Advanced search
1 file | 2.33 MB Add to list

A Calderon preconditioner for high dielectric contrast media

Author
Organization
Abstract
A Calderon preconditioned single-source equation to model the scattering at homogeneous high dielectric contrast media is presented. It is shown that the proposed interaction matrix remains well-conditioned when scattering at media with high permittivity, including arbitrary losses, is considered. The discretization scheme involves Rao-Wilton-Glisson and Buffa-Christiansen basis functions, which are compatible with existing commercial method of moments software. The efficiency and accuracy of the proposed solution scheme is confirmed by numerical examples.
Keywords
IBCN, IMPEDANCE BOUNDARY-CONDITIONS, SURFACE ADMITTANCE OPERATOR, FIELD, INTEGRAL-EQUATION, MULTIPLICATIVE PRECONDITIONER, ELECTROMAGNETIC, SCATTERING, PENETRABLE OBJECTS, PMCHWT EQUATIONS, MFIE, Boundary integral equations (BIEs), Calderon preconditioner, electromagnetic scattering, electromagnetic theory, high dielectric, contrast (HDC)

Downloads

  • (...).pdf
    • full text
    • |
    • UGent only
    • |
    • PDF
    • |
    • 2.33 MB

Citation

Please use this url to cite or link to this publication:

MLA
Gossye, Michiel et al. “A Calderon Preconditioner for High Dielectric Contrast Media.” IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 66.2 (2018): 808–818. Print.
APA
Gossye, M., Huynen, M., Vande Ginste, D., De Zutter, D., & Rogier, H. (2018). A Calderon preconditioner for high dielectric contrast media. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 66(2), 808–818.
Chicago author-date
Gossye, Michiel, Martijn Huynen, Dries Vande Ginste, Daniël De Zutter, and Hendrik Rogier. 2018. “A Calderon Preconditioner for High Dielectric Contrast Media.” Ieee Transactions on Antennas and Propagation 66 (2): 808–818.
Chicago author-date (all authors)
Gossye, Michiel, Martijn Huynen, Dries Vande Ginste, Daniël De Zutter, and Hendrik Rogier. 2018. “A Calderon Preconditioner for High Dielectric Contrast Media.” Ieee Transactions on Antennas and Propagation 66 (2): 808–818.
Vancouver
1.
Gossye M, Huynen M, Vande Ginste D, De Zutter D, Rogier H. A Calderon preconditioner for high dielectric contrast media. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION. Piscataway: Ieee-inst Electrical Electronics Engineers Inc; 2018;66(2):808–18.
IEEE
[1]
M. Gossye, M. Huynen, D. Vande Ginste, D. De Zutter, and H. Rogier, “A Calderon preconditioner for high dielectric contrast media,” IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, vol. 66, no. 2, pp. 808–818, 2018.
@article{8551494,
  abstract     = {{A Calderon preconditioned single-source equation to model the scattering at homogeneous high dielectric contrast media is presented. It is shown that the proposed interaction matrix remains well-conditioned when scattering at media with high permittivity, including arbitrary losses, is considered. The discretization scheme involves Rao-Wilton-Glisson and Buffa-Christiansen basis functions, which are compatible with existing commercial method of moments software. The efficiency and accuracy of the proposed solution scheme is confirmed by numerical examples.}},
  author       = {{Gossye, Michiel and Huynen, Martijn and Vande Ginste, Dries and De Zutter, Daniël and Rogier, Hendrik}},
  issn         = {{0018-926X}},
  journal      = {{IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION}},
  keywords     = {{IBCN,IMPEDANCE BOUNDARY-CONDITIONS,SURFACE ADMITTANCE OPERATOR,FIELD,INTEGRAL-EQUATION,MULTIPLICATIVE PRECONDITIONER,ELECTROMAGNETIC,SCATTERING,PENETRABLE OBJECTS,PMCHWT EQUATIONS,MFIE,Boundary integral equations (BIEs),Calderon preconditioner,electromagnetic scattering,electromagnetic theory,high dielectric,contrast (HDC)}},
  language     = {{eng}},
  number       = {{2}},
  pages        = {{808--818}},
  publisher    = {{Ieee-inst Electrical Electronics Engineers Inc}},
  title        = {{A Calderon preconditioner for high dielectric contrast media}},
  url          = {{http://dx.doi.org/10.1109/TAP.2017.2778014}},
  volume       = {{66}},
  year         = {{2018}},
}

Altmetric
View in Altmetric
Web of Science
Times cited: