strictly true (>)
Test statistic: 25.4061, p-value: <0.0001

Type B test: HO: all restrictions hold in the population
vs. HA: at least one restriction is violated
Test statistic: 7.2687, p-value: 0.04518

Note: All tests are based on a mixture of F-distributions
(Type C test is not applicable because of equality restrictions)

At the top of the output the constraint-matrix is shown. This matrix is
constructed internally based on the text-based constraint syntax but could
of course have been constructed manually. The ‘active’ column indicates
if a constraint is violated or not. If no constraints are active, this would
mean that all constraints are in line with the data. Next, an overview
of the available hypothesis tests is given. By default restriktor uses
the F (F-bar) test-statistic (Kudo, |1963; [Wolak, [1987). The F-statistic
is an adapted version of the classical F-statistic and can deal with order
constraints. To ensure readability of this paper, its technical details are
discussed in Appendix [M.1l The global hypothesis test is comparable
with the classical global/omnibus test, where all parameters but the in-
tercept equal zero under the null-hypothesis and it is tested against the
order-constrained hypothesis. Under the null of hypothesis test Type A,
only the parameters that are involved in the order-constrained hypothesis
(here all) are constrained to be equal and it is tested against the order-
constrained hypothesis. For hypothesis test Type B, the null-hypothesis is
the order-constrained hypothesis and it is tested against the unconstrained
hypothesis, although some equality constraints (if present) may be pre-
served under the alternative hypothesis. Rejecting the null-hypothesis
would mean that at least one order constraint is violated. A more de-
tailed output for each hypothesis test, such as the estimates under both
hypotheses can be obtained by adding the argument type = "Global",
"A" or "B" to the iht() function. Note that there exists another hy-
pothesis test called Type C (not applicable here because of an equality
constraint). This test is based on the union-intersection principle. Its
power is generally poor in case of a relatively large number of constraints
(Gromping}, [2010)). Hypothesis test Type C is added to complete the set
of tests but we will not further discuss it. For the interested reader we
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refer to [Silvapulle & Sen| [2005, Chp. 5.3.

Step 3. interpret the results

To evaluate the informative hypothesis Hy, we first conduct hypothesis
test Type B. Not rejecting this hypothesis test would mean that the order
constraints are in line with the data. The results from hypothesis test
Type B, however, show that hypothesis H; is rejected in favor of the
best fitting hypothesis (15?0,172;36) = 7.27, p = .045) |}, In other words,
the constraints are not supported by the data and we conclude that the
informative hypothesis H; does not hold.

Estimation and inference of the restricted estimates

Instead of testing the informative hypothesis, the restricted estimates
might be of interest. In this case, the restriktor() function can be
used:

restr_ANOVA <- restriktor(fit_ANOVA,
constraints = myConstraintsl)

The first argument to restriktor() is the fitted unconstrained linear
model fit_ANOVA. The second argument is the constraint syntax my-
Constraintsl. By default, the print () function prints a brief overview
of the restricted estimates:

print (restr_ANOVA)

Call:
conLM.1lm(object = fit_ANOVA, constraints = myConstraintsl)

restriktor (0.1-80.711): restricted linear model:

Coefficients:
GroupNo GroupPhysical GroupBehavioral GroupBoth
-0.20 1.95 1.95 4.10

1The null-distribution is a mixture of F-distributions mixed over the degrees of
freedom. Therefore, in this example, the p-value Pr(lE‘ > Fobs) approximately equals
wo Pr(Fo,36 > Fops) + w1 Pr(F136 > Fops/1) + waPr(Fa36 > Fops/2), where
Pr(Fo,36 > Fops) equals 0 by definition. Hence the notation F(g 1 2.36). For more
information on how to compute the mixing weights w; see Appendix M.1|
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We can clearly see that, the GroupPhysical and the GroupBehavioral
estimates are constrained to be equal. If desired, a more extensive output
can be requested. This is done as follows:

summary (restr_ANOVA)

Call:
conLM.1lm(object = fit_ANOVA, constraints = myConstraintsi)

Restriktor: restricted linear model:

Residuals:
Min 1Q Median 3Q Max
-3.100 -1.275 -0.025 1.200 5.050

Coefficients:

Estimate Std. Error t value Pr(>|t])
GroupNo -0.20000 0.65233 -0.3066 0.7609210
GroupPhysical 1.95000 0.46127 4.2275 0.0001544 *x*
GroupBehavioral 1.95000 0.46127 4.2275 0.0001544 *xx
GroupBoth 4.10000 0.65233 6.2851 2.895e-07 *x*

Signif. codes: 0 ’*xx’ 0.001 ’**’ 0.01 ’%’ 0.05 .’ 0.1’ ’ 1

Residual standard error: 2.0629 on 36 degrees of freedom
Standard errors: standard
Multiple R-squared reduced from 0.674 to 0.608

Generalized Order-Restricted Information Criterion:
Loglik Penalty Goric
-84.1621 2.8918 174.1079

The output shows the restricted estimates (here the group means) and the
corresponding standard errors, t-test statistics and two-sided p-values.
The output also shows information about the type of computed stan-
dard errors. In this case, conventional standard errors are computed but
heteroskedastic robust standard errors are also available. The multiple
R? = .674 refers to the unconstrained model and the R? = .608 refers to
the order-constrained model. Both are equal, only if all constraints are in
line with the data. The last part of the output provides information for
model selection. This will be discussed in example 7.
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6.2.1 Example 2. order-constrained robust one-way
ANOVA

The results in the previous example were obtained under the ANOVA
assumptions that the residuals were normally and independently distri-
buted. In this example, we rerun the ANOVA example using robust THT.
We show that ignoring non-normality lead to spurious conclusions. The
steps to run the anger management training example with robust MM-
estimators are identical to the ANOVA example, except for fitting the
unconstrained model. Instead of the standard linear model, we now use
the robust linear model. The unconstrained robust linear model needs
to be fitted using the rlm() (W. N. Venables and B. D. Ripley, 2002)
function in R. This can be done as follows:

fit_rANOVA <- rlm(Anger ~ -1 + Group, data = AngerManagement,
method = "MM")

Note that by default the rlm function uses M-estimation. It is easy to
switch to MM-estimation by adding the method = "MM" argument.

Then, evaluating hypothesis H; using robust IHT can be done as fol-
lows:

iht (fit_rANOVA, constraints = myConstraintsl)

The output of the iht() function is shown in Appendix [N.1. In this
case, restriktor uses by default the robust F,,, test-statistic (Silvapulle,
1992). TIts technical details are discussed in Appendix M.2l The results
show that hypothesis H; is now not rejected in favor of the unconstrained
hypothesis (Fim(17273;36) = 6.49, p = .062). This is an illustration that
ignoring non-normality may result in spurious conclusions regarding the
direction of the effects. If hypothesis test Type B is not rejected, a second
hypothesis test is needed. The reason is that hypothesis test Type B
cannot make a distinction between inequality and equality constraints.
In the statistical literature, this hypothesis test is often called Type A,
where hypothesis Hy is tested against the order-constrained hypothesis
H,. The results from hypothesis test Type A show that hypothesis H
is rejected in favor of the order-constrained hypothesis H; (me(o’lﬁz;gﬁ)
= 21.55, p < .001). If we combine the results of robust hypothesis test
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Type B and robust hypothesis test Type A, we can conclude that we have
found evidence in favor of the informative hypothesis H;

6.2.2 Example 3. Ordered-constrained means with
effect-sizes

The p-value is not a good measure for the size of an effect (Nickerson,
2000). Therefore, in an AN(C)OVA the question should actually be
whether the differences between the group means are relevant? To an-
swer this question, the popular effect-size measure Cohen’s d (Cohen,
1988) can be used and is given by: d = (fimax — Mmin)/0c, Where fimax is
the largest of the k means and i, is the smallest of the & means, and
oc is the pooled standard deviation within the populations. According
to Cohen, values of 0.2, 0.5 and 0.8 indicate a small, medium and large
effect, respectively.

In this example, we use the |Zelazo, Zelazo, and Kolb| (1972) dataset.
The data consist of ages in months at which a child starts to walk for
four treatment groups. For simplicity we only consider three treatment
groups. The excluded group is the ‘Control” group. The first treatment
group (Active) received a special walking exercise for 12 minutes per day
beginning at age 1 week and lasting 7 weeks. The second group (Passive)
received daily exercises but not the special walking exercises. The third
group (No) were checked weakly for progress but they did not receive any
special exercises. The purpose of the study was to test the claim that
the walking exercises are associated with a reduction in the mean age at
which children start to walk.

If we ignore the effect-sizes, the informative hypothesis can be formu-
lated as: Hs : ptactive < MPassive < [No- Lhe results from hypothesis test
Type B (]_5‘](3071,2;14) = 0, p = 1) and hypothesis test Type A (]_5‘81,2;14)
= 5.978, p = .028) provide evidence in favor of the informative hypothe-
sis. However, for a practical implementation of the treatments the mean
differences between the groups should at least indicate a small effect. To
answer this question, we reformulate hypothesis Hy such that the effect-

2We are aware that strictly speaking, null-hypothesis significance testing never pro-
vides ‘evidence’ for the null and that the results provide indirect evidence for the
informative hypothesis but this is not the place to discuss null-hypothesis significance
testing subtleties.
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sizes are included. The pooled within group standard deviation equals

1.516:
(/JPassive - NActive) / 1.516 > 0.2
(/’I’NO - ,uPassive) / 1.516 > 0.2.

This hypothesis states that we expect at least 0.2 x 1.516 standard de-
viations between the means, which indicates a small effect-size. Next, we
show how to evalute this informative hypothesis.

HY =

Step 1. set up the constraint syntax

Again, we use the factor-level names preceded by the factor name to
construct the constraint syntax. The effect-sizes can be easily computed
within the constraint syntax using the arithmetic operator /:

myConstraints2 <- ’ (GroupPassive - GroupActive ) / 1.516 > 0.2
(GroupNo - GroupPassive) / 1.516 > 0.2 °’

Step 2. test the informative hypothesis

The original dataset consists of four treatment groups. Since, we excluded
the ‘Control’ group, we need to take a subset of the original data. The
subset () function in R is the easiest way to select observations. This can
be done in R by typing:

subData <- subset(ZelazoKolb1972, Group != "Control")

The first argument to subset () is the original dataset. The second ar-
gument excludes the observations from the ‘Control’ group using the !=
(not equal to) operator. Then, the unconstrained linear model can be fit
as follows:

fit_ANOVAd <- 1m(Age ~ -1 + Group, data = subData)

Next, we test the informative hypothesis using the fitted unconstrained
model £it_ANOVAd and the constraint syntax myConstraints?2:
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iht (fit_ANOVAd, constraints = myConstraints2)
The output of the iht () function can be found in Appendix [N.2|

Step 3. interpret the results

The results from hypothesis test Type B (F](BO’LQ;M) =0,p=1) and hy-

pothesis test Type A (152)71,2;14) = 3.19, p = .089) show that if we include
a small effect-size in the informative hypothesis, the initial significant
results become irrelevant. This clearly demonstrates the importance of
including effect-sizes in the hypothesis.

6.2.3 Example 4. Order-constrained adjusted means
- ANCOVA

The anger management training example discussed in example 1 also in-
cluded a covariate; it was not considered in the introduction for simplicity.
The covariate provides information about a persons’ age (ranging from
18 to 27). The full AngerManagement dataset is displayed in Table |6.2
In contrast to ANOVA, where informative hypotheses are formulated in
terms of group means, informative hypotheses in an ANCOVA are for-
mulated in terms of adjusted means to account for differences between
the groups with respect to one or more covariates. Thus, if we take the
covariate ‘age’ into account the informative hypothesis can be formulated
as H?dJ : Mal\ﬁ)] < {M;dhjysical = M%dejhavioral} < :U’%(:)Jth (/’Lj’dj denotes the pop-
ulation adjusted mean in group j). A graphical representation of the
covariate adjusted means is shown in Figure 6.1 (see unfilled circles).

Step 1. set up the constraint syntax

For hypothesis H fdj the constraint syntax is identical to the constraint
syntax for the ANOVA example and looked as follows:

myConstraintsl <- ’ GroupNo < GroupPhysical
GroupPhysical == GroupBehavioral
GroupBehavioral < GroupBoth °’
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Step 2. test the informative hypothesis

Before we fit the unconstrained model, we center the covariate ‘Age’ at its
average to obtain adjusted mean [*| estimates. This is done in R by typing:

AngerManagement$Age_Z <- AngerManagement$Age -
mean (AngerManagement$Age)

Then, we can fit the unconstrained linear model as follows:

fit_ANCOVA <- 1lm(Anger ~ -1 + Group + Age_Z,
data = AngerManagement)

Next, we can test the informative hypothesis using the iht () function.
This is done as follows:

iht (fit_ANCOVA, constraints = myConstraintsi)
The results are shown in Appendix [N.3|

Step 3. interpret the results

As a reminder, in order to find evidence for the informative hypothe-
sis H?dj, we do not want to reject hypothesis test Type B. The results,
however, show that hypothesis test Type B is rejected in favor of the un-
constrained hypothesis (Fﬁ’z’&%) = 8.50, p = .028). Therefore, we can
conclude that the imposed order constraints are not supported by the
data. The results from the robust hypothesis test Type B lead to the

same conclusion (Fim(1,273;35) = 17.70, p = .037).
6.2.4 Example 5. Order-constrained (standardized)

linear regression coefficients

In this example, we show how order constraints can be imposed on the
standardized regression coefficients of a linear model. We use the Exam

3Thvg general formula to compute the adjusted means is: Yaqj; = }7] — B(Zj — Zg),
where Y are the unadjusted means in group j, Z; are the covariate means in group
J, Zg is the general covariate mean, and S is the common within-group regression
coefficient.
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dataset displayed in Table 6.3 The model relates students’ ‘exam scores’
(Scores, with a range of 38 to 82) to the ‘averaged point score’ (APS, with
a range of 18 to 28), the amount of ‘study hours’ (Hours, with a range
of 25 to 61), and ‘anxiety score’ (Anxiety, with a range of 13 to 91). It
is hypothesized that APS is the strongest predictor, followed by ‘study
hours’ and ‘anxiety scores’, respectively. In symbols, this informative
hypothesis can be written as Hz : faps > Bhours > BAnxiety (8 denotes
the standardized regression coefficient). Since, the hypothesis is in terms
of which predictor is stronger, we should be aware that the predictor
variables are measured on a different scale. Using the unstandardized
coefficients might lead to spurious conclusions. Therefore, the predictor
variables should be standardized [*|first. This can be done in R by typing:

Exam$Hours_Z <- (Exam$Hours - mean (Exam$Hours)) / sd(Exam$Hours)
Exam$Anxiety_Z <- (Exam$Anxiety - mean(Exam$Anxiety)) / sd(Exam$Anxiety)
Exam$APS_Z <- (Exam$APS - mean(Exam$APS)) / sd(Exam$APS)

Step 1. set up the constraint syntax

We can refer to covariates simply by their name (e.g., APS_Z). Then, the
constraint syntax corresponding Hs might look as follows:

myConstraints3 <- ’ APS_Z > Hours_Z
Hours_Z > Anxiety_Z ’

Step 2. test the informative hypothesis

Next, we fit the unconstrained linear model. The response variable is
‘Scores’ and the predictor variables are the three centered covariates:

fit_exam <- 1m(Scores ~ APS_Z + Hours_Z + Anxiety_Z,
data = Exam)

The informative hypothesis H3 can be evaluated using the unconstrained
model fit_exam and the constraint syntax myConstraints3:

4Standardized regression coefficients can be obtained by standardizing all the pre-
dictor variables before including them in the model. For example: Z(APS;) = (APSi

- mean(APS)) / sd(APS), where sd is the standard deviation.
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iht (fit_exam, constraints = myConstraints3)
The output is shown in Appendix [N.4l

Step 3. interpret the results

The results from hypothesis test Type B show that the order-constrained
hypothesis is not rejected in favor of the unconstrained hypothesis

(F](3(),1,2;16) =0, p=1). The results from hypothesis test Type A show that
the null-hypothesis is rejected in favor of the order-constrained hypothesis
(F?o,l,2;16) = 12.38, p = .003). Thus, we have found strong evidence in

favor of the informative hypothesis Hs.

6.2.5 Example 6. Testing for order-constrained ef-
fects

Here, we show how order constraints can be imposed between newly de-
fined parameters. The original data are based on two cohort studies in
children from 0 to 4 and 8 to 18 years old with burns and their parents
(e.g., [Bakker, Van der Heijden, Van Son, & Van Loey| [2013; [Egberts et
al., |2016). Since, the original data are not publicly accessible, we sim-
ulated data from the orginal model parameters. This simulated dataset
is available in restriktor. For illustrative reasons we focus only on the
data provided by the mother. The final sample consists of mothers of 278
children. Boys represent 68.7% of the sample. The response variable is
parental post-traumatic stress symptoms (PTSS) and was measured with
the Impact of Event Scale (Horowitz, Wilner, & Alvarez, 1979)). More-
over, for the current illustration we included five predictor variables in the
dataset: a child’s gender (0 = boys, 1 = girls) and age, the estimated per-
centage total body surface area affected by second or third degree burns
(i.e., TBSA, with a range of 1-72% in the current sample) and parental
guilt [0-4] and anger [0-4] feelings in relation to the burn event. The model
relates PTSS to the five predictor variables and can be written as a linear
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function:

PTSS ~ By + Bigender + fBoage + Baguilt + Sianger + G5 TBSA
+ Bggender x guilt
+ Brgender x anger
+ Pggender x TBSA

where (g is the intercept, 51 to f5 are the regression coefficients for the
main-effects and g to [ are the regression coefficients for the interaction-
effects.

We hypothesized that the gender-effect would increase for simulta-
neously higher levels of guilt, anger and TBSA. To test this informative
hypothesis, we selected three different settings for guilt, anger and TBSA,
namely a small, a medium and a large level. For illustrative reasons, we
chose for the small level the values 0, 0, 1 for guilt, anger and TBSA
respectively. For the medium level we chose their mean values which are
2.02, 2.06, and 8.35, respectively, and for the large level we chose 4, 4, and
20, respectively. Then, the resulting three effects (small, medium, large)
can be calculated as follows respectively:

smallEffect = 1 + 860 + 370 + 851
mediumEffect = 81 + £62.02 + £572.06 + 338.35
largeEffect = 81 + B4 + 74 + B520.

Note that each effect reflects a mean difference between boys and girls.
Then, the informative hypothesis can be expressed as:

H, : smallEffect < mediumEffect < largeEffect.

Step 1. set up the constraints syntax

A convenient feature of the restriktor constraint syntax is the option
to define new parameters, which take on values that are an arbitrary
function of the original model parameters. This can be done using the
:= operator. In this way, we can compute the desired effects and impose
order constraints among these effects. Then, the constraint syntax might
look as follows:
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myConstraints4 <- ’ ## define the effects
smallEffect := gender + O*gender.guilt +
O*gender.anger +
1*gender.TBSA

mediumEffect := gender + 2.02*gender.guilt +
2.06*gender.anger +
8.35*gender.TBSA

largeEffect := gender + 4*gender.guilt +
4*xgender.anger +
20*gender . TBSA

## impose the order constraints
smallEffect < mediumEffect
mediumEffect < largeEffect ’

It is important to note that variable/factor names of the interaction ef-
fects in objects of class 1m and rlm contain a semi-colon (:) between
the variable names (e.g., gender:guilt). To use these parameters in the
constraint syntax, the semi-colon must be replaced by a dot (.) (e.g.,
gender.guilt).

Step 2. test the informative hypothesis

Based on outlier diagnostics °| we identified 13 outliers (approximately
4.7% of the data). Therefore, we use robust methods. The unconstrained
robust linear model using MM-estimation can be fitted as follows:

fit_rburns <- rlm(PTSS ~ gender*guilt + gender*anger +
gender*TBSA + age,
data = Burns, method = "MM")

On the right-hand side of the regression operator (~) we included the
three interaction-effect using the * operator. The main-effects are in this
way automatically included. Note that the interaction operator * is not
an arithmetic operator as used in the constraint syntax. Then, the infor-
mative hypothesis can be evaluated as follows:

5The outliers were identified with robust Mahalanobis distances larger than the
99.5% quantile of a x2 distribution.
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iht (fit_rburns, constraints = myConstraintsé4)
The output can be seen in Appendix [N.5|

Step 3. interpret the results

The results from hypothesis test Type B (ﬁﬁM(0’1’2;269) =0, p = 1) show
that the order-constrained hypothesis is not rejected in favor of the uncon-
strained hypothesis. The results from hypothesis test Type A show that
the null-hypothesis is rejected in favor of the order-constrained hypothesis
(F;M(0,1,2;269) = 5.35, p = .044). Hence, we can conclude that the data
provide enough evidence that the gender-effect increases for higher levels
of guilt, anger and TBSA.

Noteworthy, the non-robust results from hypothesis test Type A would
have let to a different conclusion, namely that the null-hypothesis would
not have been rejected in favor of the order-constrained hypothesis
(Fé),172;269) = 3.65, p = .107). Again, this clearly demonstrates that
ignoring outliers may result in misleading conclusions.

6.2.6 Example 7. Model selection under order con-
straints

In the previous examples, we used hypothesis testing to evaluate the in-
formative hypotheses. In this example, we demonstrate the generalized
order-restricted information criterion (GORIC), which is a modification of
the Akaike information criterion (AIC, (Akaike| [1998). The GORIC can
be used to evaluate competing hypotheses based on their fit (i.e., likeli-
hood) and complexity (i.e., (in)equality constraints). The complexity pro-
vides information about the simplicity of the model. The unconstrained
model is the most complex model, where no prior information about the
parameters (e.g., means, regression coefficients, variance) is known. The
model with equality constraints is on the other hand the simplest model
and the model with order constraints lies somewhere in between.
Reconsider the order-constrained hypothesis Hy : uno < {uphysical =
UBehavioral ;| < MBoth from example 1. To test this informative hypoth-
esis, we evaluated it against the competing unconstrained hypothesis
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(hypothesis test Type B). However, instead of using the unconstrained-
hypothesis as competing hypothesis, it is also possible to specify other
order-constrained hypotheses. The GORIC can be used to evaluate a set
of informative hypotheses. Suppose, we want to evaluate the following set
of informative hypotheses:

HO : UNo = HUPhysical = MBehavioral = UBoth
Hl D UNo < {,U/Physical = MBehavioral}’ < UBoth
H2  UNo < ,LLPhysical < HUBehavioral < HBoth

H, : pno HPhysical y HBehavioral ; HBoth-

Note that it is recommended to also include the unconstrained hypothesis
H, in the set to avoid choosing a weak/bad model. The model with the
lowest GORIC value is the preferred one. To improve the interpretation,
we also compute the GORIC weights, which are comparable to the Akaike
weights and reflect the support for each model in the set.

Step 1. set up the constraint syntaxes

First, we construct the syntax for each hypothesis, except for the uncon-
strained hypothesis of course:

myConstraintsl <- ’ GroupNo == GroupPhysical
GroupPhysical == GroupBehavioral
GroupBehavioral == GroupBoth °’

myConstraints2 <- ’ GroupNo < GroupPhysical
GroupPhysical == GroupBehavioral
GroupBehavioral < GroupBoth ’

myConstraints3 <- ’ GroupNo < GroupPhysical
GroupPhysical < GroupBehavioral
GroupBehavioral < GroupBoth ’

Step 2. compute the GORIC values and GORIC weights

First, we fit the unconstrained model. The model is identical to the one
discussed in example 1 and was specified as follows:
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fit_ANOVA <- 1lm(Anger ~ -1 + Group, data = AngerManagement)

Second, we fit all three restricted models and the unconstrained model
using the restriktor () function:

restrl_ANOVA <- restriktor(fit_ANOVA, constraints = myConstraintsl)
restr2_ANOVA <- restriktor(fit_ANOVA, constraints = myConstraints2)
restr3_ANOVA <- restriktor(fit_ANOVA, constraints myConstraints3)
restr4_ANOVA <- restriktor(fit_ANOVA)

Finally, we use the goric() function to compute the log-likelihood,
penalty (complexity), GORIC value, and the GORIC weight for each
model. The input for the goric() function are the four fitted restriktor
objects:

goric(restrl_ANOVA, restr2_ANOVA, restr3_ANOVA, restr4_ANOVA)

The function prints a table with all the results:

model loglik penalty goric goric_weights
restrl_ANOVA -93.401 2.0000 190.80 0.0000061596
restr2_ANOVA -84.162 2.8918 174.11  0.0259843803
restr3_ANOVA -80.484 3.0833 167.13 0.8491068095
restr4_ANOVA -80.484 5.0000 170.97  0.1249026505

W N -

Step 3. interpret the results

The first column, shows the name of the model. The second column,
shows the log-likelihood for each model. Note that the log-likelihood can-
not make a distinction between model Hy (restr3_ANOVA, fully ordered)
and model H, (restr4_ANOVA, unconstrained). The third column, shows
the complexity, where the unconstrained-model has the highest penalty
term (5) and the equality-constrained model the lowest (2). To clarify,
the penalty is computed as follows: for the unconstrained model four
means and one variance needs to be estimated, and for the equality con-
strained model only one mean and one variance need to be estimated.
The penalty for models with inequality constraints is a bit more diffi-
cult to compute but it depends on the mixing (chi-bar-square) weights
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(Kuiper, 2011). The fourth column, shows the GORIC values. The
model with the lowest GORIC value is the preferred one. Note that the
GORIC value for the unconstrained model renders to the AIC. The last
column, shows the GORIC weights and reflect the support of each model
in the set. If we want to compare model H; (restr2_ANOVA) with model
H; (restr3_ANOVA) we can examine the ratio of the two corresponding
GORIC weights: 0.849/0.026 = 32.654. This means that model Hy is
about 32.654 times more likely than model H;. In addition, model Hy is
about 6.792 (0.849/0.125) more likely than the unconstrained model H,.
Hence, we can concluded that model Hy (restr3_ANOVA) is the preferred
one.

6.3 restriktor options

All results in this paper were obtained by the default settings of the soft-
ware package restriktor. In many scenarios they work well but if desired
they can readily be adjusted. Instead of conventional standard errors, het-
eroskedastic robust Huber-White (Huber, [1967; White, [1980) standard
errors or refinements of this can be computed by adding the argument se
= "HC" (refinements: "HC1", "HC2", "HC3", "HC4", "HC4m", "HC5")
to the restriktor () function. Also, bootstrapped (standard or model-
based) standard errors can be requested. The hypothesis tests were eval-
uated using the F test-statistic for the linear model and the F, test
statistic for the robust linear model. Currently, restriktor can also
compute a likelihood ratio test-statistic and a score test-statistic. They
can be computed by adding the argument test = "LRT" or "score" to
the iht () function. Nevertheless, preliminary simulation results show
that the F and the F,,, test-statistics perform best in terms of size and
power, even in small samples. In this paper, we only discussed models
where the dependent variable is continuous. However, restriktor also
supports models where the dependent variable is dichotomous or ordi-
nal. In this case, the unconstrained model needs to be fitted using the
glm() (generalized linear model) function in R. For all available options
of the restriktor() function and the iht() function we refer to the
restriktor website or to the help file in R by typing 7restriktor or
?iht, respectively.
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It has to be noted that the restriktor package is not finished yet. But it
is already very useful for most users. The package is actively maintained
and new options are being added. We advise to monitor the restriktor
website (http://restriktor.org) in order to be up-to-date.

6.4 Discussion

For more than a century, classical null-hypothesis testing has dominated
the social and behavioral sciences. Nevertheless, this statistical approach
has been heavily criticized in the psychological literature (Cohen) |1994;
Cumming}, |2008; |Nickerson| 2000; Wagenmakers|, [2007). Several of these
critiques focus on the argument that the classical null-hypothesis does
not provide the behavioral and social researcher with the needed infor-
mation they want. Therefore, in this paper, we discussed (robust) in-
formative hypothesis testing as a powerful alternative for evaluating ex-
pectations that cannot be expressed by the classical null-hypothesis (e.g.,
H :py < po < pg = pg). For seven examples, we showed how informative
hypotheses could be evaluated using the R package restriktor.

We only discussed frequentist methods for evaluating informative hy-
potheses. Of course, all the examples could have been perfectly evalu-
ated in the Bayesian framework (Berger & Mortera), (1999; |(Gu, Mulder,
Dekovié, & Hoijtink| [2014; [Hoijtink, 2012; Klugkist, Laudy, & Hoijtink]|
2005; Mulder, Hoijtink, & Klugkist, [2010) but we believe that the fre-
quentist methods are a welcome addition to the applied user’s toolbox
and may help convince applied users to include order constraints in their
hypothesis. The reason is that evaluating informative hypotheses using
Bayesian statistics might be too big a step for researchers who are un-
familiar with both methods. In addition, robust informative hypothesis
testing as discussed in this paper does not seem to exist in the Bayesian
framework (yet).

In conclusion, informative hypothesis testing has shown to have ma-
jor benefits compared to classical null-hypothesis testing. Unfortunately,
applied researchers have been unable to use these methods because user-
friendly freely available software and a clear tutorial were not available.
As we have shown in this paper, these tools are ready to be used.
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Table 6.1: Persons’ decrease in aggression lev-
els for four treatment groups.

Group 1 Group 2 Group 3 Group 4
Nothing Physical Behavioral Both

1 1 4 7
0 0 7 2
0 0 1 3
1 2 4 1
-1 0 -1 6
-2 1 2 3
2 -1 5 7
-3 2 0 3
1 2 3 5
-1 1 6 4

Note: these data originated from Hoijtink] |2012}

Table 6.2: Persons’ decrease in aggression levels for four treat-
ment groups and covariate age.

Group 1 Group 2 Group 3 Group 4
Nothing Physical Behavioral Both
Anger Age ‘ Anger Age ‘ Anger Age ‘ Anger Age
1 18 1 23 4 21 7 21
0 20 0 24 7 22 2 22
0 21 0 19 1 23 3 23
1 22 2 20 4 25 1 25
-1 23 0 21 -1 26 6 24
-2 24 1 18 2 27 3 23
2 19 -1 20 ) 23 7 26
-3 21 2 22 0 21 3 27
1 20 2 23 3 22 5 24
-1 22 1 21 6 25 4 23

Note: these data originated from Hoijtink, [2012|
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Table 6.3: Exam scores, the amount of study hours, anxiety
scores and the average point score (APS) for a group of 20 stu-

dents.
Score Hours Anxiety APS
62 40 40 24
58 31 65 20
52 35 34 22
55 26 91 22
75 51 46 28
82 48 52 28
38 25 48 18
55 37 61 20
48 30 34 18
68 44 74 26
62 32 54 24
62 40 61 24
72 61 26 26
58 35 13 24
65 45 54 20
42 30 58 20
68 39 62 24
68 47 39 26
58 41 57 22
72 46 17 28

Note: these data originated from [http://staff.bath.ac.uk/pssiw/|
stats2/examrevision.sav
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Figure 6.1: Means plot: reduction of aggression levels after 8 weeks of
anger management training. The filled circles are the unadjusted means
and the unfilled circles are the covariate ‘age’ adjusted means.



Test-statistics

Here, we discuss the non-robust F test-statistic and the robust Fppy, test-
statistic. Moreover, we also discuss how to compute the p value. But first,
we describe the linear regression model:

Yi = ﬁo + BlXi,l + ﬂQXi’Q + ...+ /Bp—lXi,p—l +€,i=1,...,n. (Ml)

We may express this in the familiar matrix form y = X8 + €, where
X is the design matrix, 8 is the vector with the regression coefficients
(Bo, B, - - -, Bp—1) and the vector € contains the random errors (e1, .. ., €,).
Then, let ,@ be a vector with the unconstrained estimates, 3 a vector
with the estimates under the null model with equality constraints, and
B a vector with the estimates of the inequality constrained optimization
problem. To make a distinction between MM- and OLS-estimates, we
added the subscript OLS. The symbol 7 denotes the transpose of a vector
or matrix.

182
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M.1 F test-statistic

The F test-statistic for hypothesis test Type A is given by

FA = (Bols - BOIS)T(XTX) (Bols - Bols)/&gls7 (MQ)

where 62, = Y7 (yi— X Bo1s)?/ (n—p) is the error variance. For hypothesis
test Type B the F statistic is given by

FB = (Bols - Bols)T(XTX) (/éols - Bols)/6§15~ (M3)

M.2 F,,, test-statistic

MDM-estimators are based on two loss functions p; and ps which determine
the breakdown point (BDP) and the efficiency of the estimator respec-
tively. Simply put, the BDP of a parameter estimate ﬁj is the largest
proportion of irregularities that the data may contain such that Bj still
gives some information about 8; (Maronna et al., [2006). Thus the higher
the BDP the more robust the estimator. Theoretically, MM-estimators
have a BDP of 50%. Let ;(-) = p(+) for j = 1,2 where the prime denotes
differentiation. For both loss functions we use a Tukey biweight function
which yields an MM-estimator that is robust to both outliers and (bad)-
leverage points. To clarify, outliers are defined as extreme observations in
the response space and bad-leverage points are defined as extreme obser-
vations in both the response and predictor space. The weights for Tukey’s
biweights are

ple;c) = { }_<1_(6/C)2)3 EIZ{ ;2 }, (M.4)

with derivative p/(e ;¢) = 61 (e;c)/c? where,

2
U(ec) = e(l — (e/c)2> X Ifje<e}- (M.5)

The indicator function I equals 1 if the expression inside the brackets
is true and 0 otherwise. The constant ¢ in p; equals 1.548 for an MM-
estimator with a BDP of 50% and the constant ¢ in ps (¢)2) equals 4.685
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for an MM-regression estimator with 95% efficiency. Let 8 be an MM-
estimator which is obtained by solving

1o  — X3
—> s (y _ ﬁ) X; =0, (M.6)
n &
where & is a scale S-estimate (Salibian-Barrera), |2005; |Yohai, 1987)). The

scale S-estimate minimizes the M-scale 6(3) which for any 8 € R can be
computed by solving

1 ¢ yi — Xi
n2h (“5m) =» (M7
where b = 0.50 to obtain a BDP of 50%. The S-regression estimator is the
solution 3, such that 6 = 6(,33). These S-regression estimates are used as
initial values for B in an iterative procedure to solve equation M.6. The
constant ¢ in p; equals 1.548 for an S/MM-estimator with a BDP of 50%
and the constant ¢ in pg (1)2) equals 4.685 for an MM-regression estimator
with 95% efficiency.
Then, the Fom test-statistic for hypothesis test Type A is given by

Frm = (22 2(e1/8) = 3 pae/) /A, (ML)

where &; = y; — X;8, & = y; — Xlﬁ and let

A =271 (n—p) H{Sy2(&;/8) H{n 'S¢ (;/6)} ! be a standardizing con-
stant, where é; = y; — Xi,@. For hypothesis test Type B the test-statistic
is given by

Foam = (2 p2(@/3) = 3 pa(@/9)) /. (M.9)

M.3 How to compute the p-value

To obtain a p-value for hypothesis test Type A and hypothesis test Type
B, we need to compute the probability that the test-statistic (F and

Fum) is at least as large as the observed value of the test-statistic, given
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that the null-hypothesis is true. Since the test-statistic involves inequal-
ity constraints, its null distribution takes the form of mixtures of F-
distributions. Only for a minimal number of problems closed form ex-
pressions for these mixing weights (also known as chi-bar-square weights)
are known (Gouriéroux, Holly, & Monfort, 1982; [Kudo, |1963; |Shapiro,
1988). An intuitive way to think about the weights is the one parameter
case. Under the null-hypothesis the parameter estimate Bl has an equal
probability of 0.5 to be positive or negative. Under the scenario of a one-
sided parameter constraint, e.g., 31 > 0, the test-statistic is under the
null-hypothesis Fy, (v = n — p) distributed in 50% of the cases, when
B1 > 0, and equal to zero in the other 50% of the cases, when Bl < 0.
Hence the null distribution is a mixture of 0 and F} ., with equal prob-
ability 0.5 (e.g., 0.5 x 0 + 0.5 x Fy, = 0.5 x Fy,). Fortunately, the
mixing weights mixed over their degrees of freedom can be approximated
sufficient precise by using the multivariate normal probability distribu-
tion function with additional Monte Carlo steps (Gromping, 2010) or the
weights can be computed entirely by Monte Carlo simulation (Silvapulle
& Sen|, |2005; Wolak! [1989)). In addition, the p-value can also be computed
directly using bootstrapping (Silvapulle & Sen| 2005, pp. 78-81). By de-
fault, restriktor uses the multivariate normal distribution function with
additional Monte Carlo steps. For more information about how to use the
other methods, see ?7iht.



restriktor output

N.1 Output example 2

Restriktor: restricted hypothesis tests ( 36 residual degrees of freedom ):
Multiple R-squared reduced from 0.631 to 0.560

Constraint matrix:
GroupNo GroupPhysical GroupBehavioral GroupBoth op rhs active

1: 0 1 -1 0 == 0 yes
23 =il 1 0 0 >= 0 no
3: 0 0 =il 1 >= 0 no

Overview of all available hypothesis tests:

Global test: HO: all parameters are restricted to be equal (==
vs. HA: at least one inequality restriction is strictly true (>)
Test statistic: 21.5452, p-value: <0.0001

Type A test: HO: all restrictions are equalities (==

vs. HA: at least one inequality restriction is strictly true )
Test statistic: 21.5452, p-value: <0.0001

186
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Type B test: HO: all restrictions hold in the population
vs. HA: at least one restriction is violated
Test statistic: 6.4857, p-value: 0.06164

Note: All tests are based on a mixture of F-distributions
(Type C test is not applicable because of equality restrictions)

N.2 Output example 3

Restriktor: restricted hypothesis tests ( 14 residual degrees of freedom ):

Multiple R-squared remains 0.985

Constraint matrix:

GroupActive GroupNo GroupPassive op rhs active
ilg -0.6596 0 0.6596 >= 0.2 no
2k 0 0.6596 -0.6596 >= 0.2 no

Overview of all available hypothesis tests:

Global test: HO: all parameters are restricted to be equal (==
vs. HA: at least one inequality restriction is strictly true (>)
Test statistic: 3.1880, p-value: 0.08858

Type A test: HO: all restrictions are equalities (==
vs. HA: at least one inequality restriction is strictly true (>)
Test statistic: 3.1880, p-value: 0.08858

Type B test: HO: all restrictions hold in the population
vs. HA: at least one restriction is violated
Test statistic: 0.0000, p-value: 1

Type C test: HO: at least one restriction is false or active (==
vs. HA: all restrictions are strictly true (>)
Test statistic: 0.7323, p-value: 0.238

Note: Type C test is based on a t-distribution (one-sided),
all other tests are based on a mixture of F-distributions.
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N.3 Output example 4

Restriktor: restricted hypothesis tests ( 35 residual degrees of freedom ):
Multiple R-squared reduced from 0.685 to 0.609

Constraint matrix:
GroupNo GroupPhysical GroupBehavioral GroupBoth Age_Z op rhs active

1: 0 1 -1 0 0 = 0 yes
2: =il 1 0 0 0 >> 0 no
3: 0 0 -1 1 0 > 0 no

Overview of all available hypothesis tests:

Global test: HO: all parameters are restricted to be equal (==
vs. HA: at least one inequality restriction is strictly true (>)
Test statistic: 44.5941, p-value: <0.0001

Type A test: HO: all restrictions are equalities (==
vs. HA: at least one inequality restriction is strictly true (>)
Test statistic: 19.9963, p-value: 0.0001172

Type B test: HO: all restrictions hold in the population
vs. HA: at least one restriction is violated

Test statistic: 8.4966, p-value: 0.02751

Note: All tests are based on a mixture of F-distributions
(Type C test is not applicable because of equality restrictions)

N.4 Output example 5

Restriktor: restricted hypothesis tests ( 16 residual degrees of freedom ):

Multiple R-squared remains 0.860

Constraint matrix:

(Intercept) APS_Z Hours_Z Anxiety_Z op rhs active
i3 0 1 =il 0 >= 0 no
23 0 0 1 -1 >= 0 no
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Overview of all available hypothesis tests:

Global test: HO: all parameters are restricted to be equal (==
vs. HA: at least one inequality restriction is strictly true (>)
Test statistic: 98.4338, p-value: <0.0001

Type A test: HO: all restrictions are equalities (==
vs. HA: at least one inequality restriction is strictly true (>)
Test statistic: 12.3847, p-value: 0.002534
Type B test: HO: all restrictions hold in the population
vs. HA: at least one restriction is violated
Test statistic: 0.0000, p-value: 1
Type C test: HO: at least one restriction is false or active (==
vs. HA: all restrictions are strictly true (>)

Test statistic: 0.4862, p-value: 0.3167

Note: Type C test is based on a t-distribution (one-sided),
all other tests are based on a mixture of F-distributions.

N.5 Output example 6

Restriktor: restricted hypothesis tests ( 269 residual degrees of freedom ):

Multiple R-squared remains 0.218

Constraint matrix:
(Intercept) gender guilt anger TBSA age gender:guilt gender:anger

ilg 0 0 0 0 0 0 2.02 2.06

2¢ 0 0 0 0 0 0 1.98 1.94
gender : TBSA op rhs active

ilg 7.35 >> 0 no

28 11.65 > 0 no

Overview of all available hypothesis tests:

Global test: HO: all parameters are restricted to be equal (==
vs. HA: at least one inequality restriction is strictly true (>)
Test statistic: 83.5889, p-value: <0.0001

Type A test: HO: all restrictions are equalities (==
vs. HA: at least one inequality restriction is strictly true (>)
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Test statistic: 5.3064, p-value: 0.04542

Type B test: HO: all restrictions hold in the population
vs. HA: at least one restriction is violated
Test statistic: 0.0000, p-value: 1

Type C test: HO: at least one restriction is false or active (==
vs. HA: all restrictions are strictly true (>)
Test statistic: 1.6422, p-value: 0.05086

Note: Type C test is based on a t-distribution (one-sided),
all other tests are based on a mixture of F-distributions.
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English summary

In the first study, presented in Chapter 2, we investigated the relation
between sample-size reduction and order constraints. We showed sample-
size tables at a prespecified power of 80% for order-constrained means in
an ANOVA (e.g., u1 < pe < p3) and for positively-constrained regression
coefficients in a linear model (e.g., 51 > 0,82 > 0,83 > 0). The ANOVA
results show that, depending on the number of groups involved, a maxi-
mum sample-size reduction between 30% to 50% can be gained when the
full ordering between the means is taken into account. The linear regres-
sion results are comparable to the ANOVA results, but this only applies
to the maximum number of constraints. In all other cases, the results
show that an ordering of the parameters leads to a higher power com-
pared to imposing positively constraints on the parameters. In addition,
we showed that constraint misspecification has only a minor impact on
the power.

In the second study, presented in Chapter 3, we investigated the perfor-
mance of unconstrained, order- and positively-constrained OLS-, M- and
MDM-estimators when the data are contaminated with 10% bad leverage-
points. The mean squared error (MSE) indicates that MM-estimation
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produces the most precise estimates. For all estimators, it holds that
the MSE improves most if the regression coefficients are subject to or-
der constraints compared to positively-constrained coefficients and un-
constrained coefficients. In addition, we investigated the size and power
of order- and positively-constrained, and unconstrained robust and non-
robust tests (likelihood ratio, Wald/F, and score). The results showed
that all robust and non-robust tests are size accurate but that the robust
tests need larger samples to maintain the nominal level. However, only
MDM-tests are capable of maintaining high power, where the robust likeli-
hood ratio and Wald-test perform best. Again, the power improves most
if the coefficients are subject to order constraints.

In the third study, presented in Chapter 4, we introduced the evalua-
tion of an order-constrained hypothesis against its complement using the
GORIC (weights). The GORIC is an information criterion that can be
used to evaluate competing hypotheses in univariate and multivariate nor-
mal linear models, where the regression parameters are subject to order
constraints. An individual GORIC value is not interpretable. To im-
prove the interpretation, GORIC-weights and related evidence ratios can
be computed. This ratio reflects the relative evidence for one hypothesis
versus another. By means of a simulation study we demonstrated that the
relative evidence for an order-constrained hypothesis against its comple-
ment increases for larger sample-size and/or effect-size, while the relative
evidence for an order-constrained hypothesis against the unconstrained
hypothesis has an upper-boundary.

In the fourth study, presented in Chapter 5, we described a general
procedure for testing order-constrained hypotheses in structural equation
models (SEM) using the R package lavaan. We used the likelihood ra-
tio statistic to test constrained hypotheses and the resulting p-value was
computed by either parametric or Bollen-Stine bootstrapping. Since the
obtained p-value can be biased, a double bootstrap approach is available.

In the fifth study, presented in Chapter 6, we provided a tutorial for
the R package restriktor. Restriktor can be used to estimate and evalu-
ate informative hypotheses for the linear model. For seven examples, we
showed how informative hypotheses could be evaluated using hypothesis
testing and model selection using information criteria.



General discussion

8.1 Limitations and Further research

The power tables presented in Chapter 2 are based on the global F-
test in order to make a fair comparison to the frequently used classical
(unconstrained) global F-test. This means that in all simulations the
null-hypothesis for hypothesis test Type A is equal to the intercept-only
model. For example, in an ANOVA with & = 4 groups and one order
constraint, the null-hypothesis would equal Hag : g1 = po = pz = g
and the alternative order-constrained hypothesis might equal Ha1 : 1 <
L2, 3, ha-  Yet, in practice we are probably more interested in testing
Haq against Hag @ g1 = po, i3, ta- We applied this latter approach in
Chapter 3, where we also included the F-test. Both methods showed a
comparable relative decrease in sample-size but for the second approach
larger samples are needed to maintain equal power.

In Chapter 2 and Chapter 3, we used hypothesis tests to find evi-
dence in favor of an order-constrained hypothesis. One of the critiques of
hypothesis testing in general is that it does not test the alternative hy-
pothesis, hence it cannot be rejected or falsified. This means that we can
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only find indirect evidence in favor of or against the hypothesis of interest.
An analogue reasoning applies to hypothesis test Type A discussed in this
dissertation. Rejection of hypothesis test Type A does not provide evi-
dence for the imposed order constraints. The test concentrates its power
as much as possible in the area where the constraints hold. Moreover,
even with all constraints strictly (and statistically significant) violated its
null-hypothesis can be rejected. Therefore, hypothesis test Type B plays
a crucial role for providing evidence for the imposed order constraints. If
we fail to reject the null-hypothesis of hypothesis test Type B, we would
argue that we have found strong evidence that the imposed constraints
hold in the data. Nevertheless, failing to reject hypothesis test Type B
still does not mean that the order-constrained null-hypothesis is always
true. If any of the constraints is violated, however small it may be, in-
creasing the sample-size will eventually lead to rejection of hypothesis test
Type B. Thus, although informative hypothesis testing provides us with
a tool to test the order-constrained hypothesis directly, it cannot provide
us with a wholehearted answer. Additional diagnostics (e.g., effect-size
and a visual inspection of the parameters) are still required to strengthen
the conclusion.

Clearly, the Neyman-Pearson approach leaves the possibility open that
both the null and alternative hypotheses are invalid. Moreover, when
there are two or more alternative hypotheses, hypothesis testing lacks
ways to reject or falsify any of these alternative hypotheses. In this con-
text, we should move forward from the historical methods to alternative
methods. We argue that inferential data analysis should be based on the
likelihood and related evidence ratios as discussed in Chapter 4. These
methods do not need a formal null-hypothesis, test-statistic, significance
level and p-value. Moreover, applying information criteria are so easy to
both compute and understand, that researchers may be compelled to used
them. However, model selection using information criteria - for order re-
strictions (GORIC) - is not ready yet for empirical data. This is because
of several practical reasons. First, missing data are rule rather than the
exception in social and behavioral research (Enders, (2003} [2010) but in
contrast to hypothesis testing, literature is lacking on how to deal with
missing values in case of model selection. [Kuiper and Hoijtink| (2011) have
shown how information criteria such as the AIC can be computed in case
of missing data but it is unclear if these results also account for order-
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restricted information criteria. Second, the GORIC has been derived for
univariate and multivariate normal linear models although empirical data
always differ more or less from the assumed normality. Consequently it is
questionable whether the GORIC is robust against such violations. Third,
in many research fields problems with regard to sample-size arise. For ex-
ample in studies with limited resources (e.g., in expensive fMRI studies),
ethical issues (e.g., in case of vulnerable groups) or small populations
(e.g., in clinical trials). The problem is that many standard statistical
methods do not perform well anymore in case of small-samples. For the
AIC, small-sample corrected versions have been developed (Hurvich &
Tsail [1989; [Sugiura), (1978)) but these do not yet exist for the GORIC.

In this dissertation, we developed the user-friendly (at least we tried)
R package restriktor for estimating and evaluating order-constrained hy-
potheses. Although, we profoundly believe that restriktor is a welcome
addition to an applied researcher’s toolbox, it has some practical limita-
tions. Missing data is not supported (yet). Restriktor is limited to linear
models of class Im, rlm (robust), glm (generalized) and mlm (multivari-
ate) and restriktor cannot handle nonlinear equality and/or inequality
constraints. In addition, as mentioned above, small sample corrections
as well as a robust version for the GORIC are missing. It is intended to
tackle these limitations in the next few years. We recommend the inter-
ested reader to monitor the restriktor website at |www.restriktor.org|in
order to be up to date.

8.2 Remaining issues

8.2.1 order-constrained variances

In this dissertation, we focused merely on one-sided means and regression
coefficients. But instead of focusing on measures of central tendency, we
can also focus on measures of dispersion, such as variances. Although,
the problem of testing variances is well-known in the statistical litera-
ture, see e.g.;Molenberghs and Verbeke (2005, 2007, 2011) and |Verbeke
and Molenberghs| (2000} [2003)), much confusion remains on this matter.
For example, in multilevel modeling (MLM) the intercept and slope co-
efficients are assumed to vary across clusters. In general, we will regard
these cluster effects as random-effects. The variance components of these
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random-effects are often of theoretical importance and hence often re-
quire inference on them. Whenever inference for variance components is
required, the choice between one-sided and two-sided tests is inevitable
and this choice depends on whether negative variance components are
allowed. When negative variances are permitted, standard two-sided in-
ferential procedures, such as the likelihood ratio and Wald test statistics
can be used. When negative variances are not allowed, one-sided inferen-
tial procedures are necessary.

Probably as a result of the complex statistical literature, applied re-
searchers often have misconceptions on the issue of testing variance com-
ponents. At the heart of this confusion lies the fact that software de-
faults are often not well understood. The parameter space over which
optimization is done, is key to whether a one-sided or two-sided tests is
appropriate. It is often not known that this is determined by the software
and often made implicitly by the software defaults used by a particular
software package. For example, most typical MLM software procedures
(e.g., HLM, lme, MLwiN) use constrained estimation by default, while
most SEM software procedures (e.g., Mplus, lavaan, LISREL) use uncon-
strained estimation by default. This might suggest that admitting for
negative variances lead to unaffected test statistics and that standard un-
constrained inferential procedures can be employed. However, this is not
the case. Consider for example the general linear mixed model (Laird &
Ware, [1982) y; = X;8 + Z;b; + €;. If b; and ¢; are normally distributed
(with mean zero, and variance D and X;), then the marginal distribution
of y; equals N(X,;3,V;), with V; = Z,DZ! + ¥,. If we only care about
the marginal model, negative values for diagonal elements of D and X;
are perfectly acceptable, as long as Vj; is positive definite. However, the
positive definiteness of V; imposes an implicit bound on the values of the
diagonal elements. If they are too small, V; may become negative definite,
and therefore, we can not consider the variance parameters as completely
unbounded. Consequently, the distribution of the variances are not sym-
metrical anymore and post-hoc adjustments are needed to obtain correct
confidence intervals. Hence, we believe that testing variance components
correctly remains an issue and that a clear tutorial paper is desired in
which we list all points to test variance components correctly.
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8.2.2 Partially adaptive estimation

In Chapter 3, we discussed robust estimation of the regression parameters
as an alternative to OLS estimation if the data are contaminated with out-
liers. Robust estimators are obtained as the solution to mbin Yo p(yi —

X;b,1), where p(e) is a loss function less increasing than the squared loss
in OLS and 7) is an estimate of the scale. While outliers may be the result
of measurement errors, recording errors or other sources of errors, many
outliers are actually generated by genuinely thick-tailed or asymmetric
error distributions. During my PhD we encountered Partial adaptive es-
timation (Mcdonald & White| (1993) which allows for selecting an error
distribution which includes unknown parameters (1) (e.g., scale, skewness
and kurtosis) that can control the shape of the probability density function
of the errors. To name a few distributions: the generalized error distribu-
tion (GED), the symmetric generalized t (GT), the skewed generalized t
(SGT), the exponential generalized beta of the second kind (EGB2) and
the inverse hyperbolic sine (IHS) (Hansen, McDonald, & Turley, 2006).
These distributions form the basis for partially adaptive estimation.

While partially adaptive estimators (PAE) provide a powerful alter-
native to OLS in the presence of non-normal errors, they are completely
unknown in the social and behavioral sciences. Hence, an accessible paper
about constrained PAE and their applications is needed. In addition, it is
noteworthy that the non-linear optimization problem associated with PAE
is computationally more demanding then the linear optimization problem
associated with OLS. The computational time increases for larger samples
and the number of parameters. Moreover, we stumbled on convergence
issues when trying to implement several PAE. Notwithstanding these cur-
rent issues, partially adaptive estimation provide a flexible method to
reduce unrealistic assumptions such as normality which underlie most
methods for univariate and multivariate models.

8.3 Conclusion

In this dissertation, we focused on two alternative approaches to evaluate
the hypothesis of interest more directly, i.e. informative hypothesis test-
ing and model selection using order-restricted information criteria. These
approaches have shown to be more ‘powerful’ than NHST. The main im-
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plication is the possibility to reduce costs. Data collection in the social
and behavioral sciences is usually the most expensive part of conducting
research. Since the outcome of this dissertation ensures that researchers
can use smaller samples, the costs of data collection can be reduced. In
addition, researchers who are dealing with inevitable small samples in par-
ticular may benefit from these alternative approaches. Finally, we hope
that this dissertation gives applied researchers a push to employ more
informative hypotheses.
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Nederlandstalige samenvatting

In de eerste studie, gepresenteerd in hoofdstuk 2, hebben we de relatie
tussen reductie in steekproefgrootte en orde-restricties onderzocht. We to-
nen tabellen met steekproefgroottes met een vooraf gespecificeerde power
van 80% voor orde-gerestricteerde gemiddelden in een ANOVA (e.g., u; <
ua < pg) en voor positief-gerestricteerde regressiecoefficiénten in een lin-
eair model (e.g., 1 > 0,82 > 0,83 > 0). De ANOVA-resultaten tonen,
afhankelijk van het aantal groepen, dat een maximale steekproefgroottere-
ductie van 30% tot 50% behaald kan worden als de gemiddelden volledig
geordend zijn. De resultaten voor de positief-gerestricteerde regressieco-
efficiénten zijn vergelijkbaar met die van de ANOVA, maar dit geldt enkel
voor het maximaal aantal restricties. In alle andere gevallen leidt een
ordening van de parameters tot een hogere power dan het opleggen van
positieve restricties. Verder blijkt dat voor beide testen kleine misspecifi-
caties nauwelijks invloed hebben op de power.

In de tweede studie, gepresenteerd in hoofdstuk 3, hebben we de
prestaties van orde-, positief- en niet-gerestricteerde OLS-, M- en MM-
schatters onderzocht waarbij de data geinfecteerd zijn met extreme waar-
den in zowel de uitkomstvariabele als in de onafhankelijke variabelen.
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De resultaten tonen dat op basis van de gemiddelde-kwadratensom MM-
schatters het meest accuraat zijn. Voor alle schatters geldt wel dat de
gemiddelde-kwadratensom het kleinst is bij orde-gerestricteerde regressie-
coefficiénten. Verder hebben we ook het nominale niveau en de power on-
derzocht van robuuste en niet-robuuste testen (likelihood ratio, Wald/F,
en score). Uit de resultaten blijkt dat het nominale niveau van alle robu-
uste en niet-robuuste testen accuraat is, maar dat robuuste testen een
grotere steekproefgrootte nodig hebben om het nominale niveau vast te
houden. Voor de power geldt dat enkel MM-testen in staat zijn om een
hoge power vast te houden. De robuuste likelihood ratio-test en de Wald-
test presteren hierbij het best. Ook hier geldt dat de powerwinst het
grootst is bij orde-restricties.

In de derde studie, gepresenteerd in hoofdstuk 4, introduceerden we
een methode om orde-gerestricteerde hypothesen te evalueren tegen haar
complement. Hiervoor maakten we gebruik van de GORIC. De GORIC is
een informatiecriterium dat gebruikt kan worden om concurrerende infor-
matieve hypothesen te evalueren in enkelvoudige of meervoudige lineaire
regressiemodellen. FEen GORIC-waarde op zichzelf is niet interpreteer-
baar, maar het verschil tussen twee GORIC-waarden is wel belangrijk.
Dit verschil kan namelijk vertaald worden naar een maat van relatieve
evidentie. Deze ratio reflecteert de evidentie van de ene hypothese ten
opzichte van de andere hypothese.

In de vierde studie, gepresenteerd in hoofdstuk 5, hebben we een al-
gemene procedure voor het testen van informatieve hypothesen in struc-
turele vergelijkingsmodellen geintroduceerd. Om informatieve hypothe-
sen te toetsen hebben we gebruik gemaakt van de likelihood-ratiotest en
de resulterende p-waarde kan door zowel de parametrische bootstrap als
de Bollen-Stine bootstrap berekend worden. Vanwege het feit dat de p-
waarde vertekend kan zijn, is er een dubbele-bootstrap-methode beschik-
baar.

In de vijfde studie, gepresenteerd in hoofdstuk 6, beschreven we het
R-pakket restriktor. Aan de hand van zeven voorbeelden lieten we zien
hoe informatieve hypothesen geévalueerd kunnen worden door hypothe-
setoetsing en door modelselectie op basis van informatiecriteria.
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9.1 Conclusie

In deze dissertatie, lag de nadruk op twee alternatieve methoden om een
hypothese te evalueren, i.e. informatieve hypothesetesten en modelselec-
tie waarbij gebruik wordt gemaakt van orde-gerestricteerde informatiecri-
teria. Deze alternatieve methoden blijken ‘krachtiger’ (more power) dan
NHST. Deze powerwinst impliceert dat de onderzoekskosten verlaagd kun-
nen worden. Dataverzameling in de sociale- en gedragswetenschappen is
meestal de grootste kostenpost. Met de uitkomsten van deze dissertatie
hebben we laten zien dat onderzoekers kleinere steekproeven kunnen ge-
bruiken en dat daarmee de kosten van dataverzameling drastisch verlaagd
kunnen worden. Bovendien zullen onderzoekers die te maken hebben met
onvermijdelijk kleine steekproeven vooral profiteren van deze alternatieve
methoden. Ten slotte, hopen we met deze dissertatie toegepaste onder-
zoekers een duwtje in de rug te geven om meer informatieve hypothesen
te evalueren.
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