Advanced search
1 file | 1.05 MB Add to list

Measuring individual differences in statistical learning : current pitfalls and possible solutions

(2017) BEHAVIOR RESEARCH METHODS. 49(2). p.418-432
Author
Organization
Abstract
Most research in statistical learning (SL) has focused on the mean success rates of participants in detecting statistical contingencies at a group level. In recent years, however, researchers have shown increased interest in individual abilities in SL, either to predict other cognitive capacities or as a tool for understanding the mechanism underlying SL. Most if not all of this research enterprise has employed SL tasks that were originally designed for group-level studies. We argue that from an individual difference perspective, such tasks are psychometrically weak, and sometimes even flawed. In particular, the existing SL tasks have three major shortcomings: (1) the number of trials in the test phase is often too small (or, there is extensive repetition of the same targets throughout the test); (2) a large proportion of the sample performs at chance level, so that most of the data points reflect noise; and (3) the test items following familiarization are all of the same type and an identical level of difficulty. These factors lead to high measurement error, inevitably resulting in low reliability, and thereby doubtful validity. Here we present a novel method specifically designed for the measurement of individual differences in visual SL. The novel task we offer displays substantially superior psychometric properties. We report data regarding the reliability of the task and discuss the importance of the implementation of such tasks in future research.
Keywords
8-MONTH-OLD INFANTS, WORD SEGMENTATION, LANGUAGE, CHILDREN, IMPLICIT, ACQUISITION, ADULTS, DEPENDENCIES, ADJACENT, ACCOUNT, Statistical learning, Individual differences, Psychometrics

Downloads

  • (...).pdf
    • full text
    • |
    • UGent only
    • |
    • PDF
    • |
    • 1.05 MB

Citation

Please use this url to cite or link to this publication:

MLA
Siegelman, Noam, Louisa Bogaerts, and Ram Frost. “Measuring Individual Differences in Statistical Learning : Current Pitfalls and Possible Solutions.” BEHAVIOR RESEARCH METHODS 49.2 (2017): 418–432. Print.
APA
Siegelman, N., Bogaerts, L., & Frost, R. (2017). Measuring individual differences in statistical learning : current pitfalls and possible solutions. BEHAVIOR RESEARCH METHODS, 49(2), 418–432.
Chicago author-date
Siegelman, Noam, Louisa Bogaerts, and Ram Frost. 2017. “Measuring Individual Differences in Statistical Learning : Current Pitfalls and Possible Solutions.” Behavior Research Methods 49 (2): 418–432.
Chicago author-date (all authors)
Siegelman, Noam, Louisa Bogaerts, and Ram Frost. 2017. “Measuring Individual Differences in Statistical Learning : Current Pitfalls and Possible Solutions.” Behavior Research Methods 49 (2): 418–432.
Vancouver
1.
Siegelman N, Bogaerts L, Frost R. Measuring individual differences in statistical learning : current pitfalls and possible solutions. BEHAVIOR RESEARCH METHODS. New york: Springer; 2017;49(2):418–32.
IEEE
[1]
N. Siegelman, L. Bogaerts, and R. Frost, “Measuring individual differences in statistical learning : current pitfalls and possible solutions,” BEHAVIOR RESEARCH METHODS, vol. 49, no. 2, pp. 418–432, 2017.
@article{8552560,
  abstract     = {Most research in statistical learning (SL) has focused on the mean success rates of participants in detecting statistical contingencies at a group level. In recent years, however, researchers have shown increased interest in individual abilities in SL, either to predict other cognitive capacities or as a tool for understanding the mechanism underlying SL. Most if not all of this research enterprise has employed SL tasks that were originally designed for group-level studies. We argue that from an individual difference perspective, such tasks are psychometrically weak, and sometimes even flawed. In particular, the existing SL tasks have three major shortcomings: (1) the number of trials in the test phase is often too small (or, there is extensive repetition of the same targets throughout the test); (2) a large proportion of the sample performs at chance level, so that most of the data points reflect noise; and (3) the test items following familiarization are all of the same type and an identical level of difficulty. These factors lead to high measurement error, inevitably resulting in low reliability, and thereby doubtful validity. Here we present a novel method specifically designed for the measurement of individual differences in visual SL. The novel task we offer displays substantially superior psychometric properties. We report data regarding the reliability of the task and discuss the importance of the implementation of such tasks in future research.},
  author       = {Siegelman, Noam and Bogaerts, Louisa and Frost, Ram},
  issn         = {1554-351X},
  journal      = {BEHAVIOR RESEARCH METHODS},
  keywords     = {8-MONTH-OLD INFANTS,WORD SEGMENTATION,LANGUAGE,CHILDREN,IMPLICIT,ACQUISITION,ADULTS,DEPENDENCIES,ADJACENT,ACCOUNT,Statistical learning,Individual differences,Psychometrics},
  language     = {eng},
  number       = {2},
  pages        = {418--432},
  publisher    = {Springer},
  title        = {Measuring individual differences in statistical learning : current pitfalls and possible solutions},
  url          = {http://dx.doi.org/10.3758/s13428-016-0719-z},
  volume       = {49},
  year         = {2017},
}

Altmetric
View in Altmetric
Web of Science
Times cited: