
On generalized hexagons of order (3, t) and (4, t) containing a subhexagon
- Author
- Anurag Bishnoi (UGent) and Bart De Bruyn (UGent)
- Organization
- Keywords
- POLYGONS, VALUATIONS, UNIQUENESS, SETS
Downloads
-
Hexagons.pdf
- full text
- |
- open access
- |
- |
- 270.37 KB
Citation
Please use this url to cite or link to this publication: http://hdl.handle.net/1854/LU-8548642
- MLA
- Bishnoi, Anurag, and Bart De Bruyn. “On Generalized Hexagons of Order (3, t) and (4, t) Containing a Subhexagon.” EUROPEAN JOURNAL OF COMBINATORICS, vol. 62, 2017, pp. 115–23, doi:10.1016/j.ejc.2016.12.003.
- APA
- Bishnoi, A., & De Bruyn, B. (2017). On generalized hexagons of order (3, t) and (4, t) containing a subhexagon. EUROPEAN JOURNAL OF COMBINATORICS, 62, 115–123. https://doi.org/10.1016/j.ejc.2016.12.003
- Chicago author-date
- Bishnoi, Anurag, and Bart De Bruyn. 2017. “On Generalized Hexagons of Order (3, t) and (4, t) Containing a Subhexagon.” EUROPEAN JOURNAL OF COMBINATORICS 62: 115–23. https://doi.org/10.1016/j.ejc.2016.12.003.
- Chicago author-date (all authors)
- Bishnoi, Anurag, and Bart De Bruyn. 2017. “On Generalized Hexagons of Order (3, t) and (4, t) Containing a Subhexagon.” EUROPEAN JOURNAL OF COMBINATORICS 62: 115–123. doi:10.1016/j.ejc.2016.12.003.
- Vancouver
- 1.Bishnoi A, De Bruyn B. On generalized hexagons of order (3, t) and (4, t) containing a subhexagon. EUROPEAN JOURNAL OF COMBINATORICS. 2017;62:115–23.
- IEEE
- [1]A. Bishnoi and B. De Bruyn, “On generalized hexagons of order (3, t) and (4, t) containing a subhexagon,” EUROPEAN JOURNAL OF COMBINATORICS, vol. 62, pp. 115–123, 2017.
@article{8548642, author = {{Bishnoi, Anurag and De Bruyn, Bart}}, issn = {{0195-6698}}, journal = {{EUROPEAN JOURNAL OF COMBINATORICS}}, keywords = {{POLYGONS,VALUATIONS,UNIQUENESS,SETS}}, language = {{eng}}, pages = {{115--123}}, title = {{On generalized hexagons of order (3, t) and (4, t) containing a subhexagon}}, url = {{http://dx.doi.org/10.1016/j.ejc.2016.12.003}}, volume = {{62}}, year = {{2017}}, }
- Altmetric
- View in Altmetric
- Web of Science
- Times cited: