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Woord vooraf 

Bossen vormen in Vlaanderen op veel plaatsen de natuurlijke climaxvegetatie en door 

hun complexe structuur herbergen ze zowel naar soortenrijkdom als functionaliteit 

wellicht de hoogste diversiteit onder de terrestrische ecosystemen. Ze beschermen ons 

drinkwater, vormen een buffer tegen bodemerosie, slaan koolstof op, voorzien ons van 

hout en fungeren als groene longen, door zuurstof vrij te geven en polluenten uit de lucht 

te filteren, om maar enkele van de vele ecosysteemdiensten te noemen die het bos 

vervult. Precies omwille van die weldadigheid van het bos voor mens en milieu nemen 

bosonderzoekers en -beheerders multifunctionaliteit als een onmisbaar deelaspect mee 

in de besluitvorming, en dit al decennia lang vóórdat het begrip “ecosystem services” een 

modewoord werd. 

Toch heeft de mensheid doorheen de geschiedenis, waarin bossen steeds een haast 

onmisbare rol vervulden, het bos veel meer gebruikt en vernield dan respect betoond en 

gekoesterd. Ondanks een toenemend natuur- en milieubewustzijn blijkt dit in Vlaanderen 

ook nu nog symptomatisch uit de vaak weinig zorgzame manier waarop met ons 

natuurlijk patrimonium wordt omgegaan: te veel ecologisch waardevolle oude bomen 

worden gekapt, dik dood hout in parken wordt in opkuiswoede weggehaald en bosranden 

worden alom volgestort met afval. Bossen genieten ook nog steeds onvoldoende 

wettelijke bescherming en bij de herbestemming van gronden krijgt bebossing nauwelijks 

kansen waardoor Vlaanderen nog steeds wacht op de 10000 ha bosuitbreiding die 20 

jaar geleden werd beloofd. Dat we leven in één van de weinige regio’s in Europa waar de 

schaarse bosoppervlakte niet eens exact gekend is en de jongste decennia vrijwel stabiel 

bleef is dus misschien niet zo verwonderlijk. 

Deze thesis bundelt een aantal resultaten gebaseerd op 30 jaar langetermijnonderzoek 

naar de effecten van luchtverontreiniging in Vlaamse bossen. Deze monitoring is uniek 

omwille van de lange looptijd en de wetenschappelijk waardevolle data die ze genereert, 

gesteund op geharmoniseerde methodieken voor staalname, laboanalyse, datavalidatie 

en -rapportering, vastgelegd in standaardprotocols die door de internationale Expert 

Panels van ICP Forests up-to-date worden gehouden. Het project in Vlaanderen vormt op 

die manier een onderdeel van een pan-Europees netwerk, en draagt bij tot een waaier 

aan hoogstaand wetenschappelijk onderzoek dat leidt tot belangrijke inzichten inzake 

ecosysteemprocessen en factoren die de gezondheidstoestand van bossen beïnvloeden. 

Ik ben dan ook bijzonder trots dat ik de kans heb gekregen om aan dit project mee te 



 

 

werken, de noodzaak en het belang ervan te verdedigen en de verzamelde gegevens te 

verwerken en te publiceren. Dat de resultaten van dit werk wijzen op een minder sterk 

voortschrijdende verzuring en een beperkt herstel van stikstofverzadiging in Vlaamse 

bossen als gevolg van een dalende luchtvervuiling met zwavel en stikstof is een positief 

signaal, dat weliswaar contrasteert met de onzekere vooruitzichten omwille van mogelijk 

toenemende negatieve effecten van de klimaatverandering. 

Het spreekt voor zich dat ik bij de presentatie van dit werk aan een groot aantal mensen 

bijzondere dank en erkentelijkheid verschuldigd ben. 

Om te beginnen wil ik Stefaan en Steven hartelijk danken om voor mij te willen optreden 

als de officiële promotoren van mijn doctoraatsonderzoek, alsook voor hun inhoudelijke 

bijdrage aan dit werk, en de vele positieve steun en motivatie die ik bij het uitwerken van 

de laatste twee papers en het uiteindelijke opbouwen van de thesis en voorbereiden van 

het eindexamen van hen meekreeg. 

Ik dank ook mijn collega’s Maurice Hoffmann, Gerald Louette en Maarten Hens om aan 

het INBO mijn doctoraatsplannen van bij het begin de nodige interne steun te verlenen, 

en om mij tijdens deze periode enigszins te ontzien bij de verdeling van de stortvloed aan 

taken die het INBO krijgt toegewezen en met steeds minder personeel kwaliteitsvol moet 

zien in te vullen. 

Bijzonder veel dank ben ik ook verschuldigd aan enkele nauw betrokken collega’s uit mijn 

onderzoeksteam: Peter Roskams, die de fundamenten legde van het Level II onderzoek 

in Vlaanderen en mij begin juni 2007 de kans bood om hieraan mee te werken, en Johan 

Neirynck, die mij een pak basiskennis en kritische zin heeft bijgebracht en als 

bureaugenoot ook vaak moreel een steuntje heeft gegeven. Ook Nathalie Cools en Bruno 

De Vos wil ik hierbij danken omdat zij met hun kennisoverdracht inzake de bodemkundige 

aspecten van het onderzoek een sleutelbijdrage aan dit werk hebben geleverd. 

Mijn collega’s Pieter Verschelde en Thierry Onkelinx dank ik specifiek voor de nodige 

hulp bij een aantal statistische analyses en daaraan gerelateerde commentaren van 

revisoren, alsook voor talrijke handige tips die leidden tot een sprankelende grafische 

voorstelling van de data in R in Chapter 5 en 6. 

De resultaten van dit onderzoek konden ook slechts tot stand komen dankzij de 

toewijding en permanente inzet van onze gemotiveerde technici tijdens de vele, vaak 



 

 

routinematige staalnames, die noodgedwongen soms ook bij barre 

weersomstandigheden moeten worden uitgevoerd. Ik heb vaak zelf ervaren dat dit 

behoorlijk wat van het menselijk lichaam kan vergen. Ik ben mijn collega’s Yvan De Bodt, 

Luc De Geest, Eddy Smesman, Mathieu Pieters, Koen Willems, Koen Vervaet, Arthur De 
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hartelijk danken voor het coördineren van de planning van het veldwerk, waardoor de 

metingen en staalnames ook ondanks de hoge werkdruk voor de technici steeds vlot 

konden blijven gebeuren. Bijzondere vermelding en dank verdienen ook Luc Willems, 

Yves Verhaeghe, Wim Stevens, Koen Maertens, Mark Schuermans en Paul Meulemans, 

die voor ons al jarenlang vrijwillig de lysimeters in de proefvlakken op onderdruk brengen 

tijdens de dagen voorafgaand aan de staalname, een hulp die onmisbaar is om op 
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 INTRODUCTION 1

 Emissions and atmospheric depositions in the anthropocene 1.1

 Definitions 1.1.1

Since the Earth’s earliest atmosphere was formed by the impact of meteorites and 

volcanic outgassing, its chemical composition continuously changed, driven by variation 

in geological activity and the emergence and evolution of life, the primary producer of 

atmospheric oxygen (O2) (Kasting, 1993; Lyons et al., 2014). Recently, also man began 

to alter the composition of the atmosphere at a rate unparalleled in the history of the 

Earth. This new era is called the anthropocene (Lewis and Maslin, 2015). Modern human 

activities like intensive farming practices, burning of fossil fuels and certain industrial 

processes, discharge quantifiable amounts of chemical substances in the atmosphere, 

called anthropogenic emissions (Granier et al., 2011). These substances consist partly of 

gasses, which could act as air pollutants, e.g., carbon monoxide (CO), sulphur dioxide 

(SO2), reactive nitrogen (N) in oxidized (NOy) and reduced form (NHy) and ground level 

ozone (O3). Certain emitted gasses, and particularly carbon dioxide (CO2), methane 

(CH4) and nitrous oxide (N2O), act as greenhouse gasses and strongly contribute to 

current global warming (increasing mean temperatures) and other aspects of climate 

change (Wigley, 1998). Besides gasses, anthropogenic emissions also consist of 

particulate matter, i.e. suspended microscopic solid or liquid organic and inorganic matter, 

including soot, smoke, ash and dust (Donahue et al., 2009; Gieré and Querol, 2010). 

Anthropogenic emissions increase the air concentrations of pollutants above natural 

(biogenic) background levels, which may fluctuate depending on temporal variation in 

volcanic activity, soil emissions, biomass burning, sea spray and lightning (Holland et al., 

1999; Simpson et al., 1999; Granier et al., 2011). Air pollutants are subjected to solar 

radiation and local weather and can be physico-chemically transformed and transported 

over varying distances through the atmosphere (Seinfeld and Pandis, 1998; Finlayson-

Pitts and Pitts, 2000; Zheng et al., 2015). Air pollutants are removed from the atmosphere 

through various deposition mechanisms and will end up on water, land or vegetation in 

quantifiable amounts, called atmospheric depositions, which could have deleterious 

impacts on ecosystem functioning (Phoenix et al., 2006; de Vries et al., 2014a; de Vries 

et al., 2014b). 
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This thesis focuses on the impact of gaseous emissions and atmospheric depositions on 

temperate forest ecosystems, particularly S and N compounds. The effects of climate 

change are also addressed when relevant, but are not the core subject of this work. 

 Historical background 1.1.2

Human activities (e.g. deforestation) have affected the composition of the atmosphere for 

several millennia, but pre-industrial emissions had only a small impact on present-day 

climatic change and levels of atmospheric deposition (Ruddiman, 2003). The period 

1720‒1800 could still be considered as a reference period for pre-industrial levels of 

greenhouse gas emissions and global temperature (Hawkins et al., 2017). As shown by 

data from ice core samples, air concentrations of greenhouse gasses started to increase 

thereafter, slowly in the first decades, but at an accelerating rate since 1830 (MacFarling 

Meure et al., 2006; Schmidt et al., 2011). Not long before, in 1781, James Watt patented 

the steam engine condenser, which enabled to efficiently convert energy from fossil fuels 

(at that time mostly coal) into engine power. Soon this revolutionary technology found its 

way from the UK to the mainland via Belgium, where in the southern part (Wallonia) the 

coal mining industry expanded rapidly in the areas around Liège and Charleroi around 

1820‒1830 (Evans and Rydén, 2005). Also in Flanders, the northern part of Belgium, 

fossil-fuel dependent industry developed quickly during the 19th century, and this 

generally without taking measures to protect human health and the environment (De 

Winne, 1903). Flanders and surrounding areas including Wallonia, southern UK, northern 

France, the Netherlands and western Germany thus became the first region where SO2 

air concentrations exceeded natural background levels. In 1850, Western Europe 

accounted for the majority of global non-shipping SO2 emissions, followed by North 

America as a second important emitter during the decades thereafter (Stern, 2005). The 

contribution of other regions initially increased slowly, but quickly gained momentum after 

the second World War (Stern, 2005). Global SO2 emissions peaked, considering high 

uncertainties in the estimates, somewhere between 1970 and 1990 and then began to 

plummet (Stern, 2006; Smith et al., 2011). In Europe, SO2 emissions peaked in the 1980s 

(Figure 1.1) and were then reduced by a factor 8‒9 during the period until 2014 following 

the implementation of emission control measures included in the Helsinki protocol (1985) 

and the Oslo protocol (1994) (Mylona, 1996; Schöpp et al., 2003; Granier et al., 2011; 

European Environment Agency, 2017). In Flanders, SO2 emissions (mainly from industrial 
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sources, energy production, households and traffic) were gradually reduced with 87% 

between 1990 and 2015 (Figure 1.2) (VMM, 2011, 2016a). 

 

Figure 1.1 Temporal development (1880‒2030) of European emissions of SO2, NOx and 
NH3 in Mt yr-1 (Schöpp et al., 2003). 

With regard to anthropogenic inorganic N emissions, the invention of the Haber-Bosch 

process in 1913 was a breakthrough. This chemical process allowed to convert non-

reactive nitrogen gas (N2) into reactive N (NH3), that could be used as a fertilizer for food 

production. Anthropogenic reactive N production increased about 7-fold between 1890 

and 1990 (Galloway and Cowling, 2002), while global inorganic N emissions (NOx and 

NH3) tripled between 1860 and 1990 (Figure 1.1) and further increased in the following 

two decades (Schöpp et al., 2003; Galloway et al., 2004; Granier et al., 2011). The 

implementation of emission abatement measures included in the Sofia protocol (1998) 

and the Gothenburg protocol (1999) reduced the emissions of NOx and NH3 in Europe by 

about 1/2 and 1/3, respectively, between 1980 and 2014 (Granier et al., 2011; European 

Environment Agency, 2017). In Flanders, where inorganic N emissions (NH3 mainly from 

agricultural sources, NOx mainly from traffic and industrial sources, see Table 7.2) range 

among the highest levels recorded in Europe, emissions were reduced at a similar rate 

for NOx (47%) and at a higher rate for NH3 (52%) between 1990 and 2015 (Figure 1.2) 

(VMM, 2011, 2016a). 
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Figure 1.2 Evolution of potentially acidifying (SO2 + NOx + NH3) and eutrophying (NOx + 
NH3) emissions in Flanders between 1990 and 2015 (VMM, 2011, 2016a). 

The decreasing emissions of SO2, NOx and NH3 resulted in declining air concentrations of 

pollutants and in a decrease in eutrophying and potentially acidifying depositions by 45% 

and 60%, respectively, in Flanders between 1990 and 2016 (Figure 1.3) (VMM, 2017). 
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Figure 1.3 Evolution of potentially acidifying and eutrophying depositions in Flanders, as 
calculated with the VLOPS17 model (VMM, 2017). For halogen acids (HZ), organic acids 
(OZ) and DON the deposition was assumed to be constant through time. *: Data for 2016 
are provisional. 
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 Impact of atmospheric deposition on forest ecosystems 1.2

Adverse effects of atmospheric deposition on forest ecosystems were first reported in the 

1960s (Odén, 1967) and widely received attention when atmospheric deposition was 

found to be an important driver of forest dieback (Ulrich et al., 1979). The dominant 

harmful chemical compounds in atmospheric deposition are sulphate (SO4
2-) and 

inorganic N (NHy and NOy), which affect the forest soil and the vegetation through two 

strongly interrelated processes, i.e. acidification (by SO4
2- and inorganic N) and 

eutrophication (with N). 

 Mechanisms 1.2.1

Atmospheric constituents interact with forest canopies through several processes, 

including wet deposition by rain or snow, sedimentation (gravimetric fall) of particles, 

impaction of aerosols, fog, mist and cloud droplets, absorption of gasses (e.g. NH3, SO2) 

on wet surfaces (foliage, bark, wet snow) or inside stomata on the cuticle of leaves and 

needles, and reemission (Ulrich, 1983). For practical reasons deposition processes are 

often grouped in two categories from the view point of the depositing compound, i.e. wet 

and dry deposition (Ulrich, 1983). 

Forests are efficient sinks for atmospheric pollutants. The high leaf area index (LAI) and 

complex vertical structure of the vegetation create a turbulent structure of air above and 

within forest canopies, whereby forests capture 2‒3 times more atmospheric deposition 

than open vegetation types (Fowler et al., 1989). In forest edges deposition is even up to 

two times higher than in the centre (> 100 m from the edge) (Wuyts et al., 2008; Wuyts et 

al., 2009). This is of particular importance in Flanders, where the forest area is highly 

fragmented and forests typically have sharp, steep edges (Tack et al., 1993). The rate of 

deposition depends on many factors, including the reactivity of compounds, atmospheric 

mixing ratios, the wetness and acidity of deposition surfaces (foliage, branches) and 

atmospheric turbulence (Fowler et al., 1999; Neirynck et al., 2007). 

A part of the compounds of dry deposition is retained by the canopy (canopy uptake), and 

a part is washed out during rain events (canopy leaching). These processes are 

collectively referred to as canopy exchange (Mayer and Ulrich, 1977; Lindberg et al., 

1986). Canopy uptake has been observed for protons (H+) and inorganic N, of which 

more for ammonium (NH4
+) than for nitrate (NO3

-) (Neirynck et al., 2007; Adriaenssens et 
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al., 2011; 2012a; 2012b). Canopy leaching concerns mostly base cations, i.e. calcium 

(Ca2+), potassium (K+), magnesium (Mg2+) and sodium (Na+), and likewise chloride (Cl-) 

and weak organic acids (Lindberg et al., 1986; Staelens et al., 2008; Thimonier et al., 

2008; Adriaenssens et al., 2013). Atmospheric deposition also interacts with other living 

and dead parts of the trees, including bark, buds, flowers and pollen, the latter being a 

possible source of nitrite (NO2
-) and dissolved organic carbon (DOC) (Thimonier et al., 

2008; Bright et al., 2009; Verstraeten, 2017). Tree inhabiting biota, including nitrifying 

bacteria (Guerrieri et al., 2015), phytophagous insects (Pitman et al., 2010) and epiphytic 

mosses and lichens (Conti and Cecchetti, 2001) also interact with atmospheric 

deposition. Finally, partial evaporation of the intercepted precipitation increases the 

concentration of dissolved compounds (Miralles et al., 2010). As a result, the chemical 

composition of water percolating through the canopy (throughfall) and flowing down the 

stem of trees (stemflow), differs considerably from the chemical composition of rainwater 

(Eaton et al., 1973). 

Part of the throughfall and stemflow (“stand precipitation”) reaching the forest floor may 

be lost through surface runoff, which is particularly important in forests on highly 

impermeable soil in hilly or mountainous terrain (Bonell, 1993). In Flanders most forests 

are located on well-drained soils on level or gently sloping terrain and most stand 

precipitation infiltrates in soil. The chemical composition of this soil solution reflects the 

equilibrium between atmospheric deposition, soil physico-chemical (mineral weathering, 

sorption-desorption, cation exchange, etc.) and biological processes (uptake, 

immobilisation, mineralisation, root exudation, etc.) (Smith, 1976; Mulder and Cresser, 

1994; Schwesig et al., 2003; Scott and Rothstein, 2014). 

 Eutrophication with nitrogen 1.2.2

Under natural background emissions, throughfall and stemflow make up an important 

return of nutrients to the forest floor (Parker, 1983). In temperate forests, N is generally 

the limiting nutrient, but elevated supply of inorganic N through atmospheric deposition 

can accelerate natural soil acidification processes (see section 1.2.3) and lead to 

eutrophication with N (further denoted as eutrophication), i.e. enrichment of the 

ecosystem with inorganic N, inducing a variety of changes in N processes and ecosystem 

properties (Figure 1.4) (Driscoll et al., 2003b; Lebauer and Treseder, 2008; Zhu et al., 

2015). If the amount of deposited inorganic N chronically exceeds the combined 

nutritional demands of plants and microbes, forests may become N saturated (Nihlgård, 
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1985; Aber et al., 1989). The process of N saturation is particularly complex and the 

impacts are not confined to the forest ecosystem, but are propagated to groundwater, 

surface water and finally back to the atmosphere (the so-called N cascade) (Galloway, 

1998; Galloway et al., 2003). 

 

Figure 1.4 Nitrogen pools and key processes of nitrogen cycle in forest ecosystems. N 
input: 1, 2; N transformation: 3–5; N output: 6–8. Taken from Zhu et al. (2015). 

The conceptual framework for the ecosystem response to elevated N deposition is still 

subject of debate and has been revised several times during the past decades (Aber et 

al., 1989; Gundersen, 1991; Aber et al., 1998; Galloway et al., 2003; Emmett, 2007; 

Lovett and Goodale, 2011; Niu et al., 2016). In the original conceptual model the 

transition from a N limited to a N saturated forest is a progressive three-sequential stage 

process (Aber et al., 1989; Aber et al., 1998; Galloway et al., 2003). Inorganic N addition 

is assumed to change the N status of forest ecosystems, and to implicate long-lasting 

effects (Vitousek et al., 1997; Aber et al., 2003). However, the conceptual model as 

proposed by Aber et al. (1989) in fact represents just one possible case, namely 

ecosystems with both strong vegetation and soil sinks (Lovett and Goodale, 2011). Lovett 

and Goodale (2011) proposed a more general conceptual model of N saturation (kinetic 

N saturation), wherein the fate of inorganic N added to the forest ecosystem is controlled 

by each component of the N cycle simultaneously and depending on individual site 

characteristics, including the size and quality of soil carbon pools, ground vegetation 

composition and hydrological conditions. This framework is believed to better describe 

the observed patterns of ecosystem responses to inorganic N deposition. Unlike the 

framework of Aber et al. (1989), however, it cannot predict temporal patterns of various 

processes unless the relative importance of those processes is known (Lovett and 

Goodale, 2011). Each of the existing frameworks thus has strengths and weaknesses 
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(Niu et al., 2016). The integration of substrate-based mechanisms into biogeochemical 

models, especially observed response functions of N processes with substrates from 

experimental studies, has the potential to improve model capability to predict future N 

dynamics in terrestrial ecosystems in response to N deposition (Niu et al., 2016). 

Elevated N deposition represents a fertilization of the forest, initially resulting in increased 

tree growth and productivity together with elevated atmospheric CO2 assimilation 

(Magnani et al., 2007; Ciais et al., 2008; Solberg et al., 2009; Bontemps et al., 2011; 

Büntgen et al., 2013; Pretzsch et al., 2014). In this phase, N addition could also lead to 

higher aboveground and belowground C sequestration in forests (Magnani et al., 2007; 

de Vries et al., 2009; de Vries et al., 2014b). However, increased productivity also implies 

higher nutrient demand, and in case the soil nutrient supplying capacity cannot meet 

these demands, eutrophication could lead to deterioration of tree mineral nutrition (Jonard 

et al., 2015; Talkner et al., 2015; Waldner et al., 2015). When the amount of N deposition 

chronically exceeds the capacity for N uptake and retention by plants, soils and microbes, 

forests may gradually become N saturated over the years (Aber et al., 1989; Zhu et al., 

2015). In N saturated forests, inorganic N has predominantly negative effects on the 

trees, including damage to fine roots resulting in reduced fine root biomass and root 

length, reduced tree stability, higher and potentially toxic N concentrations in leaves and 

enhanced sensitivity to secondary stress factors such as frost, drought and fungal 

diseases (Nihlgård, 1985; Erisman and de Vries, 2000). Because of these reasons, tree 

growth is expected to stagnate or even decrease under N saturated conditions 

(Gundersen, 1991; Kint et al., 2012; de Vries et al., 2014a; Etzold et al., 2014; Silva et al., 

2015). Furthermore, eutrophication causes shifts in the species community composition 

of arbuscular and ectomycorrhizal fungi and negatively affects their biodiversity (Lilleskov 

et al., 2002; van Diepen et al., 2007; Cox et al., 2010; Kjøller et al., 2012; Suz et al., 

2014; De Witte et al., 2017). Similarly, eutrophication leads to declining species richness 

and changes in the composition of the ground vegetation and the communities of 

epiphytic mosses and lichens by promoting nitrophilic and acid-tolerant species at the 

expense of species that prefer more neutral and N-poor soils, as well as the animals and 

microorganisms that depend on them (Vitousek et al., 1997; Emmett, 2007; Fenn et al., 

2008; Van Landuyt et al., 2008; Bobbink et al., 2010; de Vries et al., 2014a; Dirnböck et 

al., 2014; Giordani et al., 2014; van Dobben and de Vries, 2017). Finally, eutrophication 

leads to increased NO3
- leaching (Aber et al., 1989; MacDonald et al., 2002; Zhu et al., 
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2015) and may eventually pollute the local groundwater and surface waters (Dise and 

Wright, 1995). 

Since the implementation of N abatement protocols in the 1990s, N depositions started to 

decrease in European forests, with on average 1.3‒1.8 % yr-1 between 2000 and 2010, 

but only in high-deposition areas (Waldner et al., 2014). Despite these moderate 

reductions, N saturation will likely have long-lasting impacts on forests, because N may 

have accumulated in the soil (Ladanai et al., 2007) and certain ecosystem compartments 

(ground vegetation, ectomycorrhizal fungi, ...) respond to cumulative rather than to actual 

N dose and thus react slowly to decreases in N deposition (Novotný et al., 2016; Stevens, 

2016; Payne et al., 2017). 

At long-term forest monitoring sites across Europe, the critical limit for N saturation of 1 

mg N L-1 in soil solution (see section 1.2.5), was frequently exceeded in about one third to 

half of the forests during the past two decades, indicating that N saturation is widespread 

in Europe (Iost et al., 2012; Waldner et al., 2015). 

 Acidification 1.2.3

Soil acidification is a natural phenomenon governed by several factors/processes, 

including climate (precipitation surplus), soil buffer capacity, mineral composition and 

weathering, soil organic matter (SOM) build-up and mineralization, vegetation (plant 

uptake, rooting depth), etc. (Table 1.1). All these processes either produce or consume 

protons (H+), and the H+-budget determines whether a soil acidifies or alkalinizes (van 

Breemen et al., 1983; van Breemen et al., 1984; Binkley and Richter, 1987). 

Atmospheric deposition of (dissolved) sulphuric acid (H2SO4) and nitric acid (HNO3) and 

NHy originating partially from anthropogenic emissions of SO2, NOx and NH3 (see section 

1.1.1), is an important external source of H+ in forest soils and thus accelerates soil 

acidification (Van Miegroet and Cole, 1984; Reuss et al., 1987; Ulrich, 1991; Vitousek et 

al., 1997). 
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Table 1.1 Proton producing and consuming processes in terrestrial and aquatic 
ecosystems (van Breemen et al., 1984). 

Proton-producing processes Proton-consuming processes 
Atmospheric input Drainage 
Assimilation of cations Mineralization of cations 
Mineralization of anions Assimilation of anions 
Dissociation of acids Protonation of anions 
Oxidations Reductions 
Precipitation (reverse weathering) of cations Weathering of metal oxide components 
Weathering of anionic components Precipitation (reverse weathering) of anions 

 

Most forests in Flanders are located on acidic sand, sandy loam or silt loam soils, with 

only limited to moderate buffer capacity and a current pH-H2O often as low as 3.5 to 4.5 

(Ronse et al., 1988), i.e. as a result of past acidification. Since this acidic pH is below the 

bicarbonate buffer range incoming additional acidity can only be buffered by base cations 

(Ca2+, K+, Mg2+ and Na+) held at clay surfaces or in soil organic matter, or by aluminium 

(at this acidic pH mostly Al3+ and more limited quantities of Al(OH)2+ and Al(OH)2
+) 

(Reuss and Johnson, 1986; Ulrich, 1991; Tipping et al., 2002). Proton formation in forest 

soils hence leads to the mobilisation and depletion of base cations from the soil exchange 

complex, followed by leaching (Reuss et al., 1987; van Breemen, 1991; Driscoll et al., 

2001; Driscoll et al., 2003a). When the rate of base cation leaching chronically exceeds 

their inputs from atmospheric deposition and mineral weathering, the base saturation 

(BS) and acid neutralizing capacity (ANC) of the inorganic soil fraction permanently 

decreases, which is defined as soil acidification through atmospheric deposition (van 

Breemen et al., 1983). 

Neutralisation of protons by Al3+ leads to mobilisation and leaching of Al3+ (Reuss et al., 

1987). At a pH < 5.5 the concentrations of Al3+ in soil solution may reach phytotoxic levels 

(Al-toxicity) (Crane et al., 2007), potentially leading to root damage (Godbold et al., 2003; 

Vanguelova et al., 2007b), reduced nutrient uptake by the trees (and thus higher NO3
- 

concentrations in soil solution and acceleration of N saturation) and symptoms of nutrient 

deficiency (particularly Ca2+ and Mg2+) including needle loss, yellowing and reduced 

growth (DeHayes et al., 1999; Alewell et al., 2000; Driscoll et al., 2003a; de Wit et al., 

2010; Sullivan et al., 2013). Acid-sensitive organisms, including deep burrowing 

earthworms and certain herbaceous plant species, disappear with increasing acidification 

(Verstraeten, 2013; Thomaes, 2014). 
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 Disruption of dissolved organic matter cycling 1.2.4

Dissolved organic matter (DOM) is defined as the continuum of organic compounds 

passing a filter with a certain pore size (mostly 0.45 µm) and dissolved organic carbon 

(DOC) and nitrogen (DON) are the carbon and nitrogen, respectively, included in the 

DOM (Sleutel et al., 2009). DOM plays an important role in forest C cycling and 

contributes to C sequestration in mineral soils (e.g. Neff and Asner, 2001; Buurman and 

Jongmans, 2005). It is a highly dynamic soil organic C pool and facilitates the transport 

and/or bioavailability of nutrients and pollutants, including N, phosphorus (P), S and trace 

metals (Qualls et al., 1991; Kalbitz et al., 2000). It also forms a major pathway for C 

transfer from terrestrial to aquatic ecosystems, and provides a significant indirect source 

of CO2 emission to the atmosphere of about 1.7 Pg C yr-1 (Figure 1.5) (Freeman et al., 

2001; 2004; Cole et al., 2007; Battin et al., 2009; Ciais et al., 2013; Lapierre et al., 2013; 

Regnier et al., 2013). 

Acidification and eutrophication negatively affect forest soil microbial activity, leading to 

reduced rates of decomposition of litter and SOM and increased soil C sequestration 

(Berg, 2000; Janssens et al., 2010). Acidification and N saturation often reduce the 

concentrations of DOC and DON in soil solution and hence diminish DOC and DON 

leaching (Ronse et al., 1988; McDowell et al., 2004; Evans et al., 2012), because soil 

solution pH controls the solubility of DOM through protonation of functional groups, i.e. 

higher solubility at higher pH (Kalbitz et al., 2000), and controls soil microbial activity, 

which is responsible for SOM decomposition and thus DOM production (Guggenberger 

and Zech, 1994; Kalbitz et al., 2000). OM solubility also depends on soil solution ionic 

strength (the sum of the concentration of each ion in solution multiplied by its valence 

squared: 

� � 1
2�����	




���
 

with �� the molar concentration of ion  (mol L-1) and �� the charge number of that ion) 

(Tipping and Hurley, 1988; Kalbitz et al., 2000; Haaland et al., 2010). Particularly under 

acidic conditions (pH < 4.2) Al3+ may contribute strongly to ionic strength and form 

organo-metal complexes with DOM, which could then be adsorbed to the soil, again 

lowering OM solubility (Kalbitz et al., 2000). 
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Figure 1.5 Simplified schematic of the global carbon cycle. Numbers represent reservoir 
mass, also called ‘carbon stocks’ in Pg C (1 Pg C = 1015 g C) and annual carbon 
exchange fluxes (in Pg C yr-1). Black numbers and arrows indicate reservoir mass and 
exchange fluxes estimated for the time prior to the Industrial Era, about 1750. Red arrows 
and numbers indicate annual anthropogenic fluxes averaged over the 2000–2009 time 
period. These fluxes are a perturbation of the carbon cycle during Industrial Era post 
1750. Uncertainties are reported as 90% confidence intervals. Taken from Ciais et al. 
(2013). 

The control of soil solution pH and ionic strength on OM solubility makes that trends in 

DOC concentrations and fluxes are indicative for changes in soil acidity and N status and 

thus can be used to evaluate the impact of atmospheric depositions and the effectiveness 

of emission reduction measures. Accordingly, simultaneous positive long-term trends of 

DOC concentrations in stream waters and the soil solution of highly acidified forests 

across Europe, Canada and the US have been explained mainly by the overall decline of 

non-marine SO4
2- depositions and subsequent initial chemical recovery of the soil solution 

(de Wit et al., 2007; Monteith et al., 2007; Oulehle and Hruška, 2009; Vanguelova et al., 
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2010; Borken et al., 2011; Oulehle et al., 2011; Evans et al., 2012; Johnson et al., 2013; 

Driscoll et al., 2016; Sawicka et al., 2016). 

Contrary to DOC, there is still little long-term data on DON concentrations and vertical 

fluxes in temperate forests under recovery from acidification, mainly because monitoring 

of DON was only recently introduced in forest monitoring networks. Although N-containing 

organic building blocks (proteinaceous or heterocyclic-N) are also comprised in the DOC 

(Qualls and Haines, 1991; Michalzik et al., 2001; Wu et al., 2010b), it is not clear to what 

extent DON concentrations follow trends in DOC. Oulehle et al. (2011) observed parallel 

trends in soil solution DOC and DON of a spruce forest showing acidification recovery in 

the Czech Republic. Vanguelova et al. (2010) found that trends in DON did not always 

follow positive trends in DOC at 10 ICP Forests Level II sites in the UK. It should be noted 

though, that both studies were shorter than nine years identified as minimum for 

distinguishing clear trends in DOM (Waldner et al., 2014). 

 Critical loads and limits 1.2.5

The concept of critical loads and critical limits is commonly used to assess the potential 

impact of acidification and/or eutrophication on forest ecosystem health. Critical loads and 

limits are defined as quantitative estimates of an exposure to deposition loads or levels 

above which significant harmful effects on specified sensitive elements of the 

environment occur according to current knowledge (Nilsson and Grennfelt, 1988). An 

overview of critical N and Al loads and limits for temperate forest ecosystems is given in 

Table 1.2. 

According to Fenn et al. (2008) species loss of ground vegetation could be expected 

above 10‒15 kg N ha-1 yr-1, as deduced for coniferous forests in California. More recently, 

similar empirical critical loads for inorganic N deposition were deduced for European 

forests, and were in the range of 5‒15 kg N ha-1 yr-1 for coniferous woodland and 10‒20 

kg N ha-1 yr-1 for broadleaved deciduous woodland (Bobbink and Hettelingh, 2011). Suz 

et al. (2014) proposed an empirical critical load range of 9.5‒13.5 kg N ha-1 yr-1 for shifts 

in the communities of ectomycorrhizal fungi (EMF) in European oak forests. For epiphytic 

lichens in European forests, Giordani et al. (2014) deduced a critical load of 2.4 kg N ha-1 

yr-1, which is slightly lower than the 3.1 kg N ha-1 yr-1 proposed for epiphytic lichens in 

Californian coniferous forests (Fenn et al., 2008). 
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Critical limits for the concentration of N in soil solution were defined by UNECE (2004) for 

particular effects, including vegetation changes (2.5‒4 mg N L-1 in coniferous forests, 

3.5‒6.5 mg N L-1 in deciduous forests), nutrient imbalances (0.2‒0.4 mg N L-1), elevated 

N leaching and N saturation (1 mg N L-1), damage to fine root biomass/root length (1‒3 

mg N L-1) and sensitivity to frost and fungal diseases (3‒5 mg N L-1). The ratio between 

DON and dissolved inorganic nitrogen (DIN) in soil solution, DON:DIN, is often used as 

an indicator for N saturation in forests (Park and Matzner, 2006; Williams et al., 2004; 

2001), as are the ratios of DON to total dissolved nitrogen (TDN), DON:TDN, and DOC to 

NO3
-, DOC:NO3

- (Currie et al., 1996; Sleutel et al., 2009; Taylor and Townsend, 2010). 

Critical limits for impacts of acidity were defined for damage to fine roots, reduced tree 

stability (risk for windthrow), inhibited root growth and growth reductions, based on the 

molar ratio of Ca2+ to total aluminium (Altot) in soil solution (Ca:Altot) (Cronan and Grigal, 

1995; Vanguelova et al., 2007a) or the molar ratio of base cations (BC = Ca2+ + K+ + 

Mg2+) to Altot (BC:Altot) (Sverdrup and Warfvinge, 1993; UNECE, 2004). As long as the 

ANC of the soil solution has a negative value (ANC < 0), forest ecosystems are assumed 

to be in a progressive state of acidification (Holmberg et al., 2001; UNECE, 2004). 

Elemental concentrations in foliage and their ratios also are often used to evaluate tree 

nutritional status, providing an indication of N and nutrient availability (biotic N status). 

Tree species specific critical limits have been proposed to evaluate whether nutrients are 

in excess or deficient (van den Burg and Schaap, 1995; Mellert and Göttlein, 2012). 
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Table 1.2 Overview of critical loads and limits (based on the concentrations in soil 
solution) commonly used to evaluate whether N or Al is in excess in temperate forest 
ecosystems. All ratios are molar ratios (mol/mol). 

Criterion Effect Forest type Reference 

Critical loads    

10‒15 kg N ha-1 yr-1 Ground vegetation species 

loss 

Coniferous (US) Fenn et al. (2008) 

5‒15 kg N ha-1 yr-1 Ground vegetation species 

loss 

Coniferous 

(Europe) 

Bobbink and Hettelingh (2011) 

10‒20 kg N ha-1 yr-1 Ground vegetation species 

loss 

Deciduous 

(Europe) 

Bobbink and Hettelingh (2011) 

9.5‒13.5 kg N ha-1 yr-1 Shifts in EMF communities European oaks Suz et al. (2014) 

2.4 kg N ha-1 yr-1 Epiphytic lichens species 

loss 

Coniferous (US) Fenn et al. (2008) 

3.1 kg N ha-1 yr-1 Epiphytic lichens species 

loss 

All types (Europe) Giordani et al. (2014) 

Critical limits    

Eutrophication    

2.5‒4 mg N L-1 Vegetation changes Coniferous UNECE (2004) 

3.5‒6.5 mg N L-1 Vegetation changes Deciduous UNECE (2004) 

> 0.2 mg N L-1 Nutrient imbalances Coniferous UNECE (2004) 

> 0.4 mg N L-1 Nutrient imbalances Deciduous UNECE (2004) 

> 1 mg N L-1 Elevated N leaching / N 

saturation 

All types UNECE (2004) 

1‒3 mg N L-1 Damage to fine root 

biomass/root length 

All types UNECE (2004) 

3‒5 mg N L-1 Sensitivity to frost and 

fungal diseases 

All types UNECE (2004) 

DIN:DON < 0.5 (molar) N saturation stage 0 All types Williams et al. (2004) 

DIN:DON 0.5‒2 (molar) N saturation stage 1 All types Williams et al. (2004) 

DIN:DON > 2 (molar) N saturation stage 2 All types Williams et al. (2004) 

DOC:NO3
- < 5.22 

(molar) 

N saturated All types Taylor and Townsend (2010) 

Acidification    

Ca:Altot ≤ 1 (molar) 50% risk of Al stress All types Cronan and Grigal (1995) 

Ca:Altot ≤ 0.5 (molar) 75% risk of Al stress All types Cronan and Grigal (1995) 

Ca:Altot ≤ 0.2 (molar) 100% risk of Al stress All types Cronan and Grigal (1995) 

BC:Altot < 0.6 (molar) Growth reduced to 80% of 

unaffected 

Fagus sylvatica L., 

Quercus robur L. 

Sverdrup and Warfvinge (1993) 

BC:Altot < 1.2 (molar) Growth reduced to 80% of 

unaffected 

Pinus sylvestris L. Sverdrup and Warfvinge (1993) 
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 Long-term monitoring of air pollution effects on forests 1.3

 Europe and beyond 1.3.1

The deterioration of forest ecosystem health in the vicinity of emission sources of SO2 in 

central and eastern Europe initiated the implementation of air pollution abatement policies 

and measures in Europe, starting with the UNECE Convention on Long-range 

Transboundary Air Pollution (CLRTAP) (1979, Geneva). In 1985, the International Co-

operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests 

(ICP Forests) was established under the Working Group on Effects (WGE) within the 

LRTAP Convention. ICP Forests designed and facilitated the installation of two large-

scale monitoring networks (officially Level I in 1986 and Level II in 1994), with the initial 

objective to collect and compile data on the condition of forest ecosystems across the 

UNECE region, and monitor their health and performance (Sanders et al., 2016). At 

present, 42 countries (27 EU member states) are cooperating in these large-scale 

monitoring networks, in accordance with the two major aims of ICP Forests (Sanders et 

al., 2016): 

• Aim I: To provide a periodic overview of the spatial and temporal variation of 

forest condition in relation to anthropogenic and natural stress factors (in 

particular air pollution) by means of European-wide and national, large-scale 

representative monitoring on a systematic network (Level I). 

• Aim II: To gain a better understanding of cause-effect relationships between the 

condition of forest ecosystems and anthropogenic as well as natural stress 

factors (in particular air pollution) by means of intensive monitoring on a number 

of selected permanent observation plots spread over Europe, and to study the 

development of important forest ecosystems in Europe (Level II). 

In total about 6000 Level I plots based on a 16 × 16 km grid and 800 Level II plots were 

established, representing the major forest types of Europe. 

 Flanders 1.3.2

Flanders participated actively in the ICP Forests programme since the very beginning and 

cooperates in both the Level I and Level II networks. 
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The plots of the Level I network were systematically selected according to a grid. 

Originally, 10 plots were part of the international 16 × 16 km Level I survey. From 1995 

on, the Level I survey was performed on a 4 × 4 km grid, with 62 additional (regional) 

plots (72 plots in total). Nowadays data from 8 Flemish level I plots is yearly reported to 

ICP Forests, together with results from the regional survey (Cools et al., 2016; Sioen et 

al., 2016). 

The Level II plots were installed in well pre-screened forest stands in the most important 

forest types in Flanders. The Level II network is thus not spatially representative for the 

area of Flanders, but it is assumed to reliably represent important forest types. The Level 

II network originally counted 12 plots that were installed in 1987‒1991, one of which was 

abandoned in 2002. Of the 11 remaining plots, five are operated as “core” plots (see 

section 2.1 for a detailed description). The six other Level II plots are operated as 

“additional” plots. A detailed description of the additional plots was published in Cools et 

al. (2016). All research presented in this thesis is based on the monitoring data collected 

in the five Flemish Level II core plots. 

The monitoring programme in the Level II plots consists of surveys carried out on a 

regular basis (Table 2.4). In the five Level II core plots an intensive monitoring 

programme is conducted, including continuous monitoring of atmospheric deposition, soil 

solution chemistry, soil water content, litterfall chemistry and air concentrations of NH3. 

The plots in Gontrode and Brasschaat are equipped with a measuring tower operated by, 

or in cooperation with the universities of Ghent and Antwerp, respectively. In the six 

additional Level II plots only a limited number of surveys is conducted (Table 2.4). 

 Aim and outline of the thesis 1.4

Emission control policies and practical measures implemented since the 1980s for SO2 

and since the 1990s for inorganic N resulted in a substantial reduction of anthropogenic 

acidifying and eutrophying emissions and depositions in Flanders (see section 1.1.2). As 

shown by experiments with reduced N and S input in the Netherlands and the cessation 

of experimental N addition in the US, this could lead to recovery of soil solution chemistry 

(Boxman et al., 1995; Boxman and Roelofs, 2006; McNulty et al., 2017). However, at 

present it is unclear whether the emission reductions had any beneficial effects on the 

condition of temperate forests in Flanders, which underwent progressive soil acidification 

between 1950 and 2000 (Ronse et al., 1988; De Schrijver et al., 2006) and showed clear 
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signs of N saturation (De Schrijver et al., 2004). The main aim of this thesis was to 

evaluate if there has been a response of temperate forest ecosystems in Flanders to 

reductions in nitrogenous and potentially acidifying emissions. More specifically, the 

objectives were to evaluate recent evolutions in soil solution chemistry and tree mineral 

nutrition in Flemish forests, in order to check whether the rates of soil solution 

acidification and N saturation are slowing down or recovery has started. Improving 

mechanistic insights into the processes associated with soil solution acidification and 

eutrophication is an enormous challenge, given the complexity that is inherently 

associated with a large number of interacting factors. However, improving these insights 

would only be possible with large additional efforts. In this thesis we aimed at an in-depth 

analysis of existing long-term and unique monitoring datasets. Whilst such analysis 

necessarily leads to the formulation of assumptions on the processes responsible, testing 

these assumptions was outside of the scope of this thesis, but presents interesting 

hypotheses for further more mechanistic research, as suggested also in the General 

discussion section. Figure 1.6 provides a schematic overview of the outline of this thesis. 

To address the objectives of this thesis we formulated several hypotheses. Testing these 

hypotheses requires long-term data on the environmental (abiotic) conditions in Flemish 

forests and the nutritional status (biotic) of the trees. In the five Flemish Level II core plots 

atmospheric depositions, soil solution chemistry and foliar chemistry are monitored 

continuously or at regular time intervals (Table 2.4). With time series spanning ten to 

more than 20 years and consisting of high-quality data collected according to the 

guidelines of the ICP Forests manual (ICP Forests, 2016), this dataset provided the basic 

information required for this study. In Chapter 2 the Level II core plots are described in 

detail with regard to site history, species composition, stand structure, hydrology and soil 

characteristics. Chapter 2 also contains a description of the datasets selected for this 

study and of the materials and methods used to further extend these datasets with new 

data over the course of this study. 

Chapter 3 deals with the impact of declining atmospheric deposition on soil solution 

chemistry in Flemish forests. Long-term trends (1994‒2010) of the depositions of 

eutrophying and potentially acidifying inorganic N and S compounds and BC are 

evaluated. Because potentially acidifying and eutrophying emissions and depositions 

showed decreasing trends in Flanders (see section 1.1.2) this is the 1st hypothesis that 

was tested: 
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1) Potentially acidifying depositions decreased in Flemish forests during the 

study period. 

The results are discussed in relation to empirical critical loads for ground vegetation and 

sensitive epiphytic lichens. Also the parallel trends of SO4
2- and inorganic N compounds, 

BC, Altot and pH in soil solution are analysed. Regarding the expected decreasing trends 

in depositions and the possible impact on soil solution, this is the 2nd hypothesis that was 

tested: 

2) The decreasing depositions lowered the elemental concentrations in soil 

solution, leading to a better condition with regard to critical loads and levels. 

The concentrations in soil solution are discussed in relation to critical limits for the BC:Altot 

ratio and for the ANC. Soil water fluxes are calculated for each plot and finally, an ion 

budget is discussed for stand depositions (inputs) and soil solution fluxes (outputs) of 

SO4
2- and inorganic N compounds. 

In Chapter 4 the impact of air-borne or canopy-derived DOC on forest soil solution DOC 

is examined over an 11-year period (2002‒2012). Trends of DOC concentrations and 

fluxes in open field precipitation, stand precipitation and soil solution are evaluated. 

Because several studies found an overall increasing trend in DOC concentrations in 

surface waters and also in the soil solution at a number of intensive forest monitoring 

sites in high-deposition areas as the result of decreasing SO4
2- depositions (see section 

1.2.4), this is the 3rd hypothesis that was tested: 

3) Soil solution DOC concentrations and fluxes increased during the study 

period. 

Furthermore, the seasonal patterns of DOC concentrations and fluxes are analysed with 

a focus on the impact of air-borne or canopy-derived DOC on DOC in soil solution, since 

the current knowledge about this topic is limited. Because a number of studies found a 

relationship between throughfall DOC and soil solution DOC moderated by the activity of 

phytophagous insects in the canopy (Michalzik and Stadler, 2005; Pitman et al., 2010), 

this is the 4th hypothesis that was tested: 

4) Changes in soil solution DOC concentrations and fluxes were related to 

changes in air-borne or canopy-derived DOC. 
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In Chapter 5 the trends and patterns of DON concentrations and fluxes in deposition 

(open field precipitation and stand precipitation) and soil solution are evaluated. 

Published long time series on DON concentrations in soil solution are rare and little 

information is currently available about whether trends in DON follow trends in DOC (see 

section 1.2.4). Since N-containing organic building blocks (proteinaceous or heterocyclic-

N) are also comprised in the DOC, this is the 5th hypothesis that was tested: 

5) Concentrations and fluxes of DON in the deposition and soil solution followed 

the DOC trends. 

The results are discussed in relation to abiotic soil condition (pH, SO4
2- concentration, Al3+ 

concentration and ionic strength) (2005–2013). Also trends and patterns of the molar ratio 

of DOC and DON, DOC:DON, are evaluated. Since N-rich DOM compounds generally 

have a lower reactivity with Fe and Al hydroxides, a pH control on DON solubility is 

probably smaller than for DOC. Hence, this is the 6th hypothesis that was tested: 

6) Recovery from acidification disproportionally favours DOC dissolution 

compared to DON, resulting in an increase in the DOC:DON ratio over time. 

In Chapter 6 the evolution of forest N status is evaluated by two indicators based on the 

soil solution concentrations of DOC, DON, TDN and NO3
-, more particularly the molar 

DON:TDN ratio (2005−2014) and the molar DOC:NO3
- ratio (2002−2014) and their 

relation with DIN deposition. Regarding the observed decreasing trends in potentially 

acidifying and eutrophying depositions and trends in soil solution (decreasing NO3
-, 

increasing DOC, DON and pH) resulting from the research presented in the previous 

chapters, this is the 7th hypothesis that was tested: 

7) The DON:TDN ratio and thus the DOC:NO3
- ratio increased over the past 

decade, but increased DON and DOC mobilization due to concomitant recovery 

from acidification renders these shifting ratios only partly indicative for the actual 

improvement in forest N status. 

Furthermore, two indicators based on the foliar concentrations of N, P and BC (the N:P 

ratio and the molar BC:N ratio) are used to evaluate forest N status (1999−2013). 

Considering the above, this is the 8th hypothesis that was tested: 
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8) The foliar N:P ratio and BC:N ratio decreased and increased, respectively, as 

a consequence of lowered soil mineral N availability. 

The general discussion in Chapter 7 focuses on two important questions: 1) Is air 

pollution abatement policy in Flanders on target with respect to forest protection?, and 2) 

Do we already see a recovery from acidification and N eutrophication in Flemish forests 

and on what term, if at all, could we expect a substantial recovery? For the first question 

the depositions in the five Level II plots are discussed in relation to 2010-target and 2030-

target values for deposition included in (inter)national legislation (NEC-directive 

2001/81/EG, VLAREM II) and critical loads for ground vegetation, epiphytic lichens and 

ectomycorrhizal fungi. The depositions are also compared with national emission data 

(VMM, 2011, 2016a), using recently collected data up to 2015. The evolution of the molar 

NH4
+:NO3

- ratio is discussed in a European context. The second question is more 

philosophic and is used as a background to discuss how forests in Flanders are expected 

to evolve in the future, based on the current trends and socio-economic developments. 

Furthermore, implications for policy and management are given, as well as a number of 

suggestions and directions for further research. Also the strengths, weaknesses and 

uncertainties of the methods used are discussed. Finally, the main conclusions of this 

work are listed. 

 

Figure 1.6 Outline of the thesis. 
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 MATERIALS AND METHODS 2

 Study area 2.1

Five plots of the ICP Forests intensive monitoring network (Level II) in Flanders (northern 

part of Belgium) were included in this study (Figure 2.1). Flanders has a moderate 

Atlantic climate with a mean annual precipitation of 852 mm and mean temperature of 

10.5 °C (long-term averages for 1981–2010 for the meteorological station of Uccle, 

http://www.meteo.be). The five intensive monitoring plots are ‘core’ plots of the ICP 

Forests Level II network (http://icp-forests.net/). The plots are located in protected Natura 

2000 forest habitats (or in development) (https://www.natura2000.vlaanderen.be/) and 

are also part of the Long-Term Ecosystem Research (LTER) network in Europe 

(http://www.lter-europe.net/). 

 

Figure 2.1 Location of the five intensive forest monitoring plots in relation to ecoregions 

(Sevenant et al., 2002) in Flanders. 

The five Level II plots were installed in 1987‒1991 (circular plots, with an area of 0.25 ha 

each, surrounded by a buffer zone of 0.25 ha). Relevant site characteristics are listed in 

Table 2.1, detailed soil characteristics in Table 2.2 and soil solution characteristics in 

Table 2.3. A short description of each Level II plot including pictures is given below. 
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Table 2.1 Characteristics of the five Level II plots in Flanders. Mean annual temperature (MAT) and precipitation (MAP) are long-term 

averages for the nearest meteorological station (1981‒2010, Royal Meteorological Institute of Belgium, www.meteo.be). Basal area was 

calculated from a full survey (DBH ≥ 5 cm) in 2009‒2010. Throughfall and stemflow are expressed as the average proportion of open 

field precipitation. The term ‘ancient forest’ stands for permanently forested (as far as known) at least since 1775. 

Plot Coordinates Elevation MAT MAP Tree species N2000 Planting Former use Basal 
area 

Throughfall Stemflow Groundwater 
 N E (m) (°C) (mm)  Type year  (m² ha-1) (%) (%) range (m) 

Coniferous forests             
RAV 51°24'07'' 05°03'15'' 35 10.4 887 Pinus nigra subsp. 

laricio var. Corsicana 
Loud. 

9190* 1930 heath 44.9 68.3  1.5‒2.5 

BRA 51°18'28'' 04°31'11'' 14 10.8 882 Pinus sylvestris L. 9190* 1929 heath 29.2 78.6  1.2‒2.3 
Deciduous forests             
WIJ 51°04'11'' 03°02'14'' 31 11.0 867 Fagus sylvatica L. 9120 1935 arable 36.5 62.0 14.7 0.9‒2.3 
GON 50°58'31'' 03°48'15'' 26 10.6 786 Quercus robur L., 

Fagus sylvatica L. 
9130 1918 ancient forest 31.9 71.8 3.2 1.5‒1.8 

HOE 50°44'45'' 04°24'47'' 129 10.7 854 Fagus sylvatica L. 9120 1909 ancient forest 28.9 70.9 5.8 >30 

*: in development 
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Table 2.2 Soil characteristics of the five Level II plots: soil type according to IUSS Working Group (IUSS Working Group WRB, 2007), 

sampling depths, morphogenetic horizons, C and N concentrations (g kg-1), C:N ratio, pH-CaCl2 (molarity 0.01 M), cation exchange 

capacity (CEC) (cmolc kg-1) and base saturation (BS) (%) for the forest floor layers (OF, OH or OFH) and five fixed depth layers of the 

mineral soil. Humus types were defined in 2007 (Zanella et al., 2011). Mean dry bulk density of the fine earth (BD) (kg m-3) and soil 

texture data (USDA textural triangle) are given for the mineral soil layers (clay, silt and sand fractions in mass %). Soil samples were 

collected in 2004 and analysed using methods of the ICP Forests manual, part X (Cools and De Vos, 2016). 

Plot Soil type Humus Sampling Morphogenetic C N C:N pH-CaCl2 CEC BS BD Clay Silt Sand 

  

Type Depth Horizon   

  

   0–2 

µm 

2–63 

µm 

63–2000 

µm 

   (cm)  (g kg-1) (g kg-1) (–) (–) (cmolc kg-1) (%) (kg m-3) (%) (%) (%) 

RAV Endogleyic Folic Brunic mor -6.6 to -0.8 OF 491 15.1 33 2.5 23 36     

 Albic Arenosol (Dystric)  -0.8–0 OH 366 10.5 35 2.3 26 16     

   0–5 Ap/E 38.7 1.43 27 2.9 4.6 11 1242 2.3 10.2 87.5 

   5–10 Ap/E 24.2 0.90 27 3.0 3.8 7.6 1378 0.9 12.6 86.5 

   10–20 Ap/E 19.2 0.83 23 3.1 3.6 7.4 1271 0.7 11.9 87.4 

   20–40 Bhs 17.9 0.83 21 3.4 3.3 8.2 1322 3.0 12.0 85.0 

   40–80 B, Bg1 4.55 <0.5 – 4.1 1.7 15 1355 1.4 12.3 86.3 

BRA Endogleyic Brunic mor -5.2–0 OFH 492 16.2 30 2.7 25 42     

 Albic Hypoluvic  0–5 Ap1 18.9 1.07 18 3.1 2.2 18 1397 2.0 7.0 91.0 

 Arenosol (Dystric)  5–10 Ap1 10.8 0.60 18 3.2 1.8 15 1455 1.9 4.7 93.4 

   10–20 Ap1 8.49 0.57 15 3.3 1.7 16 1463 1.8 5.9 92.3 

   20–40 Ap1, Ap2 7.15 0.50 14 3.4 1.6 17 1493 1.0 6.1 92.8 

   40–80 E, Bg1, Bg2 3.17 <0.5 – 3.6 1.5 18 1500 1.6 5.3 93.1 
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Table 2.2 continued. 

Plot Soil type Humus Sampling Morphogenetic C N C:N pH-CaCl2 CEC BS BD Clay Silt Sand 

  

Type Depth Horizon   

    

 0–2 

µm 

2–63 

µm 

63–2000 

µm 

   (cm)  (g kg-1) (g kg-1) (–) (–) (cmolc kg-1) (%) (kg m-3) (%) (%) (%) 

WIJ Endogleyic Folic mor -8.0 to -2.1 OF 541 22.0 25 2.7 31 42     

 (Brunic, Humic,  -2.1–0 OH 304 13.7 22 2.7 25 23     

 Hyperdystric, Arenic)  0–5 A1 119 5.73 21 2.5 7.3 32 761 – – – 

   5–10 A2 36.6 1.97 19 2.7 4.2 14 1370 3.3 24.7 72.0 

   10–20 A2 18.5 1.17 16 3.0 3.5 11 1314 3.8 23.8 72.5 

   20–40 A3 18.1 1.00 18 3.3 3.1 10 1367 3.6 21.5 74.9 

   40–80 Bhg, Cgc 7.19 0.70 10 3.6 3.0 11 1390 5.9 21.9 72.2 

GON Luvic Planosol  moder -6.2–0 OFH 579 17.5 25 3.6 – –     

 (Albic, Ruptic, Dystric,  0–5 A 441 17.4 20 2.9 17 23 1036 – – – 

 Siltic, Clayic)  5–10 B 52.2 2.57 17 2.9 15 20 1233 9.5 50.6 39.9 

   10–20 B, 2B 29.7 1.70 17 3.0 12 15 1515 11.0 48.2 40.8 

   20–40 2B, 2Bg 16.7 0.97 12 3.3 14 21 1483 24.5 46.0 29.5 

   40–80 2Bg, 3Bg 8.26 0.70 7.8 3.5 23 61 1411 47.5 36.6 15.9 

HOE Albic Cutanic Alisol  moder -3.0–0 OFH 359 15.5 23 3.1 24 81     

 (Fragic, Abruptic,  0–5 A 43.0 2.53 17 3.3 6.3 16 1147 10.6 85.9 3.6 

 Hyperdystric, Siltic)  5–10 Bh 19.3 1.17 17 3.5 4.3 13 1321 5.3 90.7 4.0 

   10–20 E 10.3 0.73 14 3.8 3.8 11 1445 14.4 81.8 3.8 

   20–40 Bt 5.73 0.55 10 3.8 4.6 8.9 1470 13.5 81.3 5.2 

   40–80 Btx1 2.95 0.55 5.4 3.8 5.2 16 1509 19.1 76.9 4.0 
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Table 2.3 Range (min‒max) in pH, electronic conductivity (EC), and the concentrations of DOC and major cations and anions (mg L-1) in 
soil solution in the five Level II plots. All parameters were measured from 1994 till 2010 except DOC (1999‒2010), TDN and DON (2005‒
2010). 

Plot Period Sampling pH EC Altot Fetot Ca2+ K+ Mg2+ Na+ Cl- 
  Depth          
  (cm) (‒) (‒) (mg L-1) (mg L-1) (mg L-1) (mg L-1) (mg L-1) (mg L-1) (mg L-1) 

O horizon           
RAV 1994-2010  3.38‒7.3 38‒262 <0.1‒1.2 <0.1‒0.61 0.45‒10.2 0.74‒17.4 <0.1‒1.9 0.92‒10.6 0.9‒22.4 
BRA 1994-2010  3.39‒7.3 27‒232 <0.1‒0.7 <0.1‒0.61 0.39‒10.4 0.4‒9.95 0.1‒2.5 0.7‒17.4 0.9‒34 
WIJ 2003-2010  3.28‒6.96 43‒317 <0.1‒0.45 <0.1‒0.38 0.67‒11.8 2.47‒20.8 0.18‒2.61 1.17‒8.56 1.49‒24.1 
GON 1994-2010  3.57‒7.1 47‒319 <0.1‒1.4 <0.1‒1.22 1.36‒17.4 2.1‒23.6 <0.1‒4.8 1‒13.4 1.3‒29.7 
HOE 1994-2010  3.9‒7.8 24‒283 <0.1‒1.3 <0.1‒1.27 0.31‒17.5 0.67‒29.4 0.2‒4.21 0.71‒11.4 0.6‒23 
A horizon           
RAV 1997-2010 10-25 3.1‒3.9 93‒451 1.29‒21.9 <0.1‒0.96 <0.1‒11.3 <0.1‒5.12 0.13‒2.4 2.06‒20.3 1.38‒32 
BRA 2002-2010 15-25 3.05‒3.9 109‒548 0.5‒11.5 0.47‒1.73 0.45‒7.71 0.2‒5.49 0.29‒2.53 2.49‒22 3‒38.5 
WIJ 2002-2010 10-20 3.24‒3.9 102‒363 0.5‒5.31 0.4‒2.07 0.5‒8.4 0.1‒9.2 0.39‒2.25 2.28‒18.9 3.15‒43.4 
GON 1996-2010 10-20 3.32‒6.64 102‒466 <0.1‒11.6 <0.1‒1.71 2.12‒35.3 2.7‒22.4 1.02‒14.7 2.45‒18.7 3.9‒44 
HOE 2001-2010 10-15 3.78‒5.32 38‒183 0.5‒2.97 <0.1‒0.89 0.79‒9.4 0.38‒7.86 0.32‒2.3 1.5‒6.23 1.4‒16.9 
B horizon           
RAV 2002-2010 30-45 3.62‒4.23 66‒398 4.2‒22.8 <0.1‒0.4 0.53‒5.4 <0.1‒1.8 0.16‒2 3.09‒21.9 3.77‒34.6 
BRA 1994-2010 30-55 2.8‒3.88 127‒683 0.9‒16.8 0.38‒2.6 0.89‒15.1 0.5‒6.3 0.48‒3.3 3.8‒23 3.25‒35.4 
WIJ 1998-2010 45-70 3.4‒4.42 89‒529 2.35‒29 <0.1‒1 0.26‒13.3 <0.1‒5 0.26‒6.6 4.02‒41.3 6.23‒108 
GON 1999-2010 25-40 3.51‒4.33 70‒341 0.24‒6.58 <0.1‒0.9 1.4‒14.7 4.7‒17.9 0.52‒4.72 3.24‒12.6 3.7‒21.4 
HOE 1998-2010 20-30 3.87‒5.5 32‒143 0.2‒3.05 <0.1‒0.57 0.69‒7.7 0.36‒6.8 0.2‒1.9 1.2‒9.7 1.9‒23.3 
C horizon           
RAV 1994-2010 70-95 3.6‒4.49 37‒507 2.97‒29.7 <0.1‒0.3 0.21‒9.6 0.11‒3 <0.1‒2.45 2.05‒33.4 2.87‒52.8 
BRA 1997-2010 70-90 3.3‒4.2 127‒496 0.49‒25.4 <0.1‒1.47 0.33‒9.5 0.38‒3.7 0.16‒4.2 3.4‒27.7 3.9‒48.6 
WIJ 2002-2010 75-110 3.83‒4.62 126‒352 3.2‒12.6 <0.1‒0.38 0.32‒6.6 0.18‒1.13 0.67‒3.7 7.64‒34.2 12.5‒77.9 
GON 1994-2010 45-55 3.5‒4.8 123‒332 1‒7.1 <0.1‒0.4 2.82‒17.6 2.13‒11.4 1.26‒6.4 3.1‒17.8 4.1‒46 
HOE 1996-2010 35-55 4‒5.41 43‒156 <0.1‒3.2 <0.1‒0.18 1.07‒10.9 0.5‒3.9 0.42‒2.4 2‒10.5 2.5‒25 
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Table 2.3 continued. 

Plot Period Sampling SO4
2- NH4

+ NO3
- Ntot DON DOC 

  Depth       
  (cm) (mg L-1) (mg L-1) (mg L-1) (mg L-1) (mg L-1) (mg L-1) 

O horizon        
RAV 1994-2010  1.72‒39.3 <0.1‒15.2 0.5‒47.7 2.1‒23 0.09‒5.47 4.7‒210 
BRA 1994-2010  2.61‒51.8 <0.1‒14 0.5‒28.8 1.43‒15.7 0.11‒9.77 1.31‒116 
WIJ 2003-2010  1.92‒28 <0.1‒11.5 1.27‒65 1.82‒16.9 0.1‒9.67 10.1‒55 
GON 1994-2010  2.96‒58.4 <0.1‒11.3 0.5‒85.6 2.69‒39 0.08‒5.75 6.4‒87 
HOE 1994-2010  2.05‒37.6 <0.1‒13 0.5‒115 1.66‒21.3 0.33‒4.58 2.18‒77.2 
A horizon        
RAV 1997-2010 10-25 2.94‒68.5 <0.1‒8 1.15‒105 1.33‒27.1 0.21‒4.82 8.88‒81 
BRA 2002-2010 15-25 6.11‒38.2 <0.1‒0.89 0.13‒75.8 1.83‒16.9 0.1‒4.26 9.21‒71 
WIJ 2002-2010 10-20 5.28‒29.5 <0.1‒0.6 0.16‒78 0.75‒8.39 0.4‒3.14 9.45‒66 
GON 1996-2010 10-20 6.51‒156 <0.1‒5.85 0.5‒119 6.28‒26 0.23‒7.27 7.44‒42.4 
HOE 2001-2010 10-15 3.73‒16.1 <0.1‒0.8 0.11‒54.5 <0.1‒11.5 0.06‒2.47 8.6‒38 
B horizon        
RAV 2002-2010 30-45 4.98‒40.4 <0.1‒1.6 0.45‒103 1.39‒35.4 0.16‒4.64 20.6‒65.8 
BRA 1994-2010 30-55 10.1‒91.5 <0.1‒10 2.01‒169 1.32‒16 0.15‒2.74 14.9‒81.1 
WIJ 1998-2010 45-70 7.1‒54.3 <0.1‒5 0.14‒196 <0.1‒10.1 0.02‒2.77 1.05‒39.1 
GON 1999-2010 25-40 9.18‒36.5 <0.1‒0.89 3.01‒87.7 1.78‒22.2 0.04‒5.31 10‒44.5 
HOE 1998-2010 20-30 5.2‒20.7 <0.1‒2 <0.1‒31.9 <0.1‒5.87 0.01‒1.57 2‒24.1 
C horizon        
RAV 1994-2010 70-95 4.69‒71.5 <0.1‒0.95 0.59‒184 0.63‒30.6 0.11‒2.94 10.1‒59.6 
BRA 1997-2010 70-90 11.4‒117 <0.1‒0.5 2.47‒71 0.98‒14.3 0.09‒2.44 10.6‒47.1 
WIJ 2002-2010 75-110 18.5‒42 <0.1‒0.44 0.11‒51.3 <0.1‒4.82 0.04‒1.38 5.3‒21 
GON 1994-2010 45-55 13‒57.2 <0.1‒0.99 2.58‒68.4 0.72‒21.1 0.13‒5.65 7.76‒33.5 
HOE 1996-2010 35-55 5.69‒31.3 <0.1‒0.66 0.11‒33.7 0.2‒7.59 0.07‒1.59 2.04‒35.4 
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 Ravels (RAV) (nr. 14) 2.1.1

Level II plot nr. 14 is located in the forest ‘Gewestbos Ravels-Noord’ (820 ha), in the 

community of Ravels, in the northern Campine ecoregion of Flanders. This Level II plot 

constitutes the LTER-site ‘Ravels forest’ (LTER_EU_BE_04). The surrounding area is 

agricultural, with a high concentration of livestock breeding farms. The soil is a well-

drained sandy soil (Arenosol) with a C:N ratio of 33–35 in the organic layer (mor humus) 

(Figure 2.2). 

 

Figure 2.2 Soil profile in Level II plot Ravels (nr. 14) (photo: Nathalie Cools) with on the 
right side the morphogenetic horizons and their depth ranges (cm) for the upper 130 cm 
taken from Mikkelsen et al. (2008). 

The Level II plot is located in a homogeneous Corsican pine stand (Pinus nigra ssp. 

laricio var. Corsicana Loud.), which was planted in 1930 on former heathland (Figure 2.3). 

The herb layer is dominated by broad buckler fern (Dryopteris dilatata Hoffm.), bilberry 

(Vaccinium myrtillus L.) and purple moor grass (Molinia caerulea (L.) Moench). A sparse 

understorey of silver birch (Betula pendula L.) and rowan (Sorbus aucuparia L.) is 

developing since several trees were thrown down by a storm in January 2007. This site is 

considered to be a Natura 2000 forest habitat 9190 in development. 
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Figure 2.3 Overview of the Level II plot Ravels (nr. 14) (photo: Arne Verstraeten). 

 Brasschaat (BRA) (nr. 15) 2.1.2

Level II plot nr. 15 is located in the forest ‘De Inslag’ (150 ha), in the community of 

Brasschaat, in the northern Campine ecoregion of Flanders. This plot is located within the 

fenced scientific zone of 2 ha which constitutes the LTER-site ‘Brasschaat De Inslag’ 

(LTER_EU_BE_001). The forest is located in a suburban area at 10 km east of the port of 

Antwerp, which contributes more than half of the SO2 emissions in Flanders. The soil is a 

sandy soil (Arenosol) with a C:N ratio of 30 in the organic layer (mor humus). The 

infiltration of water is locally slowed down by clay lenses at 50–125 cm depth (Figure 2.4). 
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Figure 2.4 Soil profile in Level II plot Brasschaat (nr. 15) (photo: Nathalie Cools) with on 
the right side the morphogenetic horizons and their depth ranges (cm) taken from 
Mikkelsen et al. (2008). 

The Level II plot is located in a homogeneous Scots pine stand (Pinus sylvestris L.), 

which was planted in 1929 on former heathland (Figure 2.5). The herb layer is dominated 

by Molinia caerulea (L.) Moench and several ferns. The stand structure is further 

characterized by a diverse moss layer and ingrowth of several tree and shrub species 
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(Betula pendula L., Frangula alnus Mill., Sorbus aucuparia L., …). The site contains a 40 

m high measuring tower, where meteorological variables and the air concentrations of 

pollutants are monitored above and below the canopy since 1995. The scientific area and 

the surrounding forest also function as a Belgian ICOS measuring site (www.icos-

belgium.be), which is coordinated by the Research Centre of Excellence PLECO (Plant 

and Vegetation Ecology) of the University of Antwerp (www.uantwerpen.be/en/rg/pleco). 

This site is considered to be a Natura 2000 forest habitat 9190 in development. 

  

Figure 2.5 Level II plot Brasschaat (nr. 15) with a view of the measuring tower (photos: 
left: Arne Verstraeten; right: Johan Neirynck). 

 Wijnendale (WIJ) (nr. 11) 2.1.3

Level II plot nr. 11 is located in the Wijnendale forest (181 ha) in the community of 

Ichtegem, in the western part of Sandy Flanders. It is an important component of the 

LTER-site ‘Forest of Wijnendale’ (LTER-EU-BE-05). The surrounding area is agricultural 

and consists mainly of arable land. The soil is a sandy loam soil (Umbrisol) with presence 

of clay below 90 cm depth, a shallow groundwater table, moderately low base saturation 

in the mineral soil and slightly higher base saturation in the topsoil. The mineral soil is 

characterized by a 60-cm thick two-layered Ap horizon, which indicates soil disturbance, 

probably due to the temporary conversion of forest to cropland during periods of food 

scarcity in the mid-19th century (Figure 2.6). 
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Figure 2.6 Soil profile in Level II plot Wijnendale (nr. 11) (photo: Nathalie Cools) with on 
the right side the morphogenetic horizons and their depth ranges (cm) taken from 
Mikkelsen et al. (2008). 

The Level II plot is located in a homogeneous European beech stand (Fagus sylvatica 

L.), which was planted in 1935 (Figure 2.7). Since the start of the monitoring, the stand 

structure has been characterized by the absence of a moss layer, herb layer and 



Chapter 2 – Materials and Methods 

34 
 

understorey, which could be explained by the shady conditions and the thick organic 

layer. This site is a Natura 2000 forest habitat 9120. 

 

Figure 2.7 Level II plot Wijnendale (nr. 11) (photo: Arne Verstraeten). 

 Gontrode (GON) (nr. 16) 2.1.4

Level II plot nr. 16 is located in the Aelmoeseneie forest (28.5 ha), which is the 

experimental forest of the University of Ghent. This experimental forest forms the LTER-

site ‘Gontrode − Aelmoeseneie Forest’ (LTER_EU_BE_03). The forest is located in the 

community of Gontrode, in the Dender-Klein Brabant ecoregion. The soil consists of a silt 

loam to loam soil (Planosol), overlaying a mosaic of tertiary clayey and sandy deposits 

with high base saturation starting at 50 cm depth (Figure 2.8). 



Chapter 2 – Materials and Methods 

35 
 

 

Figure 2.8 Soil profile in Level II plot Gontrode (nr. 16) (photo: Nathalie Cools) with on the 
right side the morphogenetic horizons and their depth ranges (cm) taken from Mikkelsen 
et al. (2008). 

The Level II plot is located in a mixed forest stand, dominated by common (pedunculate) 

oak (Quercus robur L.) and European beech (Fagus sylvatica L.), and further containing 

European ash (Fraxinus excelsior L.), larch (Larix spp.) and sycamore maple (Acer 

pseudoplatanus L.). The main tree layer was planted shortly after the first World War in 

an ancient woodland site (Figure 2.9). The herb layer is moderately developed and 

consists of bramble (Rubus fruticosus L.) and a limited number of typical forest plant 

species (e.g. Polygonatum multiflorum (L.) All.). About 10 years ago the invasive Lamium 

galeobdolon subsp. argentatum entered the plot via the north side, where it is locally 

dominant. The understorey is rather dense and consists mainly of common hazel 

(Corylus avellana L.), sycamore maple and rowan (Sorbus aucuparia L.). The Level II plot 

is located in a fenced scientific area (1.83 ha) that contains a 35-m high measuring tower, 

where meteorological variables and tree phenology and physiology are monitored. The 

scientific area is operated by the Forest & Nature Lab (ForNaLab) 

(www.ugent.be/bw/dfwm/en/research/fornalab) and the Laboratory of Plant Ecology 

(www.plantecology.ugent.be) of the University of Ghent. This site is a Natura 2000 forest 

habitat 9130. 
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Figure 2.9 Level II plot Gontrode (nr. 16) with a view of the measuring tower (photos: left: 
Arne Verstraeten; right: Arthur De Haeck). 

 Hoeilaart (HOE) (nr. 21) 2.1.5

Level II plot nr. 21 is located in the Sonian forest in the community of Hoeilaart, in the 

central hills of Flanders. This plot constitutes an important component of the LTER-site 

‘Sonian Forest’ (LTER_EU_BE_02), that covers the whole forest complex (4400 ha). The 

forest is surrounded by residential areas near the south-eastern border of the city of 

Brussels, and is crossed by several highways. The soil is loamy, with moderately low 

base saturation and deep groundwater table (> 30 m) (Figure 2.10). 
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Figure 2.10 Soil profile in Level II plot Hoeilaart (nr. 21) (photo: Nathalie Cools) with on 
the right side the morphogenetic horizons and their depth ranges (cm) taken from 
Mikkelsen et al. (2008). 

The Level II plot is located in a homogeneous stand of European beech (Fagus sylvatica 

L.), which was planted in 1909 on an ancient woodland site (Figure 2.11). The herb layer 

is relatively well developed and hosts several ancient forest plant species (Hyacinthoides 

non-scripta (L.) Rothm., Hypericum pulchrum L., Lamium galeobdolon (L.) L. subsp. 

montanum (Pers.) Hayek, Luzula pilosa (L.) Willd., Maianthemum bifolium (L.) F. W. 

Schmidt, Moehringia trinerva (L.) Clairv., Oxalis acetosella L., Polygonatum multiflorum 

(L.) All.). Since 2006, an understorey of beech and sycamore maple (Acer 

pseudoplatanus L.) started to develop in this Level II plot. This site is a Natura 2000 

forest habitat 9120. 
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Figure 2.11 Level II plot Hoeilaart (nr. 21) (photos: Arne Verstraeten). 

 Sample collection and measurements 2.2

The monitoring programme in the Level II plots consists of several surveys, carried out on 

a regular basis (Table 2.4). All research presented in this thesis was based on the long-

term datasets on deposition, soil solution chemistry and foliar chemistry. The available 

data series were thoroughly validated and further extended with new data over the course 

of this study using the standardized guidelines and methods of the ICP Forests manual 

(ICP Forests, 2016). 
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Table 2.4 Overview of the different surveys, current frequency of execution and the 

number of Level II core plots and additional plots where each survey is carried out 

(adopted from Cools et al. (2016)). Surveys from which data were used for the research 

presented in this thesis are shaded in grey. 

Survey Frequency Core Additional Starta 

Soil Every 10 years 5 6 1992 

Ground vegetation Every 5 years 5 6 1988 

Forest inventory Every 5 years 5 6 1988 

Growth     

   - Girth bands Before and after growing season 5 6 2007 

   - Point dendrometers Continuously 1 - 2014 

Crown condition Every year 5 6b 1988 

Deposition     

   - Open field Continuously (halfmonthly) 5 - 1993 

   - Throughfall Continuously (halfmonthly) 5 - 1992 

   - Stemflow Continuously (halfmonthly) 3 - 1994 

Soil solution chemistry     

   - Organic layer Halfmonthly 5 - 1993 

   - Mineral soil Halfmonthly 5 - 1992 

Soil water content Every 6 hours 5 - 1996 

Ground water level Halfmonthly 4 - 1999 

Litterfall Continuously (halfmonthly) 5 - 1999 

Foliar chemistry Every 2 years 5 6c 1988 

Meteorology Continuously 3 - 2011 

LAI Every year (summer and winter) 3 - 2009 

Phenology     

   - Observers Every week (spring and autumn) 5 1 2002 

   - Camera’s Continuously 1 - 2014 

Air pollutant concentrations     

   - Passive samplers (O3
d, 

     NH3) 
Continuously (halfmonthly) 5 - 2009 

   - Monitors (O3, NH3, SO2, 
     NOx) 

Continuously 1 - 1995 

Sapflow Continuously 1 - 2014 

Soil temperature Every 6 hours 5 - 1996 
a in this year the first measurements were conducted, but not necessarily at all plots and at the 

current frequency 
b until 2009 
c until 2007 
d until 2011 
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 Deposition sampling 2.2.1

Deposition sampling was done according to the guidelines of the ICP Forests manual, 

part IV (Clarke et al., 2016), including three different fractions: precipitation (rainfall) in the 

open field (since 1993) and under the canopy (throughfall) (since 1992) and water 

draining from the trunk of trees (stemflow) (since 1994).  

  

 

Figure 2.12 View of the bulk precipitation collectors (top left ) and the four partly filled 
sampling bottles (bottom) in the open field nearby the Level II plot in Hoeilaart (nr. 21) 
(photos: Yvan De Bodt), and scheme of a bulk collector (top right). 

Precipitation was sampled with four bulk collectors, located in the open field (a grassland 

vegetation mown several times per year) nearby each Level II plot (at 200‒2000 m 



Chapter 2 – Materials and Methods 

41 
 

distance) (Figure 2.12). Bulk collectors consisted of a polyethylene funnel (14 cm Ø) 

placed at 1 m height on top of an orange opaque PVC tube (12 cm Ø) (Figure 2.12). The 

funnel was connected to a subterranean 2-L transparent polyethylene bottle by a black 

opaque PVC tube (2 cm Ø). The advantage of storing the collecting bottle in a soil pit was 

demonstrated in an experiment during an extremely hot period in the summer of 2010 at 

an open field site near INBO in Geraardsbergen. In this experiment light and temperature 

at the bottom of the collecting bottle was compared between two adjacent bulk 

precipitation collectors, the first with an aboveground bottle, the second with a 

subterranean bottle, but further identical. Water samples in the belowground bottle were 

protected from heat, temperature fluctuations and direct sunlight, while very large peaks 

and fluctuations were recorded in the aboveground bottle (Figure 2.13). As demonstrated 

by experiments in other countries, chemical transformations in water samples (mostly for 

DOC, pH, NH4
+ and Ntot) may occur during storage in the field, but these changes are 

generally limited for short periods of up to two weeks and at temperatures below 20°C 

(König et al., 2013). In the five plots the average soil temperature in the upper 

centimetres of the mineral soil is 9.8‒10.9°C and seldom reaches 20°C (Table 2.5), which 

means that chemical transformations in the deposition samples under field conditions 

likely are limited. A nylon mesh (1 mm2 mesh size) was placed in the funnel to avoid 

contamination by larger particles. All collecting bottles, funnels and nylon meshes were 

replaced by clean material (acid-washed in the laboratory) at every sampling event. 

Table 2.5 Mean, minimum, maximum and standard deviation (Sd) of soil temperature (°C) 
at 1‒5 cm depth in the mineral soil in the five Level II plots (2011‒2015). 

Plot Depth Soil temperature 
  Mean Min Max Sd 
 (cm) (°C) (°C) (°C) (°C) 

Coniferous forests    
RAV 1 10.5 0.0 18.9 3.8 
BRA 4 10.9 1.0 20.2 3.9 
Deciduous forests    
WIJ 2 10.4 2.9 17.1 3.3 
GON 4 10.3 1.3 18.3 3.5 
HOE 5 9.8 1.4 17.6 3.6 
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Figure 2.13 Temperature (°C) and light intensity (Lux) measured at a 5 minutes interval 
inside the bottle (on the bottom) of two adjacent bulk precipitation collectors with 
respectively a subterranean bottle and an aboveground bottle in an open field site near 
INBO in Geraardsbergen in the hot summer of 2010 (from 22 June till 18 August) with 
record air temperatures up to 33.9 °C (measured on July the 2nd at the meteorological 
station of Uccle, www.meteo.be) (König et al., 2013). 
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Throughfall was sampled in each plot with ten bulk collectors of the same type as the 

collectors in the open field, systematically distributed around the plot centre (Figure 2.14). 

At every sampling event, the volume collected in each bulk collector was determined and 

samples were bulked to one sample for rainfall and throughfall per plot. 

 

 

Figure 2.14 View of the throughfall collectors in Wijnendale (nr. 11) (left, photo: Yvan De 
Bodt), scheme of the arrangement of throughfall collectors (middle) and detail of the 
upper part (funnel with mesh) of a throughfall collector in Ravels (nr. 14) (right, photo: 
Yvan De Bodt). 

Stemflow sampling was done only for Fagus sylvatica, because preliminary samplings 

had shown that stemflow for Pinus and Quercus robur was negligible (< 1 % of rainfall). In 

the homogeneous beech stands (WIJ, HOE) five trees of different size were selected for 

stemflow analysis, based on the mean (M) and standard deviation (SD) of the diameter 

(Ø) of all living trees in each plot in 1994 (M, M ‒ SD, M + SD, M ‒ 2 x SD, M + 2 x SD); 

in the mixed oak-beech stand (GON) three trees (M, M ‒ 2 x SD, M + 2 x SD). Stemflow 

collectors consisted of flexible polyvinylchloride collars/gutters (7 cm Ø) attached 

horizontally to the stem at 1 m height, draining to a series of 180-L and 200-L 

polyethylene storage containers mounted in a cascade system using silicone tubing 

(Figure 2.15). The volume collected for each individual container/tree was determined at 

every sampling event using calibrated gauging rods (one for each type of container). 

Subsamples were taken from all full containers, with subsample volumes weighted to tree 

diameters, and bulked to one sample. Containers were emptied and cleaned in the field 

after every sampling event and collars/gutters were cleaned (e.g. removal of litter) and 
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rinsed with deionized water. The nylon meshes (1 mm2 mesh size) in the drain of 

collars/gutters were replaced by clean material (acid-washed in the laboratory) at every 

sampling event. In each plot one of the trees was equipped with an automatic tipping 

bucket system (UGT), allowing to store the data electronically (Figure 2.16). This device 

automatically collects a 1% volume weighted subsample, avoiding the use of large 

containers. These data were occasionally used to correct stemflow volumes in case of 

incidental overflow of containers, for example after abundant rainfall. Stemflow volumes, 

obtained from the individual trees, were scaled up to plot level using information of basal 

area. Immediately after sampling the deposition samples were stored in an isolated box 

with ice packs, wherein they were transported to the laboratory. 

Because data for all deposition fractions were needed for each year, data from 1992‒

1993 were excluded from the data analysis. 

  

 

Figure 2.15 Detail of a stem flow collar in Hoeilaart (nr. 21) (top left, photo: Yvan De 
Bodt), stemflow collector in Wijnendale (nr. 11) (top right, photo: Arne Verstraeten) and 
full containers on an icy morning in Gontrode (nr. 16) (bottom, photo: Yvan De Bodt). 
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Figure 2.16 Automatic tipping bucket system (UGT) for stemflow sampling in Hoeilaart 
(nr. 21) (photos: Pieter Dhaluin). 

 Soil solution sampling 2.2.2

Samples of soil solution were collected according to the guidelines of the ICP Forests 

manual, part XI (Nieminen et al., 2016). Soil solution draining from the O horizon (forest 

floor) was sampled with two (1993‒1997) and since 1997 four (RAV, BRA, GON, HOE) or 

six (WIJ) randomly located zero-tension lysimeters (plate lysimeters) per plot. They 

consisted of a 5 cm high stainless steel box covered with a nylon mesh (1 mm2 mesh 

size), installed underneath the forest floor (Figure 2.17). Soil solution from the mineral soil 

was sampled using tension lysimeters (lysimeter ‘candles’) with a ceramic cup 

(Eijkelkamp) at two (1992‒1997) and since 1997 three locations per plot (Figure 2.17). 

Each location was equipped with one (1992‒1997) and since 1997 two to four tension 

lysimeters at each of three depths in the capillary zone (for practical reasons further 

called A, B and C horizon, although in several plots the C horizon in fact starts deeper 

than the range of the deepest lysimeters, which are thus in fact still in the B horizon) 

(Table 3.2). Each tension lysimeter was pressurized to 0.6 bar using an electric or hand 

vacuum pump two days before sampling. The soil solution was collected in 1‒2 L bottles 

made from dark coloured borosilicate glass and placed in a shallow soil pit (Figure 2.17). 
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As explained in section 2.2.1 this protected the samples from heat and temperature 

fluctuations, while the shade from the canopy and the dark colour of the glass protected 

the samples from solar radiation, limiting the risk of chemical transformations in the 

samples. The collecting bottles were replaced by bottles that were acid-washed in the 

laboratory at least once every six months to prevent growth of algae or fungi inside the 

bottle. The collecting bottles were connected to the lysimeters by perfluoroalkoxy (PFA) 

tubing, that was replaced every 1‒2 years. 

Preliminary tests have shown that soil solution chemical composition could vary 

significantly among individual lysimeters due to spatial variation in soil characteristics, but 

for financial reasons, samples were bulked to one composite sample per depth per plot at 

every sampling event, using the entire collected volume. 

 

 

 

Figure 2.17 Tension lysimeters in Brasschaat (nr. 15) (left, photo: Arne Verstraeten), 
zero-tension lysimeter in Ravels (nr. 14) (top right, photo: Arne Verstraeten) and 
preparation of soil solution samples (bottom right, photo: Yvan De Bodt). 



Chapter 2 – Materials and Methods 

47 
 

Because it was the objective of this work to study the impact of depositions on soil 

solution chemistry, soil solution data from 1992‒1993 were excluded from the data 

analysis, as was done for the deposition data (see section 2.2.1). 

For the mineral soil, tension lysimeters were chosen because the installation of zero-

tension lysimeters would create too much soil disturbance. The first tension lysimeters 

(1994) were installed at an angle of 45°, avoiding disturbance of the soil above the cup, 

but the disadvantage is that the characteristics of the soil layers above and the exact 

depth of the lysimeter are unknown. Therefore, tension lysimeters were placed vertically 

into the soil since 1997. For the O horizon was opted for zero-tension lysimeters, because 

there it is difficult to maintain a good contact between suction cups and the surrounding 

organic matter. Zero-tension lysimeters consequently collect more water than tension 

lysimeters in organic layers, while tension lysimeters collect more water in the mineral soil 

because the pressure allows to capture also capillary water together with percolating 

water (Nieminen et al., 2016). 

It should be remarked that the ceramic cups of newly installed tension lysimeters may 

absorb DOC, particularly the hydrophobic fraction derived from decomposing litter 

(Guggenberger and Zech, 1992; Rais et al., 2006). This effect however disappears when 

the lysimeter is well equilibrated in the field (Guggenberger and Zech, 1992). Therefore, 

samples of newly installed tension lysimeters were not mixed with the samples of existing 

lysimeters until solute concentrations had normalized. A minimum equilibration period of 

six months was respected, and even longer if necessary (mostly concentrations 

normalized within 3‒6 months). If solute concentrations did not normalize within a period 

of one year, or if the new lysimeter quickly lost its pressure or the retrieved sample 

quantity remained insufficient, it was reinstalled or, when suspected to be malfunctioning, 

replaced by another lysimeter. It should also be remarked that ceramic cups give good 

results for B and C horizons but are less suitable for A horizons, because DOC 

concentrations could be more variable there and a percolation volume of 300 ml is 

needed to reach equilibrium, which is often difficult in A horizons (Guggenberger and 

Zech, 1992). Besides DOC, also heavy metals could be absorbed by ceramic cups (Rais 

et al., 2006), but likely this problem also disappears when lysimeters are well equilibrated 

in the field, because the sorption capacity is limited. While ceramic cups are suitable to 

examine most ions and elements in solution (NO3
-, Na+, Cl-, SO4

2-, ...) glass cups are 

better to study DOC and plastic cups for heavy metals, but for financial and practical 

reasons it was of course impossible to work with three different tension lysimeter types, 
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regarding the number of replicates needed to cover spatial variability and to obtain 

sufficient sample volume for analysis. 

Immediately after sampling the soil solution samples were stored in an isolated box with 

ice packs, wherein they were transported to the laboratory. 

 Sampling of needles and leaves 2.2.3

Sampling of fresh tree foliage (leaves or needles) was carried out biennially (uneven 

years) by professional tree climbers (Figure 2.18). Samples were always collected from 

the same five dominant trees in each plot and from the upper third of the crown (needles 

or leaves that developed in light), according to the guidelines of the ICP Forests manual, 

part XII (Rautio et al., 2016). This meant that specific branches were cut by hand wearing 

powder free laboratory gloves. These were immediately put in polyethylene bags, in 

which they were also carried down. Then a first selection of branches was made and 

these were stored in sealed polyethylene bags, which were transported to the laboratory 

in isolated boxes with ice packs. 

  

Figure 2.18 Tree climber Wim Vancraeynest (Arbol) on his way to the canopy (left) and 
selection of needle samples by Luc De Geest (right) in Brasschaat (photos: Arne 
Verstraeten). 
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 Sample pre-treatment and chemical analysis 2.3

Samples were treated and analysed as prescribed by the ICP Forests manual, part XI, XII 

and XIV (Clarke et al., 2016; Nieminen et al., 2016; Rautio et al., 2016). Quality control 

included the analysis of control samples (blanks, reference material, replicates) and 

participation in the ICP Forests water and foliar ring tests, according to the guidelines of 

the ICP Forests manual, part XVI (König et al., 2016). 

 Deposition and soil solution samples 2.3.1

Water samples (500-mL subsamples of each collected fraction) were kept cool during 

transportation, filtered (0.45 µm), stored in darkness at 4 °C and analysed within 48 hours 

after sampling. pH (Multi 340i-glass electrode, WTW) and conductivity (Multi 340i-

Tetracon®325, WTW) were measured on unfiltered subsamples. Concentrations of 

cations (Ca2+, K+, Mg2+, Na+, NH4
+) and anions (Cl-, NO3

-, NO2
-, SO4

2-) (mg L-1) were 

determined simultaneously using ion chromatography (Dionex ICS-3000, LOQ = 0.1 mg 

L-1). Concentrations of DOC were determined using a TOC-analyser (Shimadzu TOC 

5050A, LOQ = 0.1 mg C L-1). Concentrations of total Kjeldahl nitrogen (TKN) were 

determined using the modified Kjeldahl (continuous flow) method (Skalar, limit of 

quantification, LOQ = 0.5 mg N L-1). Concentrations of total aluminium (Altot) and iron 

(Fetot) in soil solution samples were measured with an inductive coupled plasma 

spectrometer (Varian Liberty Series II ICP-OES, LOQ = 0.1 mg L-1). 

 Foliage samples 2.3.2

In the laboratory, sufficient leaves or needles were picked from the selected branches. 

Foliage samples were dried in an oven at 40 °C until constant weight and pulverised with 

a suitable mill (Retsch SM 2000). For each of the sampled trees a homogenized 

subsample was analysed at every sampling event. Foliar N concentrations (mg g-1 dry 

weight at 105 °C) were determined using the modified Kjeldahl method with NH4
+-back 

titration (Gerhardt KB8S, LOQ = 1 mg N kg-1). Foliar concentrations of P, Ca, K and Mg 

(mg g-1 dry weight at 105 °C) were determined using an inductive coupled plasma 

spectrometer (Varian Liberty Series II ICP-OES, LOQ = 50 mg kg-1) after microwave 

digestion with HNO3/H2O2. 



Chapter 2 – Materials and Methods 

50 
 

 Calculation of drainage fluxes 2.4

Drainage fluxes were calculated for the O, A, B and C horizon using the simple mass 

balance method, which is originally based on the assumption of conservation of mass 

between the input of atmospheric Cl- and the Cl- flux in the subsoil (Eriksson and 

Khunakasem, 1969). Because the conservative behaviour of Cl- is subject to discussion 

(Svensson et al., 2012), we used sodium (Na+) as a tracer instead of Cl- as previously 

done by De Schrijver et al. (2004) and De Schrijver et al. (2008). The mass balance 

method requires the assumption of conservative behaviour of Na+ in the soils. For the five 

Level II plots studied, we assumed that the contribution of weathering to Na+ 

concentrations in the soil solution is negligible over the study period, given the minor 

amounts of Na-Feldspar and mica in the finer soil textures and the absence of these 

minerals in the sandy soils (Van Ranst et al., 2002). Also the amount of exchangeable 

Na+ in the soils is very low (Mikkelsen et al., 2008). We furthermore assumed that the 

adsorption of Na+ to clay mineral surfaces is negligible, given the very low soil pH-CaCl2 

(Table 2.2). As shown by a single chemical analysis in 2007 the amount of Na+ taken up 

by ground vegetation is limited to 0.003‒0.041 kg ha-1 and thus negligible (INBO, 

unpublished results). The same accounts for the amount of Na+ taken up by the trees, 

since Na+ concentrations in wood samples taken from stem discs at 1 m height were 

mostly below the LOQ of 50 mg kg-1 (INBO, unpublished results). 
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Abstract 

Throughout Europe and the USA, forest ecosystem functioning has been impacted by 

long-term excessive deposition of acidifying compounds. In this study, we report on 

trends in stand deposition and soil solution fluxes of inorganic nitrogen (N) and sulphur 

(S) compounds over a 17-year period (1994‒2010) in five ICP Forests monitoring plots in 

Flanders, northern Belgium. Deposition was dominated by N, and primarily NH4
+. 

Deposition of SO4
2- and NH4

+ declined by 56‒68% and 40‒59% respectively. Deposition 

of NO3
- decreased by 17‒30% in deciduous forest plots, but remained stable in 

coniferous forest plots. The decrease in N and S deposition was paralleled by a 

simultaneous decline in base cation (BC = Ca2+ + K+ + Mg2+) deposition, resulting in a 

45‒74% decrease in potentially acidifying deposition. Trends in soil solution fluxes of 

NH4
+, NO3

-, SO4
2- and BC mirrored declining depositions. Nitrate losses below the rooting 

zone were eminent in both coniferous forest plots and in one deciduous forest plot, while 

net SO4
2- release was observed in two deciduous forest plots. Critical limits for BC:Altot 

ratio were exceeded at the three plots on sandy soils with lower cation exchange capacity 

and base saturation. Soil solution acid neutralizing capacity increased but remained 

negative, indicating that soil solution acidification continued, as the start of recovery was 
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delayed by a simultaneous decrease in BC depositions and short-term soil buffering 

processes. Despite substantial reductions, current N deposition levels still exceed 4‒8 

times the critical load for safeguarding sensitive lichen species, and are still 22‒69% 

above the critical load for maintaining ground vegetation diversity. 

 Introduction 3.1

Since the late 1970s atmospheric deposition of sulphur (S) and nitrogen (N) has been 

related to adverse effects on forest soil condition and soil solution chemistry throughout 

Europe and the USA (Ulrich et al., 1979; Aber et al., 1989; Alewell et al., 2000; 

MacDonald et al., 2002; Driscoll et al., 2003a; Monteith et al., 2007). According to these 

studies, soil acidification entailed elevated aluminium (Al) concentrations in soil solution, 

depletion of base cations from the soil exchange complex, diminished leaching of 

dissolved organic carbon following decelerated litter decomposition, and N saturation 

indicated by losses of NO3
- below the rooting zone. 

As soon as harmful effects of transboundary air pollution were recognized, abatement 

strategies were outlined within the Convention on Long-Range Transboundary Air 

Pollution (CLRTAP) of the United Nations Economic Commission for Europe (UNECE) 

(www.unece.org). The implementation of the so-called S protocols (Helsinki 1985, Oslo 

1994) and the Gothenburg multi-pollutant protocol (1999) resulted in a reduction of SO2 

emissions in Western Europe by a factor 8‒9 between 1980 and 2010, whereas 

emissions of nitrogen oxides (NOx) and ammonia (NH3) were reduced by 40% and 36% 

respectively (Granier et al., 2011; European Environment Agency, 2014). In Flanders, 

northern Belgium, emissions and depositions of potentially acidifying N and S compounds 

were reduced between 1990 and 2010 with respectively 61% (VMM, 2011) and 51% 

(VMM, 2012). Despite these reductions, current NOx emissions in Flanders still exceed 

the 2010 ceilings set by European legislation (EU, 2001). 

Several studies highlighted the unfavourable condition of forest soils in Belgium as a 

result of long-term excessive N and S depositions. A European study on ICP forests 

monitoring sites in several countries, including Belgium, revealed that critical limits for N 

concentrations in soil solution were frequently exceeded between the early 1990s and 

2006 (Iost et al., 2012). Two coniferous forest plots in Flanders showed a steady decline 

of soil solution acid neutralizing capacity (ANC) and of molar Ca2+/Al ratio between 1992 

and 1997, despite decreasing depositions (Neirynck et al., 2002). Over a longer period, a 
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significant acidification of the upper layer (0.3‒0.4 m) of several forest soil types was 

observed between 1950 en 1985 (Ronse et al., 1988). A follow-up study showed an 

ensued acidification of the mineral topsoil from podzols between 1985 and 2000 (De 

Schrijver et al., 2006). 

Long-term monitoring of acidifying depositions and soil solution concentrations provides a 

valuable tool to evaluate abatement strategies and to track possible chemical recovery 

from long-term inputs. Data for stand deposition and soil solution chemistry in five ICP 

Forests intensive monitoring plots (Level II) are collected since 1994. Long-term records 

were analysed in order to: 1) evaluate trends in potentially acidifying depositions between 

1994 and 2010, 2) investigate the effects of potentially acidifying depositions on soil 

solution chemistry, and 3) discuss the observed trends in relation to critical loads and 

levels. We hypothesized that potentially acidifying depositions decreased in Flemish 

forests during the study period and that this lowered the elemental concentrations in soil 

solution, leading to a better condition with regard to critical loads and levels. 

 Materials and methods 3.2

 Study area 3.2.1

Five plots of the ICP Forests intensive monitoring network (Level II) in Flanders, northern 

Belgium, were included in this study. More details about these Level II plots are given in 

section 2.1. 

 Sample collection and measurements 3.2.2

Sampling of throughfall, stemflow and soil solution was carried out fortnightly from 

January 1994 till December 2010. A detailed description of the methods used for 

deposition sampling is given in section 2.2.1 and for soil solution sampling in section 

2.2.2. 

 Chemical analysis 3.2.3

A description of the methods used for sample pre-treatment and for the determination of 

the concentrations (mg L-1) of H+, Altot, Ca2+, K+, Mg2+, NH4
+, Na+, SO4

2-, Cl- and NO3
- on 

the collected samples of throughfall, stemflow and soil solution is given in section 2.3.1. 
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 Data handling 3.2.4

All field data (e.g. sample weights) and analytical results were subjected to a detailed 

quality check and validation procedure, according to the guidelines of the ICP Forests 

Working Group on Quality Assurance/Quality Control (Mosello et al., 2005). Throughfall 

and stemflow data showed only minor irregularities and validated data from all years were 

included in the data analysis. Soil solution data showed some inconsistencies and 

missing values as a result of drought periods and consequently low sampling volumes, 

especially during the first years after installation. These data were excluded from further 

analysis, reducing the time span of several data series. 

Stand deposition was calculated as the sum of throughfall and stemflow deposition 

(further denoted as TF). Taking TF as a variable instead of total deposition means that we 

did not correct for canopy exchange (canopy uptake of NH4
+, H+ and NO3

-, canopy 

leaching of Ca2+, K+, Mg2+, Na+, Cl-, SO4
2- and weak acids, ...). This way the many 

uncertainties and assumptions associated with the use of canopy budget models 

(Staelens et al., 2008; Adriaenssens et al., 2013) were avoided. Moreover, as TF 

represents the amount of deposition that reached the forest floor, and as such directly 

affects soil solution chemistry, it is more relevant in the context of this study than total 

deposition. Stand deposition was corrected for inputs from marine sources (Stedman et 

al., 1990). Deposition of potentially acidifying compounds (ACID) was calculated as the 

sum of NO3
-, NH4

+, SO4
2- and Cl-, corrected for the neutralizing effect of BC (BC = Ca2+ + 

K+ + Mg2+), according to UNECE (2004). 

Drainage fluxes were calculated for the O, A, B and C horizon using the mass balance 

method (see section 2.4). Annual soil fluxes of individual elements were then calculated 

by multiplying the drainage flux with mean annual soil solution concentrations at each 

depth. We assumed that elemental fluxes through the C horizon represented losses 

below the rooting zone. The ANC was obtained by subtracting the sum of SO4
2-, NO3

- and 

Cl- from the sum of BC and Na+ in molc. It was multiplied by the precipitation surplus to 

allow comparison with deposition fluxes. The BC:Altot ratio for the mineral soil solution 

was calculated as the ratio of the sum of BC to Altot in molc, assuming that Al ions were 

entirely present as Al3+. 
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 Statistical analysis 3.2.5

Data exploration and statistical analysis were performed in S-plus for Windows, version 

6.2. The nonparametric Seasonal Mann-Kendall Test (Hirsch et al., 1982) was applied to 

detect monotonic trends in three-monthly aggregated data representing the four seasons 

(January-March, ..., September-December) for TF and soil solution fluxes. This test 

allows to detect possible effects of seasonality, unlike classical linear regression. Trends 

were evaluated by the significance of Theil-Sen’s slope, which is the median change 

between years for all seasonal blocks (Sen, 1968). In order to ascertain whether SO4
2-, 

NH4
+ and NO3

- were retained within the ecosystem, their mean annual output/input ratio 

was calculated for each soil depth. Differences between input (TF) and output (soil 

solution fluxes at each depth) were evaluated using a paired t-test. Cross-site statistics 

were performed by means of ANOVA/Tukey’s range test. We used two critical limits to 

evaluate whether soils showed chemical recovery and were protected against aluminium 

toxicity: ANC = 0 (Holmberg et al., 2001) and BC:Altot ratio (BC:Altot = 1.2 for Pinus; 

BC:Altot = 0.6 for Quercus and Fagus) (Sverdrup and Warfvinge, 1993; UNECE, 2004). 

 Results 3.3

 Trends in potentially acidifying depositions 3.3.1

Depositions of non-marine SO4
2- and NH4

+ significantly declined at all plots by 56‒68% 

and 40‒59% respectively (Table 3.1, Figure 3.1). Depositions of NO3
- decreased 

significantly in deciduous forest plots by 17‒30%, but remained stable in coniferous forest 

plots. However, NO3
- depositions decreased only during the first two years (1994‒1996) 

and were stable thereafter. Depositions of N and S were highest in coniferous forest 

plots. Molar NH4
+:NO3

- ratios declined significantly at all locations from 2.44 to 1.90 (plot-

averaged ratio). Depositions of BC decreased significantly at all plots by 19‒41% and 

were highest in deciduous forest plots. Depositions of ACID decreased significantly at all 

plots by 45‒74% and were highest in coniferous forest plots. We did not observe any 

relation between tree species or site and the rate of decrease in ACID depositions. 
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Table 3.1 Seasonal Mann-Kendall trends (1994‒2010) for TF (sea salt corrected) with mean value in mm yr-1 (stand precipitation) or 

molc ha-1 yr-1 (NH4
+, NO3

-, SO4
2-, BC, ACID), mean molar ratio (NH4

+:NO3
-), letters (a-d) indicating groups of plots with comparable mean 

(p < 0.05) and Theil-Sen’s slope with significance (ns: not significant, *: p < 0.05, **: p < 0.01, ***: p < 0.001). 

Plot Stand  NH4
+   NO3

-   NH4
+:NO3

- (molar)  SO4
2-   BC   ACID  

 Mean Slope  Mean Slope  Mean Slope  Mean Slope  Mean Slope  Mean Slope  Mean Slope 

 (mm yr-1)  (molc ha-1 yr-1)  (molc ha-1 yr-1)  (-)   (molc ha-1 yr-1)  (molc ha-1 yr-1)  (molc ha-1 yr-1) 

RAV 636a ns  1901d -69***  645b ns  2.96c -0.09***  1229bc -63***  733a -11*  2995d -127*** 

BRA 784b ns  1576c -49***  709b ns  2.24b -0.05***  1380c -70***  966b -25***  2593c -93*** 

WIJ 712ab ns  1370bc -72***  519a -7*  2.67bc -0.09***  1021ab -59***  1209bc -19*  1763b -120*** 

GON 657a ns  1155b -49***  529a -9*  2.18b -0.06***  1212bc -62***  1741d -23**  1198a -84*** 

HOE 743b ns  806a -42***  521a -12***  1.53a -0.05***  869a -53***  1400c -47***  816a -56*** 
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Figure 3.1 Annual TF (sea salt corrected) in molc ha-1 of BC (multiplied by -1), H+, SO4
2-, 

NH4
+, NO3

- and ACID. 
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 Trends in soil solution fluxes 3.3.2

Soil solution fluxes of SO4
2- decreased significantly at most depths in all plots (Table 3.2, 

Figure 3.2). Fluxes of NH4
+ through the O horizon decreased significantly in BRA, but 

remained stable at the other plots. In the mineral soil, fluxes of NH4
+ were negligible. Soil 

solution fluxes of NO3
- in coniferous forest plots decreased significantly in the mineral soil, 

but remained stable in the O horizon. In two deciduous forest plots (WIJ, HOE) fluxes of 

NO3
- declined throughout the entire soil profile, but in GON this was confined to the C 

horizon. In the O horizon, NO3
- fluxes were lower in coniferous than deciduous forest 

plots. In the mineral soil, on the contrary, the lowest NO3
- fluxes were observed in two 

deciduous forest plots (WIJ, HOE), while strongly elevated NO3
- fluxes were found in 

GON. The decrease in the soil solution fluxes of SO4
2- and NO3

- was accompanied by a 

decrease in BC and Al. Aluminium prevailed in the soil chemistry of the more sandy soils 

(RAV, BRA, WIJ), where the buffer system from the whole soil profile had entered the Al 

buffer range. Soil solution ANC increased significantly in three plots (BRA, WIJ, HOE), 

and remained nearly stable in the other plots (Figure 3.3). Mean ANC was below 0 except 

in the O horizon in HOE. In the mineral soil, BC:Altot ratios decreased in three plots (RAV, 

WIJ, HOE) and remained nearly stable in the other plots (Figure 3.4). Critical limits for 

BC:Altot ratio were never exceeded in two deciduous forest plots (GON, HOE), but were 

permanently exceeded in the coniferous forest plots and in the B and C horizon of one 

deciduous forest plot (WIJ). 
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Table 3.2 Seasonal Mann-Kendall trends for soil solution fluxes with the examined period in years, mean value in mm yr-1 (precipitation 

surplus) or molc ha-1 yr-1 (SO4
2-, NH4

+, NO3
-, BC, Altot, H

+, ANC), mean molar ratio (BC:Altot), letters (a-d) indicating groups of plots with 

comparable mean (p < 0.05) and Theil-Sen’s slope with significance (ns: not significant, *: p < 0.05, **: p < 0.01, ***: p < 0.001). 

Plot Period Sampling Prec. surplus  SO4
2-   NH4

+   NO3
-   BC  

  Depth Mean Slope  Mean Slope  Mean Slope  Mean Slope  Mean Slope 
  (cm) (mm yr-1)  (molc ha-1 yr-1)  (molc ha-1 yr-1)  (molc ha-1 yr-1)  (molc ha-1 yr-1) 

O horizon                
RAV 1994-2010  476a ns  997ab -36***  709a ns  1113ab ns  1477a ns 
BRA 1994-2010  560ab ns  1383c -64***  722ab -64***  791a ns  1440a ns 
WIJ 2003-2010  662b ns  861a -53**  379c ns  2590c -192*  2979b ns 
GON 1994-2010  469a ns  1268bc -26*  495bc ns  1852d ns  3244b ns 
HOE 1994-2010  508a ns  881a -21*  352c ns  1373b -30*  2806b ns 
A horizon                
RAV 1997-2010 10-25 353ab ns  1111a -67***  88a ns  1631b -89**  887a -80*** 
BRA 2002-2010 15-25 319ab ns  1127ab -47*  10a ns  949a ns  720a -52* 
WIJ 2002-2010 10-20 351ab ns  914a -61**  7a ns  756a -160***  828a ns 
GON 1996-2010 10-20 317a ns  1492b -77***  30a +1**  2302c ns  3017b -89*** 
HOE 2001-2010 10-15 418b -21*  779a -74***  6a ns  676a -104***  1198a -205*** 
B horizon                
RAV 2002-2010 30-45 267a ns  874a ns  10a ns  1291ac -141**  372a -34** 
BRA 1994-2010 30-55 280a ns  1487b -76***  132b -1**  1570bc -130***  953b -61*** 
WIJ 1998-2010 45-70 250a ns  1105a -59***  9a ns  1098ab -167***  788ab -105*** 
GON 1999-2010 25-40 326ab ns  1198ab ns  10a +1***  1928c ns  2310c -94** 
HOE 1998-2010 20-30 415b -18**  954a -62***  33a ns  615a -44***  1202b -144*** 
C horizon                
RAV 1994-2010 70-95 221ab +14***  1353ab ns  4a ns  1365b -51*  480a -29*** 
BRA 1997-2010 70-90 300bc -12***  1683b -82***  3a ns  1120b -104***  738a -68*** 
WIJ 2002-2010 75-110 197a -8*  1178a -69**  1a -0.2*  351a -64***  466a -47*** 
GON 1994-2010 45-55 255ab -9**  1389ab -71***  6a ns  1321b -84***  2009c -104*** 
HOE 1996-2010 35-55 377c ns  1091a -60***  3a ns  504a -28***  1225b -89*** 
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Table 3.2 continued. 

Plot Period Sampling Altot   H+   ANC   BC:Altot (molar) 
  Depth Mean Slope  Mean Slope  Mean Slope  Mean Slope 
  (cm) (molc ha-1 yr-1)  (molc ha-1 yr-1)  (molc ha-1 yr-1)  (-) 

O horizon             
RAV 1994-2010     336b +26***  -1474a ns    
BRA 1994-2010     405b +41***  -1508a +110***    
WIJ 2003-2010     732c -93**  -1158ab +189**    
GON 1994-2010     97a +5**  -573b ns    
HOE 1994-2010     38a +4***  +113c +43**    
A horizon             
RAV 1997-2010 10-25 1811b ns  1155b ns  -2020a ns  0.49b -0.04*** 
BRA 2002-2010 15-25 1006a -135***  1101b ns  -1548ab +92*  0.84ab +0.07* 
WIJ 2002-2010 10-20 786a -76**  1016b -112***  -1105bc +161***  1.05ab -0.05* 
GON 1996-2010 10-20 982a -34*  527a +44***  -901c ns  3.15c ns 
HOE 2001-2010 10-15 590a -46**  290a -18*  -321d +24*  1.99a -0.19*** 
B horizon             
RAV 2002-2010 30-45 2615d ns  330ab ns  -1874a +158**  0.14a -0.01*** 
BRA 1994-2010 30-55 1398bc -83***  986c -50***  -2205a +173***  0.71a ns 
WIJ 1998-2010 45-70 1872c -140***  296ab -20***  -1580a +128***  0.37a -0.03*** 
GON 1999-2010 25-40 961ab ns  449b ns  -902c ns  2.45b -0.10*** 
HOE 1998-2010 20-30 550a ns  172a -5*  -445c ns  2.43b -0.27*** 
C horizon             
RAV 1994-2010 70-95 2999d ns  171ab ns  -2465a ns  0.15a -0.01*** 
BRA 1997-2010 70-90 2165c -151***  488c -28***  -2126a +133***  0.35a -0.02*** 
WIJ 2002-2010 75-110 1395b -118***  138ab ns  -1319b +115***  0.33a -0.01** 
GON 1994-2010 45-55 899ab -67***  254b -11***  -821bc ns  2.33b +0.05** 
HOE 1996-2010 35-55 492a -15*  116a ns  -433c +18*  2.52b -0.11** 
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Figure 3.2 Annual soil solution flux in molc ha-1 for H+, Altot, BC, NH4
+, SO4

2- and NO3
- in 

the O horizon (a), A horizon (b), B horizon (c) and C horizon (d). Values for SO4
2- and 

NO3
- were multiplied by (-1) to illustrate the charge balance (anions vs. cations). 
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Figure 3.2 continued. 
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Figure 3.2 continued. 
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Figure 3.2 continued. 
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Figure 3.3 Annual average ANC values (multiplied by precipitation surplus) in molc ha-1 

for each soil depth. Positive values indicate recovery, negative values a proceeding of 

soil solution acidification. 
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Figure 3.4 Annual median BC:Altot ratios for the mineral soil. Horizontal lines indicate 

critical limits (Sverdrup and Warfvinge, 1993; UNECE, 2004) for damage to fine roots, 

reduced tree stability, inhibited root growth and growth reductions of up to 80% of mean 

growth for beech/oak (0.6) and pine (1.2). 
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 Ion budgets of SO4
2-, NO3

- and NH4
+ 3.3.3

Coniferous forest plots showed significant retention of SO4
2- in the upper soil layers, but 

outputs were not different from inputs in the C horizon (Table 3.3). In the deciduous forest 

plots, outputs of SO4
2- were not different from inputs in the upper soil layers, but outputs 

of SO4
2- were significantly higher than inputs in the C horizon at two plots (WIJ, HOE). 

The degree of inorganic N leaching showed considerable differences among the plots. In 

the O horizon, retention of N was observed in coniferous forest plots, while deciduous 

forest plots showed significant net losses of N. One deciduous forest plot (GON) also 

showed significant net losses of N from the A horizon. Losses of N below the rooting zone 

varied from 16% (WIJ) to 76% (GON) of inorganic N inputs. 
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Table 3.3 Ion budget for TF (inputs) and soil solution fluxes (outputs) expressed as % (outputs/inputs*100) for SO4
2- (including inputs 

from sea salt) and NH4
+ + NO3

- for the different soil depths. Between brackets the mean annual difference between inputs and outputs 

(molc ha-1 yr-1) is shown when significant (*: p < 0.05, **: p < 0.01, ***: p < 0.001). 

Plot Period O horizon A horizon B horizon C horizon 
  SO4

2- NH4
+ + NO3

- SO4
2- NH4

+ + NO3
- SO4

2- NH4
+ + NO3

- SO4
2- NH4

+ + NO3
- 

RAV 2002‒2010 80(198***) 84 93(75*) 67(727**) 84(165***) 57(943**) 124 58(882**) 
BRA 2002‒2010 82(231***) 60(827***) 89 47(1103**) 84(207**) 48(1076***) 108 41(1214***) 
WIJ 2003‒2010 96 199(1505**) 101 45(784**) 104 27(1066***) 129(263**) 16(1220***) 
GON 1999‒2010 101 146(672***) 108 168(924**) 104 129 102 76(376*) 
HOE 2001‒2010 112 142(509**) 100 54(454*) 112(76*) 46(573***) 127(179***) 37(640***) 
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 Discussion 3.4

 Trends in potentially acidifying deposition 3.4.1

Depositions of inorganic N and SO4
2- in Flanders range within the highest deposition 

classes defined for European Level II plots (Lorenz et al., 2008). This could be explained 

by the abundance of emission sources in this part of Europe, which is a densely 

populated, industrialized region, characterized by an important animal husbandry sector, 

and an intensively used road network. The observed deposition levels and decreasing 

trends of SO4
2-, NH4

+ and NO3
- are comparable to results reported for Level II plots in 

neighbouring regions like southern Belgium (Jonard et al., 2012), northern France (van 

der Heijden et al., 2011) and southern UK (Vanguelova et al., 2010). Our hypothesis that 

depositions decreased was thus generally withhold for SO4
2-, NH4

+ but only at three out of 

five locations for NO3
- (and rejected for NO3

- if the first two years are disregarded). 

The strong decline of non-marine SO4
2- depositions can be attributed to the measures 

taken by industry and power plants to reduce SO2 emissions, which had already dropped 

below 1880 levels in 2010 (Mylona, 1996; VMM, 2011). The decrease in NH4
+ can be 

attributed to NH3 emission reductions by the agricultural sector (EEC, 1991) and a 

declining co-deposition with SO4
2- (Cape et al., 1998). Depositions of NO3

- diminished to 

a much lower extent or even remained stable. Traffic is responsible for 52‒60% (1990‒

2010) of NOx emissions in Flanders (VMM, 2011) and the highest NOy depositions were 

observed near intensively used highways connecting the cities of Brussels, Antwerp and 

Ghent (MIRA, 2006). It appears that the effect of introducing low-emission vehicles in 

agreement with EU emission standards was counteracted by the increasing traffic density 

and the growing number of diesel vehicles. 

 Effects on soil solution chemistry 3.4.2

We observed that soil SO4
2- fluxes decreased significantly in all plots, which confirmed 

our hypothesis, but to a lesser degree than we could expect from the observed decrease 

in S deposition, and we found a net release of SO4
2- at two deciduous forest plots. Net 

release of SO4
2- following a decline in SO4

2- depositions has been reported in several 

European catchments (Prechtel et al., 2001), and may delay the de-acidification process 

by simultaneous release of H+ (Karltun, 1997). 
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We found that fluxes of NO3
- in the mineral soil decreased significantly at most soil depths 

in all plots, in reaction to declining inorganic N depositions, which confirmed our 

hypothesis. However, with an average leaching of 5‒19 kg N ha-1 yr-1 over the study 

period, the limit of 2‒3 kg N ha-1 yr-1 for elevated NO3
- leaching was exceeded at all plots 

(Gundersen et al., 2006). Differences in NO3
- leaching between the five plots could be 

explained by a combination of factors, like the local pollution climate (see section 2.1), 

tree species (in general, higher N uptake in deciduous species (Gundersen et al., 2009), 

soil C/N ratio related to litter quality and microbial activity (in general, higher leaching 

when C/N ratio decreases (MacDonald et al., 2002), site fertility (Kristensen et al., 2004) 

and by consequence also site history (in general, higher degree of NO3
- leaching in post-

agricultural forests due to application of fertilizer (Callesen et al., 1999). In our study the 

role of site history is unclear, as the highest NO3
- losses were observed at one of the old 

growth forest plots and the lowest at the plot on former arable land. The excessive losses 

of NO3
- below the rooting zone in one deciduous forest plot (GON) are probably the result 

of more intense internal N processes, like humus disintegration mediated by drought 

periods (Eichhorn and Hüttermann, 1999). 

We want to remark that it would be useful to calculate soil water fluxes based on detailed 

water balance models as described in the ICP Forests manual, Part XI (Nieminen et al., 

2016) and compare the outcome with the results for the sodium mass balance. 

 Critical loads and levels 3.4.3

As one of the species groups most sensitive to elevated air concentrations and 

depositions of N and S, epiphytic lichens and mosses serve as good bio-indicators for air 

pollution (Conti and Cecchetti, 2001). Based on empirical research on lichens in forests, a 

critical load of 221 molc N ha-1 yr-1 was deduced for TF (Fenn et al., 2008). In our study, 

TF of inorganic nitrogen in 2010 varied between 977 and 1806 molc N ha-1 yr-1 at the five 

plots, which is 4 to 8 times higher than the critical load for sensitive lichen populations. 

For ground vegetation in temperate forests, an empirical critical load range of 714‒1071 

molc N ha-1 yr-1 was deduced (Fenn et al., 2008). Above this level species diversity of 

ground vegetation may decrease by disappearance of species adapted to conditions of 

low nutrient availability. In 2010, the upper limit of this critical load for ground vegetation 

was respected in only one plot (HOE) and was still exceeded by 22‒69% in the other four 
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plots. Our hypothesis that the decrease in depositions resulted in a better condition with 

regard to critical loads was thus rejected. 

Iost et al. (2012) demonstrated that the critical limits for N concentrations in soil solution 

are largely exceeded during most part of the year at all depths at the five plots. We 

observed that the critical limit for the BC:Altot ratio was exceeded continuously over the 

past 17 years in the coniferous forest plots and in the B and C horizon of one deciduous 

forest plot (WIJ). In these plots trees may suffer more from root damage, which could lead 

to significant growth reductions. Two deciduous forest plots where the critical limit for 

BC:Altot was respected (GON, HOE), receive lower ACID depositions and have soils with 

higher base saturation and cation exchange capacity, which may explain the difference 

with the other plots. 

We observed that ANC of soil solution remained < 0, except in the O horizon of one plot 

(HOE). This means that the acidification of forest soil solution in Flanders continued, 

despite a significant reduction of ACID depositions. The steady continuation of soil 

solution acidification, although at a slower pace compared to the start of the monitoring 

campaign, can be ascribed to a great extent to the simultaneous decrease in BC 

depositions and its impact on cation exchange processes (Alewell et al., 2000). Also, 

other soil buffering processes like SO4
2- desorption (see section 3.4.2), which are not well 

studied, further delay the start of recovery. Our hypothesis that the decrease in 

depositions resulted in a better condition with regard to critical limits was thus only 

partially supported. 

 Conclusions 3.5

Potentially acidifying N and S depositions on Flemish forests decreased significantly 

between 1994 and 2010, but forest soils in Flanders are still in an unfavourable condition. 

Critical loads and levels were still exceeded and soil solution acidification due to human 

disturbances continued, because a simultaneous decline of BC depositions and short-

term soil buffering processes like SO4
2- desorption delay recovery. 
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 IMPACT OF AIR-BORNE OR CANOPY-DERIVED DISSOLVED 4

ORGANIC CARBON (DOC) ON FOREST SOIL SOLUTION DOC IN 

FLANDERS, BELGIUM 

 

After: Verstraeten, A., De Vos, B., Neirynck, J., Roskams, P. and Hens, M., 

2014. Impact of air-borne or canopy-derived dissolved organic carbon (DOC) on 

forest soil solution DOC in Flanders, Belgium. Atmospheric Environment 83, 

155-165. http://dx.doi.org/10.1016/j.atmosenv.2013.10.058 

 

Abstract 

Dissolved organic carbon (DOC) in the soil solution of forests originates from a number of 

biologically and/or biochemically mediated processes, including litter decomposition and 

leaching, soil organic matter mineralization, root exudation, mucilage and microbial 

activity. A variable amount of DOC reaches the forest floor through deposition, but limited 

information is available about its impact on soil solution DOC. In this study, trends and 

patterns of soil solution DOC were evaluated in relation to deposition of DOC over an 11-

year period (2002–2012) at five ICP Forests intensive monitoring plots in Flanders, 

northern Belgium. Trend analysis over this period showed an increase in soil solution 

DOC concentrations for all observed depth intervals. Fluxes of DOC increased in the O 

horizon, but were nearly stable in the mineral soil. Annual leaching losses of DOC were 

higher in coniferous (55–61 kg C ha-1) compared to deciduous plots (19–30 kg C ha-1) but 

embody less than 0.05% of total 1-m soil organic C stocks. Temporal deposition patterns 

could not explain the increasing trends of soil solution DOC concentrations. Deposition 

fluxes of DOC were strongly correlated with soil solution fluxes of DOC, but their seasonal 

peaks were not simultaneous, which confirmed that air-borne or canopy-derived DOC has 

a limited impact on soil solution DOC. 
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 Introduction 4.1

Dissolved organic carbon (DOC) plays an important role in the C cycle in forest 

ecosystems and contributes to the sequestration of C in mineral soils (e.g. Neff and 

Asner, 2001; Buurman and Jongmans, 2005). It is a highly dynamic soil organic C pool 

and facilitates the transport and/or bioavailability of nutrients and pollutants, such as 

nitrogen (N), phosphorus, sulphur and trace metals (Qualls et al., 1991; Kalbitz et al., 

2000). It also forms a major pathway for C transfer from terrestrial to aquatic ecosystems, 

and provides a significant indirect source of CO2 emission to the atmosphere (Freeman et 

al., 2001; 2004; Cole et al., 2007). 

During the past decennia DOC concentrations and/or fluxes increased in many forests, 

peatlands, streams and lakes of northern and central Europe and eastern North America, 

while stable or decreasing DOC trends in these areas were less frequently observed 

(Freeman et al., 2001; 2004; Monteith et al., 2007; Lindroos et al., 2008; Oulehle and 

Hruška, 2009; Wu et al., 2010a; Löfgren and Zetterberg, 2011; Couture et al., 2012; 

Akselsson et al., 2013). Besides to climate change, rising DOC levels have been 

attributed to changes in soil solution chemistry induced by the overall decline of sulphur 

depositions, suggesting that ecosystems are recovering towards their high-DOC, pre-

industrial state (de Wit et al., 2007; Oulehle and Hruška, 2009; Borken et al., 2011; Evans 

et al., 2012). A decline of acidifying depositions repeatedly leads to a decrease in soil 

solution ionic strength and pH increase, which both enhance DOC solubility in forest soils 

(Kalbitz et al., 2000; Vanguelova et al., 2010; Graf Pannatier et al., 2011; Evans et al., 

2012; Kerr and Eimers, 2012; Verstraeten et al., 2012). The main source of DOC in the 

soil solution of forests are a number of biologically and/or biochemically mediated 

processes, including plant and root litter decomposition and leaching, soil organic matter 

mineralization, root exudation, mucilage and microbial activity (Kalbitz et al., 2000; Yano 

et al., 2000; Hansson et al., 2010). The main factors explaining soil solution DOC levels 

are tree species and soil type. Generally higher DOC levels are recorded in coniferous 

compared to deciduous forests, primarily due to more intensive leaching of DOC from an 

evergreen canopy, the higher C:N ratio of needles compared to leaves and the higher 

mass of the forest floor in coniferous forests (Currie and Aber, 1997; Borken et al., 2011; 

Arisci et al., 2012). Highly podzolized soils tend to have a lower DOC retention capacity 

than less acidified soils and may exhibit unusually high DOC outputs (Guggenberger and 

Zech, 1993). 
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Soil solution DOC levels display a characteristic seasonal pattern and a depth pattern in 

the soil profile. Peak concentrations are observed near the second half of the growing 

season in response to higher soil temperatures, while the highest C losses coincide with 

elevated water fluxes during the winter period (Buckingham et al., 2008; Sleutel et al., 

2009; Wu et al., 2010a; Gielen et al., 2011). Concentrations and fluxes of DOC generally 

decrease with depth, due to translocation from the organic layer towards the mineral B 

horizon, where C is removed from soil solution mainly by abiotic processes, like 

precipitation as organo-metal complexes and/or by adsorption to solid Fe- and Al-phases 

(Guggenberger and Zech, 1993; Michalzik et al., 2001; Jansen et al., 2005; Fuss et al., 

2011). 

A considerable amount of DOC reaches the forest floor through atmospheric deposition 

or canopy leaching, but limited information is available about its role in the forest C cycle 

and its impact on soil solution DOC (Yano et al., 2000; Michalzik et al., 2001; Sleutel et 

al., 2009). In this study, we examined the contribution of air-borne or canopy derived 

DOC to concentrations and fluxes of soil solution DOC and their seasonal patterns using 

long-term monitoring data. 

Long-term monitoring of deposition and soil solution concentrations provides valuable 

data to evaluate changes in soil solution chemistry. Flanders is participating in the ICP 

Forests programme (www.icp-forests.org), launched in 1985 under the Convention on 

Long-Range Transboundary Air Pollution (CLRTAP) of the United Nations Economic 

Commission for Europe (UNECE, www.unece.org). The objectives of this study are: 1) to 

evaluate trends and patterns of soil solution DOC concentrations and fluxes and 2) to 

assess the impact of air-borne or canopy-derived DOC on fluxes, concentrations and 

seasonal patterns of soil solution DOC. We hypothesized that soil solution DOC 

concentrations and fluxes increased during the study period and that this increase was 

strongly related to changes in air-borne or canopy-derived DOC. 

 Materials and Methods 4.2

 Study area 4.2.1

Five plots of the ICP Forests intensive monitoring network (Level II) in Flanders, northern 

Belgium, were included in this study. More details about these Level II plots are given in 

section 2.1. 
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 Sample collection and measurements 4.2.2

Sampling of throughfall, stemflow and soil solution was carried out fortnightly from 

January 2002 till December 2012. A detailed description of the methods used for 

deposition sampling is given in section 2.2.1 and for soil solution sampling in section 

2.2.2. 

 Chemical analysis 4.2.3

A description of the methods used for sample pre-treatment and for the determination of 

DOC concentrations (mg L-1) on the collected samples of throughfall, stemflow and soil 

solution is given in section 2.3.1. 

 Data handling 4.2.4

All field data (e.g. sample mass) and analytical results were subjected to a detailed 

quality check and validation procedure, according to the guidelines of the ICP Forests 

Working Group on Quality Assurance/Quality Control (König et al., 2016). Deposition of 

DOC (kg ha-1) was calculated as the product of DOC concentrations (mg L-1) and the 

collected volume (L m-2) of open field precipitation (BD), throughfall or stemflow. Stand 

deposition (TF) was calculated as the sum of throughfall and stemflow deposition. 

Drainage fluxes were calculated for the O, A, B and C horizon using the mass balance 

method (see section 2.4). Soil solution DOC fluxes for the fortnightly sampling periods 

were calculated as the product of drainage flux and DOC concentration. Monthly soil 

solution DOC fluxes were calculated as the sum of the two fortnightly fluxes; annual 

fluxes as the sum of the twelve monthly fluxes. Because a number of data were missing 

for several evident reasons (e.g. no sampling performed due to snow, or not enough 

sample volume available for analysis) this would result in an underestimation of DOC 

fluxes. In order to obtain more realistic DOC fluxes, missing DOC concentrations were 

interpolated using a logarithmic curve (which gave a better fit than a linear regression) for 

all measured DOC concentrations during the same year in function of sampling period 

number. If not enough data were available to obtain a reliable curve (R² < 0.2), DOC 

concentrations were interpolated as the average of the previous and the following 

measured DOC concentration. Missing Na+ concentrations were interpolated as the 

average of the previous and the following measured Na+ concentration. For soil solution 

DOC concentrations measured in a period without rainfall, no water flux could be 
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calculated. In that case the DOC flux was interpolated as the average of the previous and 

the following DOC flux obtained from measured DOC concentrations, if possible weighted 

by DOC concentration and sample volume. We assumed that DOC fluxes through the C 

horizon represented C losses below the rooting zone. 

 Statistical analysis 4.2.5

Data exploration and statistical analysis were performed in S-plus for Windows, version 

6.2, and in R (R Core Team, 2012). The nonparametric Seasonal Mann-Kendall Test 

(Hirsch et al., 1982) was applied to detect monotonic trends in monthly aggregated data 

for water fluxes, DOC concentrations and DOC fluxes. Trends were evaluated by the 

significance of Theil-Sen’s slope (Sen, 1968). The change (increase or decrease) of DOC 

concentrations and fluxes was expressed as a percentage in function of the mean value 

for the 11-year observation period and Theil-Sen’s slope: 

������	�%� � ��������
���
�� 	 ���������� � 100     (1) 

Cross-site statistics were performed by means of ANOVA/Tukey’s range test. The impact 

of airborne or canopy-derived DOC on soil solution DOC was evaluated by comparing 

single DOC fluxes in stand precipitation with fluxes in soil solution, using Spearman’s 

rank correlation (‘cor.test’ function in R) and simple linear regression (‘lm’ function in R), 

the latter after natural log transformation of DOC fluxes to obtain normally distributed 

residuals. Seasonal variation within the data was tested in R by introducing harmonic 

terms (sine and cosine) in a stepwise regression of the dependent variable y versus time 

(e.g. Thimonier et al., 2008), in the form: 

" � �1 # �2 ∙ sin ( # �3 ∙ cos ( # �4 ∙ sin 2( # �5 ∙ cos 2( # �6 ∙ sin 3( # �7 ∙ cos 3( # �8 ∙
sin 4( # �9 ∙ cos 4( # �10 ∙ sin 5( # �11 ∙ cos 5(    (2) 

where ( � 22/365 � �456��7	6�"� and �1 8 �11 are regression coefficients. Sine and 

cosine terms up to 5( were included, which allows the model to show processes which go 

up or down within a little more than one month. This makes the analysis sensitive enough 

to reveal the important features of the annual cycle, but not too sensitive to single 

irregularities. 
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 Results 4.3

 Long-term trends of DOC 4.3.1

Trends and significances for annual water fluxes, monthly DOC concentrations and DOC 

fluxes are presented in Table 4.1. The annual precipitation showed substantial year-to-

year variation, with wet years in 2002 and 2012 and dry years in 2003 and 2011 (Figure 

4.1). In spite of this, annual BD and TF showed no significant trend between 2002 and 

2012. Soil water fluxes showed a significant trend at several individual soil layers, but 

there were no indications for a consequent increase or decline of the soil water flux 

through the soil profile at any of the plots. 

Concentrations of DOC in BD significantly increased at the five plots during the 

observation period, by 36–110% (Figure 4.2). Fluxes of DOC in BD significantly increased 

at WIJ and HOE by 31% and 67% respectively, but remained stable at the other plots 

(Figure 4.3). Stand precipitation DOC concentrations and fluxes did not change 

significantly at any of the plots. 

In the soil solution, DOC concentrations remained stable in the O horizon at HOE and the 

B horizon at BRA (Figure 4.2). Elsewhere, DOC concentrations significantly increased by 

26–130% in the O horizon, 17–44% in the A horizon, 16–103% in the B horizon and 32–

146% in the C horizon. Soil solution DOC fluxes through the O horizon remained stable in 

GON and HOE, but significantly increased by 36–93% at the other three plots (Figure 

4.3). Soil solution DOC fluxes through the mineral soil remained stable at BRA, WIJ and 

GON, but increased significantly in RAV and HOE (except the A horizon at HOE). 
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Table 4.1 Seasonal Mann-Kendall trends for water fluxes (mm yr-1), DOC concentrations 

(mg L-1) and DOC fluxes (kg ha-1 yr-1) for BD and TF, O horizon and mineral soil layers 

(2002‒2012), with mean annual values, letters (a‒e) indicating groups of plots with 

comparable mean, Theil-Sen’s slope (annual change) and significance (ns: not 

significant, *: p < 0.05, **: p < 0.01, ***: p < 0.001). 

Plot Sampling Water fluxes  DOC concentrations  DOC fluxes  
 Depth Mean Slope  Mean Slope  Mean Slope  
 (cm) (mm yr-1)  (mg L-1)  (kg ha-1 yr-1)  

BD          
RAV 923a ns  2.2a +0.1***  20.2a ns  
BRA 960a ns  2.4a +0.1*  19.0a ns  
WIJ 929a ns  2.2a +0.1**  19.0a +0.5*  
GON 838a ns  2.0a +0.1***  15.0a ns  
HOE 971a ns  1.9a +0.1***  17.0a +0.8**  
TF          
RAV 649ab ns  17.5a ns  106.2a ns  
BRA 770a ns  14.9a ns  102.8a ns  
WIJ 718ab ns  7.9c ns  49.0b ns  
GON 621b ns  11.2b ns  60.0b ns  
HOE 766a ns  7.8c ns  49.6b ns  
O horizon    

 
     

RAV  513ab ns  41.9a +0.9*  211.5a +7.0*  
BRA  590a ns  35.4b +2.0***  201.3a +5.6*  
WIJ  644a ns  27.0c +1.9***  185.1a +10.7***  
GON  431b ns  35.5b +1.0**  160.2a ns  
HOE  578a +17.5*  33.5b ns  189.6a ns  
A horizon    

 
     

RAV 10-25 395a ns  46.4a +0.9**  185.4a +7.0**  
BRA 15-25 348a ns  38.1b +1.3***  131.7b ns  
WIJ 10-20 355a -13.5*  35.0c +1.1***  118.7bc ns  
GON 10-20 328a ns  25.8d +0.4**  84.5d ns  
HOE 10-15 398a -10.2*  22.6e +0.6***  88.0cd ns  
B horizon    

 
     

RAV 30-45 295ab +13.1**  42.6a +0.6*  121.5a +6.0***  
BRA 30-55 264b ns  31.0b ns  76.5b ns  
WIJ 45-70 253b ns  19.1c +0.6***  48.9cd ns  
GON 25-40 314ab -10.6*  19.7c +0.5***  57.5bc ns  
HOE 20-30 372a ns  8.0d +0.5***  28.7d +1.0*  
C horizon          
RAV 70-95 297ab +11.9**  19.6b +0.5***  61.3a +3.9***  
BRA 70-90 268b -15.5***  21.2a +0.8***  54.5a ns  
WIJ 75-110 189c -6.5**  10.4d +0.4***  19.3b ns  
GON 45-55 208c ns  13.2c +0.5***  27.8b ns  
HOE 35-55 367a ns  8.1e +0.6***  29.7b +1.4***  
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Figure 4.1 Mean annual open field precipitation, stand precipitation (throughfall + 

stemflow) and soil water flux per depth for the five plots (mm) with standard deviation 

(dashed bars). 
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Figure 4.2 Mean annual concentration of DOC (mg L-1) in BD (a), TF (b) O horizon (c), A 

horizon (d), B horizon (e) and C horizon (f). 
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Figure 4.3 Annual flux of DOC (kg ha-1 yr-1) for BD (a), TF (b) O horizon (c), A horizon (d), 

B horizon (e) and C horizon (f). 
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 Within and across-site variability of DOC 4.3.2

Soil solution DOC concentrations and fluxes generally decreased with depth, with an 

exception for the plots on sandy soils (RAV, BRA and WIJ), where mean annual DOC 

concentrations were higher in the mineral topsoil than in the organic layer (Table 4.1). 

Concentrations and fluxes of DOC for TF and soil solution were higher in coniferous than 

in deciduous plots, and this difference became increasingly important with increasing soil 

depth. Stand precipitation DOC fluxes were nearly twice as high in coniferous compared 

to deciduous plots. Accordingly, leaching losses of DOC below the rooting zone were 

significantly higher in coniferous (55–61 kg C ha-1 yr-1) compared to deciduous plots (19–

30 kg C ha-1 yr-1). These C losses embody 0.12–0.14% and 0.03–0.15% of the C stock in 

the forest floor and 0.04–0.07% and 0.01–0.03% of the organic C stock in the upper 1 m 

of the mineral soil in deciduous and coniferous plots respectively (Table 4.2). We found 

no correlation between C losses and soil organic C stocks. 

Table 4.2 Rooting depth (cm) and total organic carbon stock (ton C ha-1) in the forest floor 

(FFC) and the upper 1 m of the mineral soil (SOC) in the five Level II plots in Flanders 

(De Vos, 2009). 

Plot FFC SOC Rooting depth 
 (ton C ha-1) (ton C ha-1) (cm) 

Coniferous forests    
RAV 52.2 149 185 
BRA 38.7 82.5 160 
Deciduous forests    
WIJ 64.3 200 170 
GON 40.3 132 180 
HOE 20.4 93.7 195 

 

 Impact of air-borne or canopy-derived DOC 4.3.3

Fluxes of DOC in BD amounted to 9–10% of the estimated annual DOC fluxes through 

the organic layer, while TF DOC fluxes amounted to 50–51% and 26–37% of the 

estimated annual DOC fluxes through the organic layer of coniferous and deciduous plots 

respectively. 

Stand precipitation DOC fluxes were strongly (p < 0.001) correlated with soil solution 

DOC fluxes at all depths in each plot. The linear models showed that 23–24% of the 
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variance in soil solution DOC fluxes could be explained by stand deposition (Figure 4.4). 

The slope of regression lines showed little difference between the soil depths (0.50–

0.58), while the intercept declined with depth from 1.32 to -0.36, reflecting the removal of 

DOC by mineralization and sorption towards the C horizon. 

Soil solution DOC concentrations and fluxes showed a clear seasonal pattern at all 

locations, with the highest mean monthly values observed near the end of the growing 

season, particularly from August till December (Figure 4.5, Figure 4.6 and Figure 4.7). 

The seasonal variation of DOC concentrations gradually declined with depth, to become 

no longer significant in the C horizon, while water fluxes and DOC fluxes showed 

seasonality at all depths (Table 4.3). Fluxes of DOC in BD and TF were highest during 

late spring and summer (May–August). The seasonal pattern of TF DOC fluxes was most 

eminent in the deciduous plots, where DOC concentrations showed two peaks: a first one 

in May around the moment that buds break and leaves are unfolded, and a second one in 

September just before the start of litterfall. 

Table 4.3 Regression models for the seasonal variation of water fluxes, DOC 

concentrations and DOC fluxes for BD and TF, O, A, B and C horizon, with the number of 

observations (n), coefficient of determination (R2) and significance (*: p < 0.05, **: p < 

0.01, ***: p < 0.001). 

 Water fluxes  DOC concentrations  DOC fluxes 
 n R² sig.  n R² sig.  n R² sig. 
BD 1206 0.08 ***  1206 0.12 ***  1206 0.09 *** 
TF 1206 0.08 ***  1206 0.20 ***  1206 0.11 *** 
O horizon 1024 0.20 ***  1026 0.07 ***  1024 0.18 *** 
A horizon 777 0.20 ***  782 0.14 ***  777 0.17 *** 
B horizon 854 0.23 ***  871 0.01 *  854 0.19 *** 
C horizon 843 0.20 ***  861 0.004   843 0.16 *** 
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Figure 4.4 Linear models for log-transformed DOC fluxes (kg ha-1) in soil solution of the O 

horizon (a), A horizon (b), B horizon (c) and C horizon (d) in function of log-transformed 

stand precipitation (mm). 
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Figure 4.5 Mean monthly DOC concentration (mg L-1) in BD (a), TF (b), and soil solution 

of the O horizon (c), A horizon (d), B horizon (e) and C horizon (f) (2002–2012). Error 

bars represent the 95% confidence interval for the original data (before interpolation). 
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Figure 4.6 Mean monthly DOC flux (kg ha-1) for BD (a), TF (b), and through the O horizon 

(c), A horizon (d), B horizon (e) and C horizon (f) (2002–2012). Error bars represent the 

95% confidence interval for the original data (before interpolation). 
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Figure 4.7 Modeled seasonal variation of water fluxes (L m-2 (2 weeks)-1], DOC 

concentrations (mg L-1) and DOC fluxes (kg ha-1 yr-1) for BD, TF, O horizon, A horizon, B 

horizon and C horizon. 
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 Discussion 4.4

 Long-term trends of DOC 4.4.1

The observed increase in soil solution DOC concentrations over the last ten years is in 

agreement with the recent predominance of increasing trends in soil solution DOC 

observed in Europe and North America (Freeman et al., 2001; 2004; Monteith et al., 

2007), although some studies reported stable or negative trends, particularly at high 

northern latitudes (e.g. Wu et al., 2010a; Akselsson et al., 2013). The increase in DOC 

can be basically explained by recovery processes in the soil and soil solution initiated by 

the overall decline of sulphur depositions (de Wit et al., 2007; Borken et al., 2011; Evans 

et al., 2012). Past acid conditions have reduced litter decomposition rates, allowing a pool 

of relatively labile organic matter to accumulate, from which DOC may be generated 

when acidity decreases (Oulehle and Hruška, 2009). Because atmospheric sulphur 

depositions and ion concentrations in the soil solution showed a strong and parallel 

decline at the five plots between 1994 and 2010, the increase in soil solution DOC 

concentrations can at least partly be explained by recovery from acidification (Verstraeten 

et al., 2012). The increase in soil solution DOC at the five plots appears to be unrelated to 

air-borne or canopy-derived DOC, which disproved our hypothesis, since TF DOC 

concentrations and fluxes remained stable during the observation period. 

In the soil solution, DOC fluxes showed less systematic trends than concentrations, which 

may be explained by the strong dependence of DOC fluxes on water fluxes and the 

relatively high year-to-year variation in precipitation and soil water fluxes (Neff and Asner, 

2001; Buckingham et al., 2008; Gielen et al., 2011). This could imply that longer time 

series (>11 years) are recommended to study trends in soil solution DOC fluxes. Our 

hypothesis that soil solution DOC concentrations and fluxes increased during the study 

period was thus confirmed for concentrations, but less clearly for fluxes. 

The concentrations and fluxes of DOC observed at the five plots are in the order of 

magnitude reported by other studies in temperate forests in Europe (Buckingham et al., 

2008; Sleutel et al., 2009; Wu et al., 2010a; Borken et al., 2011; Löfgren and Zetterberg, 

2011; Arisci et al., 2012). Carbon leaching losses of up to 61.3 kg ha-1 yr-1 were recorded, 

but embody less than 0.05% of measured total 1-m soil organic C stocks (De Vos, 2009). 

No correlation existed between C losses and soil total organic C stocks, which might be 

explained by differences in the chemical composition of DOC and SOC between plots. 
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Data on the chemical composition of DOC in the plots are lacking, but hot-water C pools 

have been measured (Dr. Bruno De Vos, personal communication). Hot-water C is a part 

of the total organic C pool that correlates strongly with microbial biomass and is therefore 

thought to be labile in nature (Sparling et al., 1998; Ghani et al., 2003). A relationship 

between hot-water C pools and DOC could thus provide information about DOC 

degradability. However, no correlation was found between annual C losses and hot-water 

C stocks, which indicates that a considerable part of DOC likely consists of compounds 

that are not easy degradable. 

 Within and across-site variability of DOC 4.4.2

The observation that soil solution DOC fluxes, and consequently C losses below the 

rooting zone, were higher in coniferous compared to deciduous plots, accords with the 

results of similar studies and could be explained by the interaction between tree species, 

soil type and pollution climate (Currie and Aber, 1997; Borken et al., 2011; Arisci et al., 

2012). Regarding the tree species, DOC levels are generally higher in coniferous forests, 

primarily due to more intensive leaching of DOC from an evergreen canopy, the higher 

C:N ratio of needles compared to leaves and the higher mass of the forest floor (Arisci et 

al., 2012; van den Berg et al., 2012). Regarding the pollution climate, the higher DOC 

levels in coniferous plots could be related to the higher N deposition in these plots 

(Guggenberger and Zech, 1993; Sleutel et al., 2009; Verstraeten et al., 2012). Regarding 

the soil type, soils in the deciduous plots have a higher DOC retention capacity, due to 

their higher clay content, cation exchange capacity (CEC) and base saturation, providing 

more sorption sites and higher potential for cation bridging of organic compounds 

(Guggenberger and Zech, 1993; Kerr and Eimers, 2012). 

 Impact of air-borne or canopy-derived DOC 4.4.3

The strong correlation that we found between TF DOC fluxes and soil solution DOC 

fluxes could be explained by their strong dependence on the amount of precipitation, as 

observed earlier in temperate forest ecosystems in North America and Europe (Michalzik 

et al., 2001; Neff and Asner, 2001; Buckingham et al., 2008). On the other hand we found 

that seasonal peaks of DOC in TF and soil solution did not occur simultaneous, which 

was also observed in Norwegian forests (Wu et al., 2010a). This confirms that the impact 

of deposition is limited, and that soil solution DOC originates mainly from biologically 

and/or biochemically mediated processes in the soil compartment, including the activity of 
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soil biota, soil respiration, root development and root exudation (Yano et al., 2000; Neff 

and Asner, 2001; Carrara et al., 2004; Buckingham et al., 2008; Futter et al., 2011). 

However, several studies point out that the impact of air-borne or canopy-derived DOC 

could increase in the future (Clark et al., 2009; Vitasse et al., 2009; Pitman et al., 2010; 

Reyer et al., 2013). In the canopy, the activity of phytophagous insects - especially aphids 

generating honeydew - can increase DOC levels during summer (Michalzik and Stadler, 

2005; Pitman et al., 2010). With the progress of climate change, the intensity of insect 

attacks is expected to increase, with a possibly more severe impact on the forest C cycle 

(Clark et al., 2009; Pitman et al., 2010). Climate change also extends the length of the 

growing season in temperate regions, and according to climate change scenarios may 

increase the net primary production (CO2 effect) of forests in Northern Europe (Vitasse et 

al., 2009; Reyer et al., 2013). 

We suggest that the impact of DOC deposition on soil solution DOC concentrations and 

fluxes will be further examined in the future, preferentially by means of long data series 

from a larger number of sites within a broader geographical extent, e.g., at the European 

level. Experimental studies, for example with addition of DOC containing labelled carbon 

(C14), may provide new insights into this matter. 

 Conclusions 4.5

Concentrations of DOC in the soil solution of forests in Flanders increased between 2002 

and 2012 at all plots, while DOC fluxes showed less systematic trends. These trends 

could not be explained by temporal deposition patterns. Concentrations of DOC and 

annual C leaching losses below the rooting zone were higher in coniferous compared to 

deciduous plots but embody less than 0.05% of total 1-m soil organic C stocks. Our 

results confirmed that air-borne or canopy-derived DOC has a limited impact on soil 

solution DOC, and that soil solution DOC originates mainly from biologically and/or 

biochemically mediated processes in the soil compartment. 
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 INCREASING TRENDS OF DISSOLVED ORGANIC NITROGEN 5

(DON) IN TEMPERATE FORESTS UNDER RECOVERY FROM 

ACIDIFICATION IN FLANDERS, BELGIUM 

 

After: Verstraeten, A., Verschelde, P., De Vos, B., Neirynck, J., Cools, N., 

Roskams, P., Hens, M., Louette, G., Sleutel, S. and De Neve, S., 2016. 

Increasing trends of dissolved organic nitrogen (DON) in temperate forests 

under recovery from acidification in Flanders, Belgium. Science of the Total 

Environment 553, 107-119. http://dx.doi.org/10.1016/j.scitotenv.2016.02.060 

 

Abstract 

We evaluated trends (2005–2013) and patterns of dissolved organic nitrogen (DON) and 

its ratio with dissolved organic carbon (DOC), DOC:DON in atmospheric deposition and 

soil solution of five Level II plots of the International Co-operative Programme on 

Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) in Flanders, 

Northern Belgium. The primary aim was to confirm positive postulated trends in DON 

levels and the DOC:DON ratio under on-going recovery from acidification. The DON 

concentrations (0.95–1.41 mg L-1) and fluxes (5.6–8.3 kg ha-1 yr-1) in throughfall were 

about twice as high compared to precipitation in the open field (0.40–0.48 mg L-1, 3.0–3.9 

kg ha-1 yr-1). Annual soil profile leaching losses of DON varied between 1.2–3.7 kg ha-1 yr-

1. The highest soil DON concentrations and fluxes were observed beneath the O horizon 

(1.84–2.36 mg L-1, 10.1–12.3 kg ha-1 yr-1). Soil solution concentrations and fluxes of DON 

showed significant increasing trends. Temporarily soil solution DOC:DON rose following 

an exceptionally long spring drought in 2007, suggesting an effect of drying and rewetting 

on DOM composition. Further research is needed to test the dependence of DON and the 

DOC:DON ratio on factors such as latitude, forest cover, length of the growing season, 

hydrology and topography. Nonetheless, even with considerable variation in soil type, 

level of base saturation, and soil texture in the five included ICP Forests Level II plots, all 

data revealed a proportionally larger positive response of DON flux than DOC to recovery 

from acidification.  
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 Introduction 5.1

Atmospheric deposition of inorganic nitrogen (N) and sulphate (SO4
2-) caused N 

saturation and a fast acidification of temperate forest soils and waters in large parts of 

Europe and the US during the second half of the 20th century (van Breemen et al., 1984; 

Aber et al., 1989). This was found to have an impact on dissolved organic matter (DOM) 

cycling, often resulting in higher concentrations and leaching of DOM (Kalbitz et al., 2000; 

McDowell et al., 2004; Pregitzer et al., 2004). National policies and international 

cooperation to abate acidifying emissions implemented since the late 1970’s, like the 

Convention on Long-range Transboundary Air Pollution (CLRTAP), resulted in a 

significant lowering of acidifying deposition. In European forests, Waldner et al. (2014) 

observed an overall decrease in non-marine SO4
2- depositions by 6% per year between 

2000 and 2010. 

Long-term positive trends of surface water dissolved organic carbon (DOC) concentration 

across Europe, Canada and the US occurred simultaneously (de Wit et al., 2007; 

Monteith et al., 2007). These positive DOM trends in stream waters and soil solutions of 

highly acidified forests were mainly linked to the declining non-marine SO4
2- depositions 

and subsequent initial chemical recovery of the soil solution (de Wit et al., 2007; Monteith 

et al., 2007; Oulehle et al., 2011). As postulated by Monteith et al. (2007), decreasing soil 

solution SO4
2- concentrations will lower soil solution ionic strength, leading to an 

increased solubility of DOM. In addition, the resulting higher pH would increase OM 

solubility by lowering soil solution concentrations of ionic aluminium (Al3+). For temperate 

forests, however, negative or indifferent multi-year trends in leachate DOC concentration 

were seen as well (Monteith et al., 2007; Vanguelova et al., 2010; Borken et al., 2011; 

Löfgren and Zetterberg, 2011; Oulehle et al., 2011; Akselsson et al., 2013; Verstraeten et 

al., 2014). Contrary to DOC, still little long-term data exists on DON concentrations and 

vertical fluxes in temperate forests under recovery from acidification. Mainly so, because 

monitoring of DON was only recently introduced in forest monitoring networks. Although 

the concentrations of DON in throughfall water and soil solution are correlated with the 

concentrations of DOC, since N-containing organic building blocks (proteinaceous or 

heterocyclic-N) are also comprised in the DOC (Qualls and Haines, 1991; Michalzik et al., 

2001; Wu et al., 2010b), it is not clear to what extent DON concentrations follow trends in 

DOC. Oulehle et al. (2011) observed parallel trends in soil solution DOC and DON of a 

spruce forest showing acidification recovery in the Czech Republic. Vanguelova et al. 
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(2010) found that a positive trend of DOC was not always coupled to a positive trend of 

DON at 10 ICP Forests Level II sites in the UK. It should be noted though, that both 

studies were shorter than nine years identified as minimum for distinguishing clear trends 

in DOM (Waldner et al., 2014). 

When investigating deposition effects on DON, also account has to be taken of evolutions 

in inorganic N deposition, as it also impacts DOM cycling (Currie et al., 1996; Campbell et 

al., 2000; McDowell et al., 2004; Pregitzer et al., 2004; Brookshire et al., 2007). In 

European forests, inorganic N depositions decreased by 2% per year between 2000 and 

2010, but only in certain regions, while other regions showed stable or increasing N 

depositions (Waldner et al., 2014). It is still unclear, however, if an increase in the 

DOC:DON ratio could be expected under recovery from N deposition. 

Finally, increasing trends of DON have also been linked to climate warming (Vanguelova 

et al., 2010), with often observed positive correlation between the concentrations of DOC 

and DON in throughfall and air temperature (Solinger et al., 2001; Sleutel et al., 2009; Wu 

et al., 2010b). Increasing throughfall inputs of DON could explain positive DON trends in 

soil solution (Vanguelova et al., 2010). Throughfall inputs are an important source for 

DOM in soil solution, and contribute relatively more to DON than to DOC in soil solution 

(Guggenberger and Zech, 1994; Michalzik et al., 2001; Solinger et al., 2001; Sleutel et 

al., 2009). Higher air temperatures could increase the activity of herbivorous insects in the 

canopy, which could lead to higher throughfall fluxes of DOM (Michalzik and Stadler, 

2005; Pitman et al., 2010). Higher soil temperatures also stimulate decomposition and 

mineralization processes, which could increase DOC and DON leaching from the forest 

floor (Andersson et al., 2000; Michalzik et al., 2001). 

The complex interplay of biological and physico-chemical factors that influence DON and 

DOC cycling, make it difficult to predict the net effects of shifts in climate or deposition 

onto vertical DOM balances. Long-term data from intensive monitoring plots accounting 

for all these potential environmental drivers, are crucial to forward our understanding of 

changing DOC and DON fluxes in forests. We monitored the concentrations and fluxes of 

DON and DOC in the deposition and soil solution of five ICP Forests intensive monitoring 

plots (Level II) in Flanders (Belgium) and examined the data for unique long-term trends 

(2005–2013) and patterns of DON and DOC:DON. Positive DOC trends were recently 

observed at the five plots following a sharp decline in atmospheric SO4
2- deposition 

(Verstraeten et al., 2012; 2014). The first objective of this study was to check to what 
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extent trends in DON followed trends in DOC and we hypothesized that concentrations 

and fluxes of DON in the deposition and soil solution followed the DOC trends. Since N-

rich DOM compounds generally have a lower reactivity with Fe and Al hydroxides, a pH 

control on DON solubility is probably smaller than for DOC. Hence, we hypothesized that 

recovery from acidification disproportionally favours DOC dissolution compared to DON 

and the DOC:DON ratio would increase over time. Under field conditions, however, pH-

dependent processes like microbial degradation and plant growth also govern DOC and 

DON levels, complicating the purely abiotic pH-DOM-solubility relation. The relevance of 

abiotic and biotic DOM transformations is furthermore very much depth-distributed, e.g. 

depending on Fe and Al content of soil horizons. A second objective thus was to firstly 

detect and interpret change in the DOC:DON ratio in the five ICP Forests Level II plots by 

means of an extensive 9-year fortnightly dataset. 

 Materials and Methods 5.2

 Study area 5.2.1

Five plots of the ICP Forests intensive monitoring network (Level II) in Flanders, northern 

Belgium, were included in this study. More details about these Level II plots are given in 

section 2.1. 

 Sample collection and measurements 5.2.2

Sampling of throughfall, stemflow and soil solution was carried out fortnightly from 

January 2005 till December 2013. A detailed description of the methods used for 

deposition sampling is given in section 2.2.1 and for soil solution sampling in section 

2.2.2. 

 Chemical analysis 5.2.3

A description of the methods used for sample pre-treatment and for the determination of 

pH and the concentrations (mg L-1) of DOC, Total Kjeldahl nitrogen (TKN), ammonium 

(NH4
+) and sodium (Na+) on the collected samples of throughfall, stemflow and soil 

solution is given in section 2.3.1. 
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 Data handling 5.2.4

Concentrations of DOC were taken from a previous study for 2005–2012 (Verstraeten et 

al., 2014), and were supplemented with new data for 2013. Concentrations of DON were 

calculated as TKN – NH4
+. The molar ratio of DOC and DON concentrations, DOC:DON, 

was calculated for each sample for which both concentrations were measured. Deposition 

fluxes of DON and DOC (kg ha-1) were calculated as the product of concentration (mg L-1) 

and the collected volume (L m-2) of precipitation in the open field (BD) and below canopy 

(throughfall + stemflow, further denoted as TF). Drainage fluxes were calculated for each 

depth using the sodium mass balance method (see section 2.4). Soil solution DON and 

DOC fluxes (kg ha-1) for the fortnightly sampling periods were calculated as the product of 

water flux (L m-2) and concentration (mg L-1). Monthly DON and DOC fluxes were 

calculated as the sum of the two fortnightly fluxes and annual fluxes as the sum of the 

twelve monthly fluxes. Missing data (for several evident reasons, e.g., no sampling 

performed due to snow, or insufficient sample volume available for analysis) would result 

in an underestimation of DON and DOC fluxes. Missing concentrations were interpolated 

to correct for this as follows. DOC concentrations in a given year were interpolated using 

a logarithmic curve (which gave a better fit than a linear regression) for all measured 

DOC concentrations in function of sampling period number in that year. In case not 

enough data were available or DOC concentrations were still high in January following 

the peak of DOC concentrations at the end of the previous year, DOC concentrations 

were calculated as the average concentration of the measurements preceding and 

following the missing value. For soil solution DON and DOC concentrations measured in 

a period without rainfall, no drainage flux could be determined. In that case the drainage 

flux was interpolated as the average of the previous and the following drainage flux 

obtained from measured concentrations, if possible weighted by concentration and 

sample volume. We assumed that DON fluxes through the C horizon represented organic 

N losses below the rooting zone and thus lost from the ecosystem. 

 Statistical analysis 5.2.5

Data exploration and statistical analysis were performed in R (R Core Team, 2014). The 

nonparametric Seasonal Mann-Kendall Test (Hirsch et al., 1982) included in the ‘rkt’ 

package (Marchetto, 2015) was applied to detect monotonic trends in DON 

concentrations, DON fluxes, the DOC:DON ratio, pH (2005–2013) and temperature 

(1996–2013). The rate of annual change (increase or decrease) was expressed as a 
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percentage in function of Theil-Sen’s slope (% per year). Since DON concentrations were 

not normally distributed (evaluated using the Shapiro-Wilk test included in the ‘stats’ 

package), cross-site statistics (for inter-comparison of sites) were performed by means of 

the non-parametric Kruskalmc test (Multiple comparison test after Kruskal-Wallis) 

included in the ‘pgirmess’ package (Giraudoux, 2015). Correlations between fortnightly 

measured concentrations of DOC or DON and mean air or soil temperature during the 

period since the previous sampling were evaluated using the Spearman’s rank correlation 

test included in the ‘stats’ package. 

 Results 5.3

 Trends and patterns of DON 5.3.1

In BD, mean annual concentrations (0.40–0.48 mg L-1) and fluxes (3.0–3.9 kg ha-1 yr-1) of 

DON were comparable among the five studied Level II plots (Table 5.1). In TF, mean 

annual concentrations (0.95–1.41 mg L-1) and fluxes (5.6–8.3 kg ha-1 yr-1) of DON were 

respectively 2.8 and 1.9 times higher than in BD. Fluxes of DON in TF were somewhat 

higher in the coniferous plots. In the O horizon we observed the highest mean annual 

DON concentrations (1.84–2.36 mg L-1) and fluxes (10.1–12.3 kg ha-1 yr-1). In the mineral 

soil, DON levels decreased gradually with soil depth from the A till the C horizon. Annual 

leaching losses of DON (i.e. leaching of DON from the C horizon) were 1.2–3.7 kg ha-1 yr-

1, representing less than 0.1% of the total soil organic N stock to 1 m depth (Table 5.2). 

Concentrations and fluxes of DON in BD were slightly higher during the growing season 

(from May to August) compared to the rest of the year (Figure 5.1 and Figure 5.2). In TF 

we observed a more explicit seasonal pattern, with a marked peak of DON concentrations 

in May, especially in the deciduous plots, and elevated DON fluxes from May till August in 

all plots. In the soil solution the highest DON fluxes were observed at the end of the year, 

i.e. when rainfall was abundant. 
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Table 5.1 Seasonal Mann-Kendall trends (2005–2013) for water fluxes (mm yr-1), DON concentrations (mg L-1), DON fluxes (kg ha-1 yr-1) 

and the molar DOC:DON ratio, with mean annual values, 10th and 90th percentile for concentrations, mean annual values for fluxes, 

median values for DOC:DON, Theil-Sen’s slope (annual change) and significance (ns: not significant, (*): p < 0.1, *: p < 0.05, **: p < 

0.01, ***: p < 0.001). Letters (a–d) show plots with comparable mean within groups/layers. The right column shows the significance of 

Spearman’s rank correlation (ρS) between DOC and DON concentrations. 

Plot Sampli Water fluxes  DON concentrations  DON fluxes  DOC:DON (molar)  
 Depth† Mean Slope  Mean P10 P90 Slope  Mean Slope  Median Slope ρS 
 (cm) (mm yr-1)  (mg L-1)     (kg ha-1 yr-1)  (‒)   

BD              
RAV  935a ns  0.48a 0.09 0.84 ns  3.9a ns  6.1a -0.28(*) ns 
BRA  947a ns  0.40a 0.07 0.81 ns  3.3a ns  6.8a ns * 
WIJ  947a ns  0.46a 0.09 0.86 +0.02(*)  3.8a ns  6.2a ns ns 
GON  855a ns  0.41a 0.09 0.81 ns  3.0a ns  6.0a ns ns 
HOE  959a ns  0.40a 0.10 0.73 ns  3.4a ns  5.9a ns * 
TF              
RAV  667a ns  1.37c 0.32 2.29 +0.06**  8.3b ns  15.3b -1.08** ns 
BRA  755a ns  1.08b 0.28 2.09 +0.05**  7.0b +0.18(*)  16.3b -0.84*** ** 
WIJ  727a ns  1.05ab 0.31 1.92 +0.04**  5.6ab +0.21*  9.5a -0.38* ** 
GON  622a ns  1.41bc 0.34 2.42 +0.08***  6.3ab +0.31**  10.3a -0.72*** ns 
HOE  764a ns  0.95a 0.17 1.87 +0.06***  5.9a +0.36***  9.4a -0.48** *** 
O horizon               
RAV  536ab ns  2.09ab 0.88 3.28 +0.18***  10.7a +0.93***  24.4bc -1.72*** *** 
BRA  569ab -17*  2.14ab 0.69 4.14 +0.18***  10.7a +0.40*  25.6c -1.73** *** 
WIJ  708b ns  1.84a 0.59 2.97 +0.19***  12.3a +1.07***  21.4ab -1.64** (*) 
GON  435a ns  2.36b 0.83 4.21 +0.22***  10.1a +0.64***  18.3a -1.42* ** 
HOE  584b +24*  2.06ab 1.07 3.10 +0.11***  11.1a +0.94***  20.4a -1.56*** ** 
†: the C horizons are in fact deeper than the sampling depths  
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Table 5.1 continued. 

Plot Sapling Water fluxes  DON concentrations  DON fluxes  DOC:DON (molar)  
 Depth† Mean Slope  Mean P10 P90 Slope  Mean Slope  Median Slope ρS 
 (cm) (mm yr-1)  (mg L-1)     (kg ha-1 yr-1)  (‒)   

A horizon               
RAV 10–25 427a ns  1.79c 0.82 2.65 +0.09***  7.9c +0.38**  34.8c -2.98*** ns 
BRA 15–25 330a ns  1.68bc 0.92 2.50 +0.08**  5.6bc +0.24**  31.6bc -1.19(*) ns 
WIJ 10–20 330a ns  1.46b 0.71 2.28 +0.13***  4.3ab ns  34.0bc -2.68* * 
GON 10–20 334a ns  2.00c 0.72 2.98 +0.09**  6.5c +0.25*  16.3a -1.31** ns 
HOE 10–15 359a ns  1.05a 0.61 1.58 +0.06***  4.0a +0.14**  28.3ab -1.77*** *** 
B horizon               
RAV 30–45 350ab ns  1.58c 0.67 2.40 +0.06(*)  5.5b +0.22**  31.7d -2.50** *** 
BRA 30–55 249a ns  1.33c 0.67 2.00 +0.06**  3.4b +0.07(*)  27.1cd -1.09* *** 
WIJ 45–70 257a ns  0.90b 0.44 1.35 +0.02*  2.1a ns  25.8c -0.87* *** 
GON 25–40 303ab ns  1.45c 0.44 2.20 +0.05*  4.2b +0.11(*)  15.8b -0.84* *** 
HOE 20–30 359b ns  0.72a 0.33 1.14 +0.06***  2.5a +0.12**  14.8a ns *** 
C horizon               
RAV 70–95 333b ns  1.05b 0.42 1.63 +0.04(*)  3.7c ns  24.0b -2.14*** ** 
BRA 70–90 220a ns  1.13b 0.47 1.80 +0.04*  2.5c ns  22.9b ns ** 
WIJ 75–110 181a -4(*)  0.66a 0.23 1.03 +0.02*  1.2a ns  19.4ab ns *** 
GON 45–55 197a ns  1.14b 0.37 1.95 ns  2.3bc ns  15.3a ns ** 
HOE 35–55 344b ns  0.73a 0.34 1.14 +0.04*  2.1b +0.13***  15.9a ns *** 
†: the C horizons are in fact deeper than the sampling depths 
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Table 5.2 Total organic N stock (ton N ha-1) for the forest floor (FFN) and the upper 1 m of 

the mineral soil (SON) in the five Level II plots in Flanders (Fleck et al., 2016). 

Plot FFN SON 
 (ton N ha-1) (ton N ha-1) 

Coniferous forests   
RAV 1.58 5.2 
BRA 1.26 3.0 
Deciduous forests   
WIJ 2.67 10.4 
GON 1.58 10.9 
HOE 0.84 7.7 

 

The amount of precipitation and the drainage fluxes exhibited a certain inter-annual 

variation (Figure 5.A1), but did not significantly change between 2005 and 2013 (Table 

5.1). Concentrations and fluxes of DON in BD were stable (Table 5.2, Figure 5.A2 and 

Figure 5.A3). In TF, DON concentrations and fluxes increased significantly in all plots by 

3–9% per year, except fluxes in RAV. In the O horizon, a general increase in DON 

concentrations (7–19% per year) and DON fluxes (4–14% per year) was observed. Also 

in the A, B and C horizons DON concentrations and fluxes generally tended to increase, 

but the magnitude of the increase and the number of significant differences diminished 

gradually with soil depth. Only at the HOE site a significant increase in DON losses below 

the rooting zone was observed. 

At the BRA site, the concentrations of DON and DOC in TF showed a strong positive 

correlation (p < 0.001) with air temperature. Soil solution DOC concentrations in the A 

horizon also showed a strong positive correlation (p < 0.001) with soil temperature, while 

soil solution DON concentrations in the A horizon were not correlated with soil 

temperature. There was no significant change in air temperature during the observation 

period (Figure 5.A4). 
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Figure 5.1 Mean monthly DON concentration (mg L-1) in deposition and soil solution 

(2005–2013) with 95% confidence interval based on the propagation of errors (dashed 

bars). 

  



Chapter 5 – Trends of DON 

101 
 

 

Figure 5.2 Mean monthly DON flux (kg ha-1 month-1) in deposition and soil solution 

(2005–2013) with 95% confidence interval based on the propagation of errors (dashed 

bars). 
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 Trends and patterns of the DOC:DON ratio 5.3.2

In BD, the DOC:DON ratio was comparable among plots (median 5.9–6.8) (Table 5.1). In 

TF, the DOC:DON ratio was higher in coniferous plots (median 15.3–16.3) than in 

deciduous plots (median 9.4–10.3). In the soil solution, the DOC:DON ratio increased 

with depth from the O horizon (median 20.4–25.6) to the A horizon (median 28.3–34.8) in 

all plots except GON (median 18.3–16.3). In the mineral soil, the DOC:DON ratio 

decreased with depth (median 15.3–24.0 in the C horizon) in all plots. Overall, the 

DOC:DON ratio in soil solution was higher in the plots with a sandy soil texture (RAV, 

BRA, WIJ) than in the plots with a more silt loam texture (Table 2.2). In TF and in the O 

horizon, the DOC:DON ratio was somewhat higher near the end of the growing season, 

while the DOC:DON ratio showed no clear seasonal pattern in BD and in the mineral soil 

(Figure 5.3). 

The concentrations of DOC and DON were weakly correlated in BD, while a strong 

correlation was observed in TF at three plots (Table 5.1). In the soil solution, 

concentrations of DOC and DON showed an overall strong correlation, except in the A 

horizon. 

In BD, the DOC:DON ratio remained nearly stable between 2005 and 2013, while the 

DOC:DON ratio decreased overall in TF and in the soil solution (Table 5.1, Figure 5.A5). 

The DOC:DON ratio in soil solution peaked in 2007, followed by more or less stable 

values thereafter. 

Soil solution pH showed an overall increasing trend between 2005 and 2013, except in 

the O horizon in RAV and BRA and in the A horizon in HOE (Figure 5.A6). 
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Figure 5.3 Median monthly DOC:DON ratio (molar) in deposition and soil solution (2005–

2013) with 95% confidence interval based on the propagation of errors (dashed bars). 
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 Discussion 5.4

Despite the wide scientific interest for DON concentrations and fluxes in temperate 

forests during the past decades (Kalbitz et al., 2000; Michalzik et al., 2001), monitoring of 

DON concentrations was implemented only recently in forest monitoring networks. The 

number of published long-term data series on DON concentrations and fluxes is therefore 

very limited and published time series were often shorter than the minimum of nine years 

that is recommended to be able to detect clear trends (Vanguelova et al., 2010; Oulehle 

et al., 2011; Waldner et al., 2014). Our unique 9-year time series of DON concentrations 

and fluxes in five temperate forests in a high deposition area brings new insights into this 

matter. 

Overall, the concentrations and fluxes of DON in the deposition and soil solution of the 

five plots were in the middle or higher range of the levels that have been observed at 

other temperate forests in northwestern and central Europe and eastern US (Michalzik et 

al., 2001; Sleutel et al., 2009; Vanguelova et al., 2010; Wu et al., 2010b; Oulehle et al., 

2011). The DOC:DON ratios that were observed in BD were in the lower range of those 

reported in similar published studies (Michalzik and Matzner, 1999; Campbell et al., 2000; 

Solinger et al., 2001), probably due to the relatively high atmospheric DON depositions. 

The higher DOC:DON in TF in coniferous plots compared to deciduous plots could be 

attributed to the higher C:N ratio of needles compared to leaves (Cools et al., 2014). 

The concentrations and fluxes of DON were stable in BD, but increased in TF during the 

monitoring period, in contrast with the increase in DOC concentrations in BD and the 

stable DOC concentrations and fluxes in TF that was observed at the five plots between 

2002 and 2012 (Verstraeten et al., 2014). On the other hand, we observed a parallel 

increase in DON and DOC levels in soil solution. Hence, our hypothesis that trends of 

DON follow the trends of DOC, was confirmed for soil solution but not for deposition. 

The observed increase in DON concentrations and fluxes in the soil solution is in 

agreement with the predominantly increasing trends of DOC levels observed in forest 

soils and connected aquatic ecosystems in the central parts of Europe and eastern US 

(e.g. de Wit et al., 2007; Monteith et al., 2007; Vanguelova et al., 2010; Oulehle et al., 

2011). DOC and DON form a crucial link between terrestrial and aquatic carbon and N 

cycles and contribute significantly to aquatic fluxes of carbon dioxide (CO2) to the 

atmosphere (Battin et al., 2009; Lapierre et al., 2013; Regnier et al., 2013). But annual 
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leaching losses of DON below the deepest horizon considered (1.2–3.7 kg ha-1 yr-1) 

represented less than 0.1% of the total soil organic N stock to 1 m depth and increased 

only at one of the five plots. Moreover, DON leaching losses were much lower than DOC 

losses which amounted to 19–61 kg ha-1 yr-1 at the five plots (Verstraeten et al., 2014), 

meaning that the impact of DON leaching on the water quality of connected surface 

waters is probably limited compared to DOC leaching. 

A possible explanation for the increase in DON and DOC levels is the significant decline 

of atmospheric SO4
2- depositions at the five plots between 1994 and 2010 (Verstraeten et 

al., 2012). At a number of intensive monitoring plots in European temperate forests, 

including the five Level II plots studied, the decline of atmospheric SO4
2- depositions was 

followed by an initial chemical recovery of the soil solution, indicated by an increase in pH 

(Figure 5.A6) and a decrease in SO4
2- and Al3+ concentrations (Vanguelova et al., 2010; 

Oulehle et al., 2011; Verstraeten et al., 2012). As postulated by Monteith et al. (2007) 

decreasing soil solution SO4
2- concentrations result in lower soil solution ionic strength, 

leading to an increased solubility of DOM. In addition, ionic Al in soil is known to 

coagulate DOM, thereby causing precipitation of DOM. Increasing pH therefore also 

indirectly increases OM solubility by lowering soil solution concentration of Al3+. At the low 

pH-CaCl2 of about 3 of the mineral horizons (Table 2.2), i.e. in the low end of the Al buffer 

range, a relatively small increase in pH could strongly reduce Al solubility and therefore 

promote OM solubility. Hence, the increase in DON in soil solution could be attributed to 

multiple interlinked abiotic processes, viz. the increase in pH, lowered soil solution Al3+ 

levels and lower SO4
2- concentrations and ionic strength. Trends in the DOC:DON ratio 

were mostly negative, disproving our hypothesis that recovery from acidification would 

disproportionally favor the dissolution of DOC relative to DON. 

The level of N loading was found to be positively correlated with DON concentration and 

negatively with the DOC:DON ratio, suggesting that inorganic N can be transformed into 

DON, as previously postulated (Currie et al., 1996; Campbell et al., 2000; McDowell et al., 

2004; Pregitzer et al., 2004; Brookshire et al., 2007). Inorganic N deposition and NO3
- 

leaching decreased at the five plots (Verstraeten et al., 2012). Since we observed 

increasing trends of DON and mostly decreasing DOC:DON in TF and soil solution, we 

found no cues that DON levels and DOC:DON ratios were influenced by inorganic N 

deposition at the five plots. 
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DON was furthermore enriched in DOM with depth and followed the decrease in the soil 

C:N ratio with depth (Table 2.2). Considering the very low unfavorable pH of the soil 

mineral horizons (pH-CaCl2 was close to 3), it seems unlikely that microbial consumption 

of C explains decreasing DOC:DON ratios with depth. Instead, progressively lower 

DOC:DON ratio is likely explained by selective sorption of DOC upon leaching through 

mineral soil horizons, because N-rich DOM compounds often have a lower reactivity with 

iron (Fe) and Al hydroxides compared to N-poor DOM compounds (Qualls et al., 1991; 

Vandenbruwane et al., 2007; Scott and Rothstein, 2014). In line, at the GON site, the 

overall low DOC:DON ratios match the more loamy soil texture (higher clay content in the 

mineral soil) with 4–10 times higher cation exchange capacity, and thus higher sorption 

capacity of the soil compared to the other plots with a more sandy texture (Table 2.2). 

DOM composition was also influenced by temporal variation in hydrological conditions. 

The DOC:DON ratio in soil solution peaked in 2007 (Figure 5.A5), a year characterized by 

exceptional spring drought followed by abundant rainfall during summer. Clearly in all five 

sites this sudden rewetting after 37 days of drying temporarily promoted DOC losses but 

lowered DON losses. Considering predicted global changes in precipitation and 

evapotranspiration, soil drying and rewetting will likely increase in the next decades 

(Borken and Matzner, 2009), with possible high temporal DOC leaching. 

Although DOC and DON concentrations in water samples are negatively correlated with 

precipitation through dilution (Michalzik and Matzner, 1999; Sleutel et al., 2009), the 

seasonal peak in May of DON concentrations in TF in the deciduous plots could not be 

explained by differences in the monthly precipitation (Figure 5.A1). This peak coincided 

with the dispersal of N-rich pollen, bud burst and the fall of bud scales from oak and 

beech trees, which could explain the darker, brownish color of water samples from TF 

and stemflow during this month. Fluxes of DON in TF depended strongly on precipitation, 

which was highest in August and December and lowest in January and April (Figure 

5.A1), in accordance with the 30-year average of monthly precipitation in Belgium 

(www.meteo.be). Our results confirmed that the canopy functions as an important source 

of DON and DOC in temperate forests (Michalzik et al., 2001), and we observed that 

particularly spring phenology had a considerable impact on TF DON concentrations and 

fluxes in deciduous forests, while the impact of autumn phenology (leaf senescence and 

fall), typically around October-November, was more limited. Given that DON fluxes 

showed no trend in BD, suggesting stable atmospheric DON inputs, the increase in DON 

levels in TF could likely be explained by intensified DON leaching from the canopy. The 
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positive correlation between DOC and DON concentrations in TF and air temperatures at 

the BRA site confirmed the role of air temperature as a driver of DOM in throughfall water 

(Solinger et al., 2001; Sleutel et al., 2009; Wu et al., 2010b). A possible explanation is 

that higher temperatures may stimulate microbial activity and insect herbivore activity in 

the canopy, which are known to enhance DOM leaching with TF (Michalzik and Stadler, 

2005; Pitman et al., 2010). Therefore, a future with climate warming could result in higher 

DOM leaching from the canopy. The DOM in TF consists for a large part of easily 

decomposable compounds, which could act as co-substrates or promoters for 

decomposition and mineralization processes of organic matter in the forest floor 

(Guggenberger and Zech, 1994). Therefore, increased leaching of DON from the canopy 

may help to explain the increase in DON levels in the upper soil layers (Michalzik et al., 

2001; Michalzik and Stadler, 2005). Higher soil temperatures may in turn enhance the 

leaching of DOM from organic soil layers (Andersson et al., 2000; Michalzik et al., 2001). 

In our study, this was only confirmed for DOC but not for DON, given the non-significant 

correlation between soil solution DON concentrations and soil temperature in the A 

horizon at the BRA site. 

 Conclusions 5.5

Following a sharp decline in atmospheric SO4
2- and inorganic N depositions during the 

past two decades, forests in Flanders, the Northern part of Belgium, are under recovery 

from acidification. The concentrations and fluxes of DON in soil solution at five ICP 

Forests Level II plots showed increasing trends over a 9-year period starting in 2005. This 

mobilization of DON connects to the predominantly increasing trends of DOC levels 

observed in forest soils in the central parts of Europe and eastern US. The increase in 

DON in soil solution can be attributed to multiple interlinked abiotic processes, viz. 

increase in pH, decrease in soil solution Al3+ and SO4
2- concentrations and ionic strength. 

But further in-depth statistical analysis able to cope with the multicollinearity among 

atmospheric deposition, soil solution, pH and DON level data will be needed. Such 

exercise requires long-term high-resolution datasets like the one presented here. Given 

the decrease in inorganic N deposition over the monitoring period, the generally 

decreasing trend in DOC:DON ratio in TF and soil solution does not appear to result from 

an altered N-balance. Also, no major shifts in air temperature were observed. We 

therefore argue that recovery from acidification may be the most plausible explanation for 

observed shifts in DON and DOC:DON trends over this 9-year period. Whether or not the 
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observed trends and patterns of DON also apply to a wider spatial scale will need to be 

further investigated, including its dependency on factors like latitude, level of N 

deposition, and hydrology. 

 Appendix A 5.6

 

Figure 5.A1 Annual precipitation and drainage fluxes for the five plots (left) and mean 
monthly open field precipitation (mm) (2005–2013) with standard deviation (dashed bars). 
Data for 2005–2012 were taken from Verstraeten et al. (2014). 
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Figure 5.A2 Fortnightly DON concentration (mg L-1) in deposition and soil solution, with trend lines (blue: linear regression line, red: 
LOESS curve). 
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Figure 5.A3 Fortnightly DON flux (kg ha-1 fortnight-1) in deposition and soil solution, with trend lines (blue: linear regression line, red: 
LOESS curve). 
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Figure 5.A4 Daily mean air temperature (black dots) and soil temperature in the A horizon 
(blue: 2 cm depth, red: 9 cm depth) at the BRA site (1996–2013). Dashed line: mean air 
temperature for the entire period (10.67 °C), solid green line: linear regression line for air 
temperature (with 95% confidence interval in light green), solid black line: gam model (air 
temperature ~ s(date, bc = “cs”)) for air temperature (with 95% confidence interval in 
grey) and significance of Seasonal Mann-Kendall trends (ns: not significant). 
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Figure 5.A5 Fortnightly DOC:DON ratio (molar) in deposition and soil solution, with trend lines (blue: linear regression line, red: LOESS 
curve). 
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Figure 5.A6 Soil solution pH (2005–2013) and significance of Seasonal Mann-Kendall trends (ns: not significant, (+): p < 0.1, +: p < 0.05, 
++: p < 0.01, +++: p < 0.001), with trend lines (blue: linear regression line, red: LOESS curve). 
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Figure 5.A7 Fortnightly DOC concentration (mg L-1) in deposition and soil solution, with trend lines (blue: linear regression line, red: 
LOESS curve). 
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 MULTIPLE NITROGEN SATURATION INDICATORS YIELD 6

CONTRADICTING CONCLUSIONS ON IMPROVING NITROGEN 

STATUS OF TEMPERATE FORESTS 

 

After: Verstraeten, A., Neirynck, J., Cools, N., Roskams, P., Louette, G., De 

Neve, S. and Sleutel, S., 2017. Multiple nitrogen saturation indicators yield 

contradicting conclusions on improving nitrogen status of temperate forests. 

Ecological Indicators 82, 451-462. 

http://dx.doi.org/10.1016/j.ecolind.2017.07.034 

 

Abstract 

Nitrogen (N) depositions in Europe are decreasing, but this could not explain faster than 

expected improvement of N saturation indicators in temperate forests. Alongside there 

were local signs of initial recovery from acidification during the past three decades and 

enhanced leaching of dissolved organic carbon and nitrogen (DOC, DON). These two 

global change processes both affect total dissolved nitrogen (TDN) levels and often occur 

simultaneously, hence complicating mechanistic explanations for changing European 

forest N status. We aimed to test the hypothesis that forest N status in northwest Europe 

has started to improve. If this hypothesis is confirmed, we wanted to investigate to what 

extent such improvement is due to reduced N deposition. We evaluated the evolution of 

multiple N saturation indicators in five ICP Forests Level II plots in northern Belgium, 

using long-term soil solution and foliage datasets. The DON:TDN ratio (molar) in soil 

solution increased overall in the O horizon (mean 0.279‒0.463, slope 0.023‒0.037 yr-1) 

and in the mineral soil (mean 0.134‒0.78, slope 0.007‒0.051 yr-1) between 2005 and 

2014. The DOC:NO3
- ratio (molar) in soil solution increased in three plots in the O horizon 

(mean 6.84‒22.15, slope 0.58‒1.92 yr-1) and in four plots in the mineral soil (mean 2.07‒

25.32, slope -0.06‒5.76 yr-1) between 2002 and 2014. The ratio of N and phosphorus (P) 

concentrations in foliage (mg g-1) and the ratio of base cations (BC = Ca + K + Mg) and N 

concentrations in foliage (molar) remained unaltered between 1999 and 2013. Changes 

in the soil solution chemical composition thus confirmed an improvement in forest N 

status, despite sustained high NO3
- concentrations, but biotic recovery appeared to be 
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lagging behind. This demonstrates that insight in forest recovery from N saturation 

requires a multiple indicator approach, and further monitoring of tree nutritional status 

alongside soil processes is needed to monitor the evolution of European forest N status. 

 Introduction 6.1

Atmospheric deposition of inorganic nitrogen (N) and sulphate (SO4
2-) caused an 

accelerated acidification and N saturation of temperate forest soils and surface waters in 

large parts of Europe and the US mainly during the second half of the 20th century (van 

Breemen et al., 1984; Aber et al., 1989). In temperate forests, soil acidification often 

depleted base cations (calcium, potassium, magnesium), increased soil solution 

aluminium (Al3+) concentrations and nitrate (NO3
-) leaching, and disrupted dissolved 

organic matter cycling (Kalbitz et al., 2000; Aber et al., 2003; McDowell et al., 2004; 

Pregitzer et al., 2004; Monteith et al., 2007). 

Despite a substantial decrease in inorganic N depositions in large regions of Europe 

during the past decade (Waldner et al., 2014), critical loads and limits, i.e. the level below 

which significant harmful effects do not occur according to present knowledge (Nilsson 

and Grennfelt, 1988) for inorganic N are still frequently exceeded in many European 

forests (Iost et al., 2012; Waldner et al., 2015). Despite publication of several papers on 

this matter it is still unclear how long N saturated forests will take to recover. Indeed, 

many factors, including management, SO4
2- deposition and natural succession, change 

alongside inorganic N deposition, and individual compartments of the forest ecosystem 

(e.g. vegetation, below-ground communities, soil and soil solution) react with varying 

speed to changes in N availability (Stevens, 2016). Nitrogen availability also depends on 

forest size, forest type, soil type and sampling time and the complex interplay between 

biotic and abiotic processes (Pastor and Post, 1986; Callesen et al., 1999). In the present 

study we evaluate the evolution of forest N saturation in Flanders, a region in West-

Europe where both inorganic N and SO4
2- depositions strongly decreased, using a 

selection of indicators based on long-term data of the elemental concentrations in soil 

solution and tree mineral nutrition at intensive monitoring sites with varying soil types and 

tree species. 

Long-term data on the concentrations of N species in soil solution collected at intensive 

forest monitoring plots yield crucial information about N availability and N saturation in 

forests. While unpolluted forests generally exhibit very limited N losses, consisting almost 
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entirely of dissolved organic nitrogen (DON), N saturated forests with low C:N ratio in 

organic layers typically show elevated NO3
- leaching below the rooting zone (1989; 

Perakis and Hedin, 2002; Aber et al., 2003; Perakis and Sinkhorn, 2011). The ratio 

between DON and dissolved inorganic nitrogen (DIN) in soil solution, DON:DIN, has 

therefore been used as an indicator for N saturation in forests (Williams et al., 2001; 

2004; Park and Matzner, 2006). Similarly, low ratios of DON to total dissolved nitrogen 

(TDN) in soil solution, DON:TDN, and of dissolved organic carbon (DOC) to NO3
-, 

DOC:NO3
-, are often used as indicators of soil N saturation (Currie et al., 1996; Sleutel et 

al., 2009; Taylor and Townsend, 2010). 

The evaluation of forest N status may, however, be confounded when DOC and DON 

concentrations change alongside TDN and NO3
- concentrations. Recovery from 

acidification was indeed found to mobilize DOC and DON (Verstraeten et al., 2016) in five 

ICP Forests Level II plots in northwest Europe. The concomitant evolutions in N 

deposition and recovery from acidification, both affecting DON mobility, therefore leads us 

to question the true share of reduced N depositions in a possible improving N status of 

these forests. The prime aim of this research was thus to assess recent evolutions in the 

N status of these five ICP Forests Level II plots in Flanders, northern Belgium. We 

monitored the concentrations of DON and TDN (2005−2014) in the deposition and soil 

solution and of DOC and NO3
- (2002−2014) in the soil solution and critically assessed 

trends in classic molecular-ratio based indicators. Because throughfall DIN deposition in 

the plots decreased from 42.1 kg ha-1 yr-1 to 20.2 kg ha-1 yr-1 during the period 1994 to 

2010 (Verstraeten et al., 2012), we hypothesized that the DON:TDN ratio (molar) and 

thus the DOC:NO3
- ratio (molar) increased over the past decade. We expect, however, 

that increased DON and DOC mobilization due to concomitant recovery from acidification 

renders these shifting ratios only partly indicative for the actual improvement in forest N 

status. Moreover, concentrations of DOC, DON, TDN and NO3
- in throughfall and soil 

solution obviously are not representative of the tree biological status. Instead, the N 

status of forests can alternatively be derived from the foliar concentrations of N and 

phosphorus (P) and their ratio, N:P, in relation to tree species specific critical limits 

(Mellert and Göttlein, 2012; Veresoglou et al., 2014). A similar indicator is the ratio of the 

foliar concentrations of base cations (BC = Ca + K + Mg) and N, BC:N (Meesenburg et 

al., 2016). Tree nutritional status provides an integrative criterion for the assessment of 

site conditions and environmental factors (e.g. soil acidification, N saturation, climate 

change) and is important to control the success of restoration measures and to follow the 
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natural recovery of forest ecosystems from former anthropogenic impacts (Mellert and 

Göttlein, 2012). To more broadly track the impact of reduced N deposition on forest N 

status, we extended the evaluation with the 1999‒2013 trends in the foliar N:P ratios and 

BC:N ratios and hypothesized that these had decreased and increased, respectively, as a 

consequence of lowered soil mineral N availability. 

 Material and methods 6.2

 Study area 6.2.1

Five plots of the ICP Forests intensive monitoring network (Level II) in Flanders, northern 

Belgium, were included in this study. More details about these Level II plots are given in 

section 2.1. 

 Sample collection and measurements 6.2.2

Sampling of throughfall, stemflow and soil solution was carried out fortnightly from 

January 2005 till December 2014. A detailed description of the methods used for 

deposition sampling is given in section 2.2.1 and for soil solution sampling in section 

2.2.2. 

Sampling of fresh tree foliage was carried out biennially from 1999 till 2013 by 

professional tree climbers. A detailed description of the methods used for foliage 

sampling is given in section 2.2.3. 

 Chemical analysis 6.2.3

A description of the methods used for sample pre-treatment and for the determination of 

the concentrations (mg L-1) of DOC, TKN, NH4
+, NO3

- and NO2
- on the collected samples 

of throughfall, stemflow and soil solution is given in section 2.3.1. The methods used for 

the analysis of foliage samples are given in section 2.3.2. 

 Data handling 6.2.4

Concentrations of DOC and DON for 2005–2013 were taken from previous studies 

(Verstraeten et al., 2014; 2016), and were supplemented with new data for 2014. 

Concentrations of DON were calculated as TKN – NH4
+. Concentrations of TDN were 

calculated as TKN + NO3
- + NO2

-. The ratio of DON and TDN concentrations (molar), 
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DON:TDN, and the ratio of DOC and NO3
- concentrations (molar), DOC:NO3

-, were 

calculated for each sample for which both concentrations were measured. Deposition 

fluxes of DIN (kg ha-1) were calculated as the product of concentration (mg N L-1) and the 

collected volume (L m-2) of precipitation in the open field (BD) and below the canopy 

(throughfall + stemflow, further denoted as TF). The ratio of nitrogen to phosphorus 

concentration (mg g-1) in foliage, N:P, and the ratio of base cations to nitrogen 

concentration (molar) in foliage, BC:N, were calculated for each foliage sample. 

To determine the stage of N saturation in the plots based on the DON:TDN ratio we used 

critical limits as proposed by Williams et al. (2004) (stage 0: > 67% DON, stage 1: 

33−67% DON, stage 2: < 33% DON). To check whether plots were N saturated based on 

the DOC:NO3
- ratio we used the critical inflection point for soils (DOC:NO3

- = 5.22) (Taylor 

and Townsend, 2010). Foliar nutritional status was judged by tree species specific critical 

limits for N and P concentrations and N:P ratios (van den Burg and Schaap, 1995; Mellert 

and Göttlein, 2012). 

 Statistical analysis 6.2.5

Data exploration and statistical analysis were performed in R version 3.3.0 (R Core 

Team, 2016). Since the data were not normally distributed (evaluated using the Shapiro-

Wilk test included in the ‘stats’ package), the non-parametric Seasonal Mann-Kendall 

Test (Hirsch et al., 1982) included in the ‘rkt’ package (Marchetto, 2015) was used to 

detect monotonic trends in the DON:TDN ratio (2005–2014) and the DOC:NO3
- ratio 

(2002–2014). The rate of annual change (increase or decrease) was expressed as a 

percentage in function of the Theil-Sen’s slope (% yr-1). Cross-site statistics (for inter-

comparison of sites) were performed using the non-parametric Kruskalmc test (Multiple 

comparison test after Kruskal-Wallis test) included in the ‘pgirmess’ package (Giraudoux, 

2015). Correlation between the fortnightly TF of DIN and the DON:TDN ratio and 

DOC:NO3
- ratio in soil solution were evaluated using the Spearman’s rank correlation test 

included in the ‘stats’ package. The nonparametric Mann-Kendall Test (Mann, 1945) 

included in the ‘rkt’ package (Marchetto, 2015) was applied to detect monotonic trends in 

the foliar concentrations and ratios, using the mean value for the five sampled trees in the 

same year. 
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 Results 6.3

 Trends in the DON:TDN ratio 6.3.1

The DON:TDN ratio in BD was comparable among plots (median 0.179−0.216) whereas 

there were small differences in this ratio in TF (median 0.202−0.261) (Table 6.1, Figure 

6.1). In the O horizon (forest floor) the DON:TDN ratio was lowest in GON and WIJ 

(median respectively 0.279 and 0.306) and highest in BRA and HOE (median respectively 

0.429 and 0.463). In the mineral soil (A, B, C horizons), the DON:TDN ratio was much 

lower in GON (median 0.134−0.147) compared to the other plots (median 0.290−0.780) 

and higher in HOE and WIJ than in RAV and BRA. 

The DON:TDN ratio showed a limited general increase in BD (0.007−0.01 yr-1) and a 

slightly stronger general increase in TF in the five forest plots (0.01−0.023 yr-1) between 

2005 and 2014 (Table 6.1, Figure 6.A1). In the soil solution, the DON:TDN ratio 

significantly increased with time at all depths. In the O horizon the smallest increase in 

the DON:TDN ratio was observed in GON (0.023 yr-1) and the largest in HOE (0.037 yr-1). 

In the mineral soil, the largest increase in the DON:TDN ratio was found in the two plots 

in coniferous forest (RAV and BRA) (0.028−0.051 yr-1) and the smallest in GON 

(0.007−0.008 yr-1). The annual rate of increase augmented from the A horizon (0.013‒

0.028 yr-1) towards the C horizon (0.031−0.051 yr-1) in all plots except the GON site, 

where it was constant with depth. In 2005 the 2nd critical limit for N saturation of Williams 

et al. (2004) was exceeded in all plots (N saturation stage 2: DON < 33% of TDN in soil 

solution) (Figure 6.1). The forest soil at the GON site remained N saturated during the 10-

year period according to the criteria from Williams et al. (2004). The N status of the two 

plots in coniferous forest (RAV and BRA) improved from Williams et al. (2004)’s N 

saturation stage 2 to 1 (N saturation stage 1: DON 33‒67% of TDN in soil solution). The 

N status in the WIJ site temporarily improved from stage 2 to 1 in the organic layer and 

from 2 to 0 (N saturation stage 0: DON > 67% of TDN in soil solution) in the mineral soil 

between 2005 and 2012, but fell back to stage 1 in 2013‒2014. The N status in the HOE 

site improved from stage 2 to 1 in the B horizon and from stage 2 to 0 in the O, A and C 

horizon between 2005 and 2014. 

In the O horizon, the DON:TDN ratio showed a strong negative correlation with the 

deposition of DIN in all plots (Figure 6.2). In the mineral soil the DON:TDN ratio was 
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negatively correlated with the deposition of DIN in RAV, HOE (A, B and C horizon) and 

BRA (B horizon). 
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Table 6.1 Median values and seasonal Mann-Kendall trends for the molar DON:TDN ratio 
(2005–2014) and the molar DOC:NO3

- ratio (2002–2014), with the Theil-Sen’s slope 
(annual change) and significance for the five locations (ns: not significant, (*): p < 0.1, *: p 
< 0.05, **: p < 0.01, ***: p < 0.001). Different lowercase letters (a–d) denote plots with 
significantly different means between locations within groups/layers (p < 0.05). 

Plot Sampli
ng 

DON:TDN (molar)  DOC:NO3
- (molar) 

 Depth Median Slope  Median Slope 
 (cm) (‒)   (‒)  

BD     
RAV  0.188a 0.008**    
BRA  0.191a 0.007(*)    
WIJ  0.216a 0.008*    
GON  0.179a 0.009**    
HOE  0.210a 0.010*    
TF     
RAV  0.218ab 0.013***    
BRA  0.202a 0.010***    
WIJ  0.214ab 0.010**    
GON  0.240bc 0.017***    
HOE  0.261c 0.023***    
O horizon      
RAV  0.377b 0.033***  15.54b 1.63*** 
BRA  0.429c 0.028***  22.15c ns 
WIJ  0.306a 0.027***  6.84a 0.58*** 
GON  0.279a 0.023***  8.48a ns 
HOE  0.463c 0.037***  17.35b 1.92*** 
A horizon      
RAV 10‒25 0.346b 0.028***  10.72b 1.16*** 
BRA 15‒25 0.372b 0.028***  14.18bc 1.64*** 
WIJ 10‒20 0.564c 0.023***  21.27c 3.83*** 
GON 10‒20 0.147a 0.007**  2.73a -0.06(*) 
HOE 10‒15 0.746c 0.013***  25.32c 4.49*** 
B horizon      
RAV 30‒45 0.349b 0.042***  12.03c 1.81*** 
BRA 30‒55 0.343b 0.037***  10.16c 1.93*** 
WIJ 45‒70 0.447c 0.030***  14.59c 2.09*** 
GON 25‒40 0.134a 0.008**  2.55a ns 
HOE 20‒30 0.396bc 0.020***  6.41b 0.47*** 
C horizon      
RAV 70‒95 0.325b 0.051***  9.52b 1.91*** 
BRA 70‒90 0.290b 0.045***  7.05b 1.40*** 
WIJ 75‒110 0.428c 0.031***  11.61bc 2.43*** 
GON 45‒55 0.135a 0.007*  2.07a ns 
HOE 35‒55 0.780d 0.032***  17.12c 5.76*** 
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Figure 6.1 Annual contribution (%) of N compounds in deposition and soil solution for the five locations with Williams et al. (2004)’s 
critical limits for stages of N saturation (0: > 67% DON indicated by the green dashed line, 1: 33−67% DON, 2: < 33% DON indicated by 
the red dashed line). 
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Figure 6.2 Soil solution DON:TDN ratio in function of TF DIN deposition (2005−2014) for the five locations with significance of the 
correlation (ns: not significant, (-): p < 0.1, -: p < 0.05, --: p < 0.01, ---: p < 0.001), Williams et al. (2004)’s critical limits for stages of N 
saturation (0: DON:TDN > 0.67 indicated by the green dashed line, 1: 0.33 < DON:TDN < 0.67, 2: DON:TDN < 0.33 indicated by the red 
dashed line), and trend lines (blue solid line: linear regression line, red solid line: LOESS curve) with 95% confidence intervals (light blue: 
linear regression, light red: LOESS curve LOESS curve). The LOESS curve (locally weighted polynomial regression) shows that the 
relationship is often close to linear in the range with sufficient data. 
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 Trends and patterns of the DOC:NO3
- ratio 6.3.2

The concentrations of DOC and NO3
- in soil solution were negatively correlated at all 

depths in WIJ and HOE, in the mineral soil in BRA and in the A horizon in RAV (Figure 

6.A2). In the O horizon the DOC:NO3
- ratio was markedly lower in WIJ and GON (median 

respectively 6.84 and 8.48) compared to the other three plots (median 15.54‒22.15) 

(Table 6.1). The DOC:NO3
- ratio in the O horizon significantly increased in RAV, WIJ and 

HOE and remained unchanged in BRA and GON between 2002 and 2014 (Table 6.1, 

Figure 6.3, Figure 6.A3). In 2002, the DOC:NO3
- ratio was still frequently below the critical 

inflection point for N saturation (DOC:NO3
- = 5.22) in the O horizon in all plots except the 

BRA site, while in 2014 the critical limit was respected in BRA, RAV and HOE (Figure 

6.3). 

In the mineral soil, the DOC:NO3
- ratio was significantly lower in GON (median 2.07‒2.73) 

compared to the other plots (median 6.41‒25.32) (Table 6.1). The DOC:NO3
- ratio in the 

mineral soil increased significantly with time in the A, B and C horizon in all plots except 

GON, where it remained stable (B and C horizon) or even slightly decreased (A horizon). 

In 2002, the critical inflection point for N saturation was permanently surpassed in the 

mineral soil in all plots, while in 2014 this was still often the case in WIJ and GON but no 

longer in RAV, BRA and HOE (Figure 6.3). 

In RAV, BRA and WIJ, the DOC:NO3
- ratio showed a negative correlation with the 

deposition of DIN (Figure 6.4). In GON and HOE we found no consistent relationship 

between the DOC:NO3
- ratio and the deposition of DIN. 
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Figure 6.3 Soil solution NO3
- concentration in function of the DOC:NO3

- ratio (2002−2014) for the five locations and critical inflection point 
for soils (DOC:NO3

- = 5.22) as proposed by Taylor and Townsend (2010) indicated by the red dashed line. The DOC:NO3
- ratio should 

be above the critical inflection point. 

  



Chapter 6 – Forest N status 

127 
 

 

Figure 6.4 Soil solution DOC:NO3
- ratio in function of TF DIN deposition (2002−2014) for the five locations with significance of the 

correlation (ns: not significant, (-): p < 0.1, -: p < 0.05, --: p < 0.01, --- or +++: p < 0.001), critical inflection point for soils (DOC:NO3
- = 

5.22) as proposed by Taylor and Townsend (2010) indicated by the red dashed line, and trend lines (blue solid line: linear regression 
line, red solid line: LOESS curve) with 95% confidence intervals (light blue: linear regression, light red: LOESS curve LOESS curve). The 
LOESS curve (locally weighted polynomial regression) shows that the relationship is often close to linear in the range with sufficient data. 
The DOC:NO3

- ratio should be above the critical inflection point. 
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 Trends in tree mineral nutrition 6.3.3

The mean foliar N concentration (Table 6.2) was constantly above the upper limit in all 

plots, indicating luxury consumption of N by the trees (Figure 6.A4). The foliar N 

concentration decreased in the BRA site (p < 0.05) and remained unchanged in the other 

plots between 1999 and 2013. The mean foliar P concentration was in the normal range 

in all plots, but on the lower side of this range in BRA, WIJ and GON (Figure 6.A5). The 

foliar P concentration remained unchanged in the plots between 1999 and 2013. The 

foliar concentration of Ca, K and Mg remained unchanged between 1999 and 2013 (data 

not shown), except for an increase in the foliar concentration of Ca in WIJ (p < 0.01). 

The mean foliar N:P ratio of current year needles was above the upper critical limit 

(unbalanced nutrition) both for Scots pine Pinus sylvestris L. (14.1) in BRA (15.37) 

between 1999 and 2013 (Figure 6.5) and for Corsican pine Pinus nigra ssp. laricio var. 

Corsicana Loud. (12) in RAV (14.85). The mean foliar N:P ratio of common oak Quercus 

robur L. leaves was in the normal range (balanced nutrition, 9.3‒19.6) in GON (18.45), 

and for European beech Fagus sylvatica L. leaves (10‒18.9) in HOE (16.34). It was 

above the upper critical limit in WIJ (19.65). Both the mean foliar N:P ratio and BC:N ratio 

did not change in the plots between 1999 and 2013 (Figure 6.6). 

Table 6.2 Mean foliar concentrations of N, P and base cations (mg g-1 dry weight at 105 
°C) for leaves and current year needles in the five Level II plots in Flanders (1999‒2013). 

Plot Tree species N P Ca K Mg 
  (mg g–1) (mg g–1) (mg g–1) (mg g–1) (mg g–1) 

Coniferous forests      
RAV Pinus nigra ssp. laricio 

var. Corsicana Loud. 
20.5 1.40 1.68 7.41 0.73 

BRA Pinus sylvestris L. 22.1 1.45 2.81 6.84 0.87 
Deciduous forests      
WIJ Fagus sylvatica L. 26.4 1.35 4.02 10.39 0.87 
GON Quercus robur L. 27.8 1.53 7.34 11.83 1.71 
HOE Fagus sylvatica L. 24.1 1.49 8.86 8.93 1.27 
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Figure 6.5 Foliar N:P ratio (1999−2013) for the five locations with critical lower limit (green 
dashed line) and upper limit (red dashed line) (van den Burg and Schaap, 1995; Mellert 
and Göttlein, 2012). Coloured zones represent the 95% confidence interval. Trends were 
not significant. 

 

Figure 6.6 Foliar BC:N ratio (1999−2013) for the five locations. Coloured zones represent 
the 95% confidence interval. Trends were not significant. 
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 Discussion 6.4

 Nitrogen status based on soil solution chemistry 6.4.1

Trend analysis demonstrated an increase in the soil solution DON:TDN ratio in the five 

studied Level II plots between 2005 and 2014. In parallel, the soil solution DOC:NO3
- ratio 

increased in the RAV, BRA, WIJ and HOE plots between 2002 and 2014. This confirms 

our hypothesis that these N saturated forest ecosystems are evolving, to a variable 

extent, towards abiotic conditions typical for unpolluted forest ecosystems (Aber et al., 

1989; Perakis and Hedin, 2002; Perakis and Sinkhorn, 2011). The lack of recovery from 

N saturation at the GON site could likely be explained by the higher clay content of that 

soil (Verstraeten et al., 2016), with a 4‒10 times higher cation exchange capacity (CEC) 

compared to the other (coarser textured) soils, and therefore also higher N retention 

capacity, and N availability and NO3
- concentrations in soil solution (Pastor and Post, 

1986; Callesen et al., 1999). The soil C:N ratio at 20‒40 cm and 40‒80 cm depth were 

indeed only 12.0 and 7.8, respectively (Verstraeten et al., 2012), and lower than in the 

RAV, BRA and WIJ plots. At the same time, the presence of a clay lens at 40‒80 cm 

depth at GON (Verstraeten et al., 2016), must have restricted vertical water fluxes and 

therefore NO3
- leaching, leading to generally lower DOC:NO3

- ratios. These results 

suggest that finer textured soils recover more slowly from N saturation, possibly due to 

their stronger capacity to retain DON and NH4
+ and limited leaching of excess NO3

-, but 

this would need to be confirmed on a larger set of soils. 

It is difficult to frame our results within a European context, because unfortunately 

Europe-wide studies on recent evolutions in the N status of temperate forests are lacking 

(Stevens, 2016). Trends reported by local or regional studies using long-term data from 

intensive forest monitoring plots are inconsistent, varying between a tendency towards 

recovery from N saturation in the Czech Republic (Oulehle et al., 2011), mixed trends in 

the UK depending on the level of DIN deposition (Vanguelova et al., 2010) and increasing 

N saturation in the Belgian Ardennes (Jonard et al., 2012) and in Solling, Germany 

(Meesenburg et al., 2016). These inconsistent varying results could be explained by 

regional differences in the evolution of S and inorganic N depositions, driven by industrial 

and agricultural development, and by local differences in the strength of sinks 

(vegetation, soil) and N cycling processes, which determine how N saturation is 

manifested in the ecosystem (Lovett and Goodale, 2011; Niu et al., 2016). 
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The two most obvious drivers for the tendency towards recovery from N saturation in the 

five studied forests are the relatively fast decrease in both acidifying and eutrophying 

depositions in the past two decades. Throughfall depositions of DIN decreased by 2.4–

5.0% yr-1 in these plots between 1994 and 2010, which can be explained by a substantial 

reduction of NH3 emissions mainly by the agricultural sector (particularly the large scale 

adoption of low-NH3-emission stables, soil-injection of animal slurry and a slight decrease 

in livestock numbers) but also by decreased co-deposition with SO4
2- (Verstraeten et al., 

2012; VMM, 2016a). The study area (Flanders) is thus among the regions in Europe 

where DIN depositions decreased more than the European average of 1.3‒1.8% yr-1 

between 2000 and 2010 (Waldner et al., 2014). Soil solution NO3
- and DON are often 

positively and negatively correlated, respectively, with the TF of DIN (Perakis and Hedin, 

2002; Park and Matzner, 2006). The predominantly negative correlation that we observed 

between the TF of DIN and the DON:TDN ratio (Figure 6.2) and DOC:NO3
- ratio (Figure 

6.4) in soil solution would thus confirm that the decrease in the TF of DIN contributed to 

higher ratios, suggesting a possible improvement of the N status in the plots. This was 

also supported by the increasing DON:TDN ratio in BD and TF (Table 6.1). However, 

NO3
- leaching in the plots decreased faster than could be expected from the annual 

decrease in the TF of DIN, which still exceeded considerably the critical load of 10 kg N 

ha-1 yr-1 above which European temperate forests are susceptible to elevated NO3
- 

leaching (Dise and Wright, 1995; Verstraeten et al., 2012). This is in line with the faster 

than expected decline of NO3
- leaching observed at three intensive forest monitoring plots 

receiving high DIN depositions in the Czech Republic and the UK (Vanguelova et al., 

2010; Oulehle et al., 2011). 

The decrease in DIN depositions alone could not fully explain the initial recovery from N 

saturation in the Flemish Level II plots. Simultaneously with the deposition of DIN the 

deposition of SO4
2- sharply decreased in the Flemish Level II plots, by 4.2‒7.5% yr-1 

between 1994 and 2010 (Verstraeten et al., 2012), which is comparable to the European 

average of 6% yr-1 between 2000 and 2010 (Waldner et al., 2014). Oulehle et al. (2011) 

identified the strong decrease in SO4
2- depositions, and subsequent recovery from 

acidification, as the main driver for the fast decrease in NO3
- leaching at a highly acidified 

spruce forest in the Czech Republic. Recovery from acidification is manifested by 

increasing pH and decreasing Al3+ concentrations in soil solution (Vanguelova et al., 

2010; Oulehle et al., 2011; Verstraeten et al., 2012). The latter is expected to reduce the 

formation of organo-metal complexes and increase the solubility of organic matter, which 
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could partly explain the predominantly increasing trends of DOC and DON concentrations 

in the soil solution of forests and connected surface waters (de Wit et al., 2007; Monteith 

et al., 2007; Scheel et al., 2007). Also in the Flemish Level II plots the increasing 

DON:TDN ratio and DOC:NO3
- ratio are probably closely linked to recovery from 

acidification, given the fact that soil solution Al3+ concentrations strongly decreased, soil 

solution DOC and DON concentrations both increased and soil solution pH in the mineral 

soil increased by about 0.5 units between 2005 and 2013 (Verstraeten et al., 2012; 2014; 

2016). Verstraeten et al. (2016) furthermore explained increased mobilization of DOC and 

DON by lowered ionic strength as a result of decreasing temporal trends in soil solution 

Al3+ and SO4
2-, both linked to diminishing acid deposition in these five Level II plots. 

Lastly, in well-oxygenated environments like the rooting zone in forests on well-drained 

soils the increase in DOC concentrations under recovery from acidification is also 

expected to stimulate the activity of heterotrophic bacteria in the mineral soil by alleviating 

the C limitation. When resource C:N ratios match the stoichiometric demands of microbial 

anabolism, heterotrophic microbes maintain low NO3
- concentrations through intensified 

N turnover and retention of incoming N from the organic layer (Taylor and Townsend, 

2010; Helton et al., 2015). The increasing trends of the DOC:NO3
- ratio that we observed 

in four plots could indicate that recovery from N saturation is not necessarily limited to 

abiotic conditions, but could also involve initial recovery of soil microbial communities. A 

strong microbial recovery at the plots in Flanders seems unlikely though, considering the 

very low pH-CaCl2 of about 3‒4 in the mineral soil. 

The fast response of the DOC:NO3
- ratio and DON:TDN ratio in soil solution to changing 

environmental conditions makes them suitable indicators for early detection of shifts in 

forest N status. However, it should be noted that the critical limit for the molar DOC:NO3
- 

ratio proposed by Taylor and Townsend (2010) for soils (5.22) coincided with soil solution 

NO3
- concentrations ranging between 100 and 1000 µmol L-1 (1.4‒14 mg N L-1) (Figure 

6.3). Compared with the critical limits for N concentration in soil solution published in 

Waldner et al. (2015) and adopted from Iost et al. (2012) (0.2‒0.4 mg N L-1 in the O 

horizon, 1 mg N L-1 in the mineral soil) NO3
- concentrations were still elevated, although 

the critical limit for DOC:NO3
- in our plots was respected. This raises the question 

whether the critical limit of Taylor and Townsend (2010) is stringent enough for European 

forest soils. Taylor and Townsend (2010) derived their critical limit from an exponential 

model based on data from 100 soils mostly located in the USA, including a mixture of 

different soil types (wetlands, moorlands, temperate deciduous and coniferous forests 
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along a longitudinal and altitudinal gradient). Further research is needed to check 

whether the results of our study could be generalized and whether the critical DOC:NO3
- 

limit should be adjusted for European temperate forest soils. 

 Nitrogen status based on tree mineral nutrition status 6.4.2

The foliar N:P ratio and BC:N ratio remained unchanged in the Flemish Level II plots 

between 1999 and 2013. Foliar N concentrations also remained near or above the critical 

limits determined by Mellert and Göttlein (2012), indicating luxury consumption of N by 

the trees, while P nutrition generally was in the lower part of the normal range, and 

tending towards latent deficiency at the BRA site. Consequently, tree nutritional status 

does not confirm our hypothesis that these temperate forests are under recovery from N 

saturation, but rather points to a nearly stable but unbalanced mineral nutrition. For 

common oak (Quercus robur L.), Jonard et al. (2015) also reported a stable tree nutrient 

status for Level II plots across Europe, but the mean foliar N:P ratio in GON (18.45) was 

higher, and thus less balanced, than the European mean (16.35). The stable trends that 

we observed for European beech (Fagus sylvatica L). and Scots pine (Pinus sylvestris L). 

were in line with parallel long-term trends for tree defoliation observed in the plots of the 

ICP Forests large-scale forest condition monitoring network (Level I) in Flanders (Cools et 

al., 2016) but contrasted with the predominantly increasing trends of the foliar N:P ratio in 

Level II plots across Europe, which indicated a deterioration of tree mineral nutrition at the 

European scale (Jonard et al., 2015). For Scots pine, this could be explained by the fact 

that the foliar N:P ratio in current year needles in BRA (15.37) was already much higher, 

and thus less favourable, than the European mean (11.09). On the other hand, for 

European beech, the mean foliar N:P ratio in HOE (16.34) and WIJ (19.65) was lower 

than the European mean (20.31), suggesting that the phosphorus nutrition of beech 

forests in Flanders is slightly better than the European mean. The stable foliar BC:N 

ratios that we observed are in line with stable N:Mg and N:K ratios observed for common 

oak, European beech and Scots pine at the European scale (Jonard et al., 2015). 

A discrepancy between the evolution in soil N status and the response at plant level was 

also found by Jonard et al. (2012), who observed increasing NO3
- concentrations in soil 

solution and stable foliar N content. The explanation why tree nutritional status did not 

respond yet to the recovery from N saturation indicated by changes in the soil solution 

chemical composition in the five studied forests could possibly be found in the N 

saturation hypothesis (Aber et al., 1989; Aber et al., 1998; Galloway et al., 2003). Nitrate 
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leaching is negligible in the early stages of N saturation, but increases exponentially in 

the late stage of N saturation. According to the N saturation hypothesis revised by 

Galloway et al. (2003) foliar N concentration is expected to increase linearly in the early 

stages of N saturation and to slightly decrease during the late stage of N saturation. 

Therefore, it is to be expected that strong reductions in NO3
- leaching during the initial 

phase of recovery from N saturation will not yet result in significant changes in the foliar N 

content. It is impossible to predict future timing for normalization of foliar N:P ratios 

because of two main reasons. Firstly, on-going soil pH increases are still in the Al buffer 

range (pH 4.0 for gibbsite). Further rises in pH and lowering of ionic strength could then 

both abruptly lower soil solution levels of Al3+, Al(OH)2+ and Al(OH)2
+ with possible 

positive effects on P availability as well (Kochian et al., 2004). Secondly, at the currently 

very low soil pH in all studied soils, bacterial activity must be minimal, but could also 

increase non-linearly when pH-inflection points are reached. If so, NO3
- levels may 

increase again due to microbial decomposition of native soil organic matter (Aber et al., 

1989), while DOC and DON levels would change in unpredictable directions alongside. 

Continued monitoring is needed to confirm whether there exists a time lag between 

chemical and biological restoration. 

As explained in a review by Stevens (2016) the response time of ecosystem 

compartments to changes in inorganic N depositions can vary greatly among ecosystem 

compartments. Soil solution NO3
- and NH4

+ concentrations can recover relatively rapidly, 

but this could take many years or even decades for vegetation species composition, tree 

mineral nutrition, below-ground communities and soil processes (Meesenburg et al., 

2016; Stevens, 2016). It is thus not possible to evaluate ecosystem N status correctly 

based on a single type of indicator only, leading us to the key message of our study: 

recovery from N saturation in forests should be evaluated using a multiple indicator 

approach, with a selection of indicators that provide information about the different 

ecosystem compartments (e.g. soil solution chemistry, foliar chemistry, ground 

vegetation, mineralisation, N stocks). 
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 Appendix A 6.5

 

Figure 6.A1 Fortnightly DON:TDN ratio in deposition and soil solution for the five locations, with Williams et al. (2004)’s critical limits for 
stages of N saturation (0: DON:TDN > 0.67 indicated by the green dashed line, 1: 0.33 < DON:TDN < 0.67, 2: DON:TDN < 0.33 
indicated by the red dashed line) and trend lines (blue: linear regression line, red: LOESS curve). 
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Figure 6.A2 Soil solution DOC concentration in function of NO3
- concentration for the five locations (2002−2014) with trend lines (blue: 

linear regression line, red: LOESS curve) and significance of the correlation (ns: not significant, (+): p < 0.1, +: p < 0.05, --: p < 0.01, ---: 
p < 0.001). 
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Figure 6.A3 Fortnightly DOC:NO3
- ratio in soil solution for the five locations, with critical inflection point for soils (DOC:NO3

- = 5.22) as 
proposed by Taylor and Townsend (2010) indicated by the red dashed line and trend lines (blue: linear regression line, red: LOESS 
curve). 
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Figure 6.A4 Foliar N concentration for the five locations (1999−2013) with critical lower 
limit (green) and upper limit (orange) (van den Burg and Schaap, 1995; Mellert and 
Göttlein, 2012), with significance of Mann-Kendall trends (ns: not significant, -: p < 0.05). 

 

Figure 6.A5 Foliar P concentration for the five locations (1999−2013) with critical lower 
limit (green) and upper limit (orange) (van den Burg and Schaap, 1995; Mellert and 
Göttlein, 2012). Trends were not significant. 
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 GENERAL DISCUSSION AND CONCLUSIONS 7

 Is air pollution abatement policy in Flanders on target with respect 7.1

to forest protection? 

 Deposition targets 7.1.1

Throughfall depositions of potentially acidifying and eutrophying compounds (non-marine 

SO4
2- and NH4

+) sharply decreased in five ICP Forests Level II plots in Flanders between 

1994 and 2010 (see Chapter 3). Plotting these long-term deposition trends against target 

values for forest ecosystems included in (inter)national legislation allows to evaluate the 

effectiveness of local emission reduction policy. 

Acidifying deposition 

In Flanders, a general mid-term target for acidifying depositions was set for 2010 (2660 

acid equivalents ha-1 yr-1) based on the objectives for emission levels of NOx, SO2 and 

NH3 agreed at the European level and included in the National Emission Ceilings (NEC)-

Directive 2001/81/EG (EU, 2001; Vlaamse overheid, 2003; Buysse et al., 2010). The 

2010-target of the NEC-Directive was about reached in time in all Level II plots (Figure 

7.1). 

Long-term targets (2030) for acidifying depositions and inorganic N depositions were 

included in VLAREM II, Appendix 2.4.2 (Table 7.1) (Vlaamse overheid, 1995). In the 

three deciduous forest Level II plots the 2030-target was already reached in 2015 (Figure 

7.1). In the two coniferous forest plots 2015 TF and total acidifying depositions were still 

above the 2030-target, but if the current decreasing trends are continued it is very likely 

reached in the next few years. 
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Table 7.1 Long-term targets (2030) for acidifying and inorganic N depositions 
(equivalents ha-1 yr-1) in forests included in VLAREM II, Appendix 2.4.2 (Vlaamse 
overheid, 1995). 

Compounds Equivalents ha-1 yr-1 Forest type 

Acidifying 1400 Coniferous forest on sandy soil 

Acidifying 1800 Deciduous forest on poor sandy soil 

Acidifying 2400 Deciduous forest on rich soil 

Inorganic N 1000 (14 kg N) Deciduous forest 

Inorganic N 400 (5.6 kg N) More natural species composition in coniferous forest 

 

 

Figure 7.1 Annual TF and total deposition calculated with the Canopy Budget Model of 
Ulrich (Ulrich, 1983; Draaijers and Erisman, 1995) of acidifying compounds (H+ + non-
marine SO4

2- + NH4
+ + NO3

-) in the five Level II plots (1994‒2015) compared to the 2010-
target value of the NEC-Directive 2001/81/EG for total acidifying deposition on forests 
(2660 acid equivalents, yellow dashed line) and the 2030-target value of the MINA-plan 
(VLAREM II) (coniferous forest: 1400 acid equivalents ha-1 yr-1, deciduous forest on 
chemically poor soil: 1800 acid equivalents ha-1 yr-1, deciduous forest on chemically rich 
soil: 2400 acid equivalents ha-1 yr-1, red dashed line) (Vlaamse overheid, 2003; Buysse et 
al., 2010). 
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N deposition 

The 2030-targets for total inorganic N depositions in 2015 were met in the HOE site only 

(Figure 7.2). In the other two deciduous forest plots total inorganic N depositions 

remained slightly above the 2030-target but will very likely drop below it in the next few 

years. In the coniferous forest plots total inorganic N depositions are still about three 

times the 2030-target, i.e. far above the level that would allow the re-establishment of a 

more natural species composition (Figure 7.2). 

 

Figure 7.2 Annual TF and total deposition calculated with the Canopy Budget Model of 
Ulrich (Ulrich, 1983; Draaijers and Erisman, 1995) of inorganic N (NH4

+ + NO3
-) in the five 

Level II plots (1994‒2015) compared to the 2030-target value of the MINA-plan (VLAREM 
II) (deciduous forest: 1000 equivalents ha-1 yr-1, more natural species composition in 
coniferous forest: 400 equivalents ha-1 yr-1, indicated by the red dashed line) (Vlaamse 
overheid, 1995). 
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 Critical loads for inorganic N 7.1.2

The new NEC-Directive 2016/2284/EU includes the requirement to monitor air pollution 

impacts on forest ecosystems in Flanders, with the long-term objective of not exceeding 

critical loads and levels (EU, 2016). Even though the five Level II plots do not fully 

spatially represent Flemish forests, the long-term data collected from these plots is the 

current best means available. 

Despite the substantial decrease in NH4
+ depositions over the past two decades, in 2015 

TF and total deposition of inorganic N in the RAV and the BRA site still exceeded the 

upper limit of the empirical critical N load range of 5 to 15 kg N ha-1 yr-1 for coniferous 

woodland as proposed by Bobbink and Hettelingh (2011) (Figure 7.3). In the three 

deciduous forest plots, TF and total deposition of inorganic N initially also exceeded the 

empirical critical load range of 10 to 20 kg N ha-1 yr-1 for broadleaved deciduous 

woodland as proposed by Bobbink and Hettelingh (2011), but were within this range 

during the last decade of the monitoring period (Figure 7.3). It therefore looks like the 

critical loads targets for ground vegetation will be reached in the next few years. 

More stringent critical loads targets have been proposed for specific groups, viz. 

ectomycorrhizal fungi and epiphytic lichens. The deposition of inorganic N in the GON site 

was higher than the empirical critical load range of 9.5‒13.5 kg N ha-1 yr-1 for 

ectomycorrhizal fungi of European oak forests as proposed by Suz et al. (2014), except 

for TF of inorganic N in 2015 (Figure 7.3). However, recent research in 105 Level II plots 

across Europe proposed critical loads as low as 5‒6 kg N ha-1 yr-1 for ectomycorrhizal 

fungi in beech, Scots pine and Norway spruce forests (van der Linde et al., unpublished 

results). These were also not reached at HOE or WIJ. Epiphytic lichens are even more 

sensitive to N eutrophication (Conti and Cecchetti, 2001) and TF inorganic N loads were 

as much as 4.4 to 9.5 times the severe critical N load target of 2.4 kg N ha-1 yr-1 for 

European forests (Giordani et al., 2014) (Figure 7.3). 

The seemingly general positive evolution in N loads in these forests will thus continuously 

need to be re-evaluated against new critical loads emerging from new scientific insights. 

In order to fully protect temperate forest ecosystems from any potential negative effects of 

eutrophication, total N depositions should reach below the critical loads for the most 

sensitive species groups. Considering current trends of inorganic N deposition it will be 

very difficult to reach such targets. 
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Figure 7.3 Annual TF and total deposition calculated with the Canopy Budget Model of 
Ulrich (Ulrich, 1983; Draaijers and Erisman, 1995) of inorganic N (NH4

+ + NO3
-) in the five 

Level II plots (1994‒2015) compared to the critical load range for ground vegetation in 
temperate forests (yellow dashed lines) (Bobbink and Hettelingh, 2011) and 
ectomycorrhizal fungi in European temperate oak forests (red dashed lines) (Suz et al., 
2014) and the critical load for epiphytic lichens in European forests (purple dashed line) 
(Giordani et al., 2014). 

 Linking depositions and emissions 7.1.3

As explained in Chapter 3, among all deposited ions non-marine SO4
2- showed the 

sharpest decrease in TF between 1994 and 2010. 1994‒2015 trends in annual TF of non-

marine SO4
2 matched well with the decreasing trends of annual SO2 emissions reported 

for Flanders and both were correlated (ρS = 0.975, p < 0.0001) (Figure 7.4). The TF of 

NH4
+ decreased to a slightly lesser extent, and was again synchronous to decreasing 

trends in annual NH3 emissions reported for Flanders during this period (ρS = 0.914, p < 

0.0001) (Figure 7.4). On the other hand, TF of NO3
- decreased only during the first two 

years of monitoring (1994‒1996) but then stabilized. This contrasts with the gradual 
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reported decrease in annual NOx emissions by as much as 47% in Flanders between 

1994 and 2015 and there existed no correlation with annual TF NO3
- (Figure 7.4) (VMM, 

2011, 2016a). Also model calculations (Vlops version 17) based on EMEP emission data 

from Europe and Belgium suggest a 23% decrease in NOy deposition in Flanders over 

the last ten years (VMM, 2017), clearly not reflected by the constant TF NO3
- loads. A 

similar inconsistency between national NOx emissions and the TF of NO3
- was found in 

France (Pascaud et al., 2016), suggesting a more general pattern. 

 

Figure 7.4 Mean annual TF of NH4
+, NO3

- and non-marine SO4
2- in the five Level II plots 

in function of emissions of NH3, NOx and SO2 reported for Flanders (1994‒2015) (VMM, 
2011, 2016a). The TF of NO3

- has stabilized since 1996. 

The decreasing TF of NH4
+ and nearly stable TF of NO3

- resulted in a significant declining 

trend of the molar NH4
+:NO3

- ratio in TF in the five Level II plots (from 2.25 to 1.45, p < 

0.0001) (Chapter 3, Figure 7.5). Also the BD of NH4
+ decreased faster than the BD of 

NO3
-, likewise resulting in a significant declining trend of the NH4

+:NO3
- ratio in 

precipitation collected in the open field (from 1.87 to 1.4, p < 0.05 in RAV and BRA, p < 
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0.01 in GON, p < 0.0001 in WIJ and HOE) (Figure 7.5). These findings agree with the 

trends observed at monitoring stations located in open habitats in background areas in 

Flanders operated by the Flemish Environment Agency (www.vmm.be): in six out of nine 

stations, the slope of the linear time trend (2002‒2009) for wet deposition was more 

negative for NH4
+ than for NO3

- (Staelens et al., 2012). However, trends were not yet 

significant, probably because the time series was still shorter than the minimal nine-year 

detection period suggested by Waldner et al. (2014). 

 

Figure 7.5 Mean annual NH4
+:NO3

- ratio (molar) in BD and TF in the five Level II plots in 
Flanders (1994‒2015). The black dashed line marks the 1:1 ratio. 

Decreasing trends of the NH4
+:NO3

- ratios in precipitation under decreasing inorganic N 

depositions have been observed particularly in a relatively small part of NW-central 

Europe, including Flanders and parts of France, northern Italy and northern Germany 

(Pascaud et al., 2016; Schmitz et al., 2017). In most other European regions the 

NH4
+:NO3

- ratios are instead stable or even increase under decreasing inorganic N 

depositions. For example, in the Czech republic and Poland NOx emissions were reduced 
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faster than NH3 emissions (Hůnová et al., 2017; Kurzyca and Frankowski, 2017). Also, in 

Scandinavia and the Mediterranean NH4
+ depositions are slightly increasing (Schmitz et 

al., 2017; Vanguelova et al., 2017). At the European scale, Flanders could thus be 

considered as a specific case with regard to inorganic N depositions. This may be 

explained by Flanders’ extraordinary long pollution history (see Section 1.1.2) as a result 

of its economically strategic position involving intensive transit road transport, high 

population density and a concentration of intensive animal husbandry. Consequently, the 

number of cars is further increasing and vehicle emissions are responsible for the 

majority of NOx emissions in Flanders (Table 7.2). 

Table 7.2 Contribution (%) of the different sectors to NOx emissions in Flanders in 2016 
(preliminary results) (VMM, 2017). 

Sector Contribution (%) 
Households 5 
Industry 18 
Energy production 5 
Traffic 61 
Off-road 2 
Agriculture and horticulture 7 
Trade and services 2 

 

Our results to the least indicate that the relative importance of NH3 compared to NOx as 

an air pollutant generally decreased in Flanders between 1994 and 2015, reflecting the 

success of measures to reduce NH3 emissions imposed on the agricultural sector since 

the 1990s. Particularly this was effectuated by large scale adoption of low-NH3-emission 

stables, low-emission application of animal slurry and a slight decrease in livestock 

numbers, and also the decreasing co-deposition of NH4
+ with SO4

2- (see Chapters 3 and 

6). On the contrary, the TF of NO3
- stabilized since 1996 at 531 acid equivalents (7.44 kg 

N) ha-1 yr-1 on average over the last five years (2011‒2015) in the Level II plots (Figure 

7.4). This means that NO3
- deposition alone would probably already exceed critical loads 

for sensitive ectomycorrhizal fungi and epiphytic lichen species in a number of forests 

(see section 7.1.2). The latter indicates that current N emission abatement policy in 

Flanders, which includes emission ceilings for NOx and NH3 (Vlaamse overheid, 2003), 

so far did not yield the expected reduction in depositions of oxidized N compounds, 

despite the reported drop in NOx emissions. 
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The contradiction between the decreasing NOx emissions and the stable BD and TF of 

NO3
- and decreasing NH4

+:NO3
- ratio in the Flemish Level II plots may be explained in 

various ways. 

1° Firstly, while TF is calculated from measured concentrations and volumes, national 

NOx emissions are but estimates, often based on the emissions from cars tested under 

laboratory conditions (http://www.emep.int/). As revealed on 18th September 2015 by the 

“dieselgate” scandal, cars with a diesel engine appeared to emit 6‒7 times more NOx 

under realistic road conditions (on average for 30 different tested vehicles) (ICCT, 2016). 

In Belgium, the number of cars with a diesel engine increased rapidly after 1977 and 

diesel cars have dominated the vehicle park since 2006 (with a peak of 63% in 2013) 

(Figure 7.6), i.e. laboratory tests may have strongly underestimated traffic-derived NOx 

emissions in the past decades, despite the use of correction factors for road conditions 

(Brouwers et al., 2017). 

2° Besides by an underestimation of the emissions from road transport, the inconsistency 

between NOx emissions and the BD and TF of NO3
- could also be partly explained by the 

complex atmospheric physico-chemical processes that influence the concentrations of 

oxidized N species in the air (Pascaud et al., 2016). Depending on the atmospheric 

conditions (incoming radiation, temperature, ...), nitric oxide (NO) and NO2 can be 

physico-chemically transformed through reaction with other molecules (e.g. H2O, O3, O2, 

organics), to form a large array of N compounds, including nitrous oxide (HNO2 or 

HONO), nitric acid (HNO3), dinitrogen pentoxide (N2O5) and peroxyacetyl nitrates (PAN) 

(Seinfeld and Pandis, 1998; Finlayson-Pitts and Pitts, 2000). These intermediate 

compounds can act as temporary sinks in the atmosphere, before the oxidized N is finally 

removed, principally by wet deposition (dissolved HNO3 and nitrates). The relationship 

between emissions and depositions is thus not straightforward. Except NOx 

concentrations, which are decreasing (VMM, 2016b), the air concentrations of such 

intermediate N compounds have not been measured in Flanders. Only since 2016, the 

Flemish Environment Agency also measures the air concentrations of HNO3 (VMM, 

2017). This lack of data on atmospheric intermediates between NOx and BD or TF N is a 

substantial knowledge gap that complicates the interpretation of the link between NOx 

emissions and N depositions in Flanders. 
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Figure 7.6 Evolution (1977‒2017) of the number of cars registered in Belgium per engine 
type (left) and in percentage (right). Source: 
http://statbel.fgov.be/nl/statistieken/cijfers/verkeer_vervoer/verkeer/voertuigpark/. 

3° A number of underexplored canopy and soil processes could also help to explain the 

inconsistency between NOx emissions and BD or TF of NO3
-. First, re-emission of NH3 

has been observed from the ground during leaf fall and from the forest canopy in the BRA 

site (Neirynck and Ceulemans, 2008; Hansen et al., 2017). A second process typically 

occurring in N-saturated forests is soil emission of NO, which could subsequently interact 

with the canopy (Neirynck et al., 2007). A third and possibly the most important process is 

bacterial conversion of NH4
+ to NO3

- (nitrification) in the canopy (Guerrieri et al., 2015). 

Using natural abundance oxygen isotope analysis (∆17O, δ18O), these authors found that 

a considerable fraction (27‒34%, average for the two isotopes) of the TF NO3
- in a beech 

stand and a Scots pine stand in the UK originated from canopy nitrification. A more 

extensive investigation on twelve European Level II plots, including the BRA (Scots pine) 

and the HOE site (beech) is on-going (Guerrieri et al., unpublished results). However, to 

keep TF NO3
- at a stable level under decreasing BD of inorganic N (INBO, unpublished 

results) and NOx emissions, the proportion of TF NO3
- originating from canopy nitrification 

should have doubled between 1994 and 2015. Regardless of the evolution in canopy 

uptake of NH4
+ by the trees, which has not been measured, this is highly unlikely 

considering that NHy emissions and the TF and BD (INBO, unpublished results) of NH4
+ 

sharply decreased (less NH4
+ available for canopy nitrification). 

4 N compounds can be transported over large distances through the atmosphere. In 

Flanders, an estimated 50% of the acidifying air pollutants is furthermore imported from 

neighbouring countries (data 2012) (VMM, 2015) and long-distance transport is 
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particularly more important for NOx and SO2 than for NH3 (Hov et al., 1994). But 

emissions and air concentrations of NOx are also decreasing in the neighbouring 

countries (van Dril and Elzenga, 2005; Carslaw et al., 2011; Pascaud et al., 2016), which 

makes an increasing import of NOx into Flanders unlikely over the study period. Lastly, it 

has to be kept in mind that the Level II plots are not fully spatially representative (Schmitz 

et al., 2017) for Flanders as a whole. 

Programmatic Approach to Nitrogen (PAS) 

In 2014, the Flemish government launched the ‘Programmatic Approach to Nitrogen’ 

under the EU Habitats Directive (PAS, https://www.natura2000.vlaanderen.be/pas), 

aimed mainly at further reducing N emissions to ensure conservation of protected Natura 

2000 habitats (12.3% of the area of Flanders) by 2050. The focus of the PAS is at 

present predominantly on a further reduction of NH3 emissions by the agricultural sector. 

It puts restrictions on the extension of activities near and in protected areas, because NH3 

is deposited at a short distance from its emission source. PAS provides subsidies for 

general measures to reduce NH3 emissions from existing farms and stables. With respect 

to NOx, general measures to reduce background emissions from road transport, the 

energy and industry sector and households in the PAS are included in the “business as 

usual” scenario (BAU2030). However, the BAU2030-scenario also includes the 

assumption that NOx emissions are currently decreasing and will continue to do so in the 

near future (https://www.natura2000.vlaanderen.be/pas-beslissing-van-30112016). 

Bearing in mind the “dieselgate” scandal and the nearly stable trends of the BD and TF of 

NO3
- in the Level II plots observed in this study, this BAU2030-scenario likely is too 

optimistic, suggesting that the measures in the PAS will not be sufficient to protect Natura 

2000 forest habitats. The results from this thesis suggest that the PAS may particularly 

not achieve its target for oxidized N compounds and that additional measures will be 

necessary to bring NOx emissions to an acceptable level. Such additional measures 

should be directed in the first place to reducing the exhaust from traffic. 
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 Actual trends and prospects for recovery from acidification and N 7.2

saturation 

 Do we already see a recovery from acidification and eutrophication in 7.2.1

Flemish forests? 

The main aim of this thesis was to evaluate recent evolutions in the chemical soil (water) 

quality and tree mineral nutrition in Flemish forests and, more specifically, to check 

whether the rates of acidification and eutrophication are slowing down or recovery has 

started in response to decreasing anthropogenic emissions of SO2, NH3 and NOx. 

The decreasing external inputs with TF of potentially acidifying and eutrophying 

compounds (particularly non-marine SO4
2- and NH4

+) resulted in decreasing trends of the 

ionic strength and the concentrations of SO4
2-, NO3

- and Altot in the soil solution at the five 

Flemish Level II plots (Chapter 3). Thereby, the molar DON:TDN ratios and DOC:NO3
- 

ratios in soil solution showed increasing trends over the period studied, indicating an 

improving forest abiotic N status (Chapter 6). Simultaneously, the pH of the soil solution 

in the mineral soil further decreased until 2004, but then reclined and increased by about 

0.5 units in the decade thereafter (Chapter 5). On the other hand, soil solution molar 

BC:Altot ratios showed decreasing trends in three plots, and soil solution ANC is, despite 

the overall increasing trend, still negative (Chapter 3). Nevertheless, the slight increase in 

pH and, more importantly, the strong decrease in ionic strength, seemed to have 

enhanced OM solubility, evidenced by increasing trends of soil solution DOC and DON 

concentrations over the past decade (Chapters 4 and 5). The impact was stronger for 

DON than for DOC, resulting in consequent declining molar DOC:DON ratios, particularly 

in the O horizon and the upper mineral soil (Chapter 5). Hence, increasing molar 

DON:TDN ratios and DOC:NO3
- ratios did partially result from higher OM solubilisation 

(Chapter 6), and so care needs to be taken when interpreting these trends as indicative 

of forest N status. In fact, soil solution NO3
- concentrations were still above the critical 

limit of 1 mg N L-1 for elevated NO3
- leaching/N saturation (Iost et al., 2012; Waldner et 

al., 2015) at the critical inflection point for the DOC:NO3
- ratio (5.22) as proposed by 

Taylor and Townsend (2010) (Chapter 6). Overall, changes in soil solution chemistry thus 

indicate an onset of abiotic recovery, i.e. an improvement in forest N status, but soil 

solution acidification is still continuing albeit at decreasing rates. 
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Foliar N concentrations in the five Level II plots remained near or above the critical limits 

determined by Mellert and Göttlein (2012), indicating luxury consumption of N by the 

trees, while P nutrition generally was in the lower part of the normal range, and tending 

towards latent deficiency at the BRA site (Chapter 6). The foliar N:P ratio and BC:N ratio 

also remained unchanged in the Level II plots between 1999 and 2013, pointing to a 

nearly stable but unbalanced tree nutritional status (Chapter 6). At present, biotic 

recovery is thus lagging behind on the generally positive changes in soil solution 

chemistry. 

The results of this study broadly agree with the findings of similar trend studies using data 

from long-term monitoring sites in Europe and the US, which also observed a slowing 

down of soil solution acidification in response to the overall decrease in SO2 emissions 

and SO4
2- depositions (Table 7.3). With regard to the evolution in forest abiotic N status 

this study found generally stronger changes in soil solution chemistry than similar trend 

studies, probably because TF DIN depositions decreased at a higher rate (2.4–5.0% yr-1) 

than the European average of 1.3–1.8% calculated by Waldner et al. (2014) (Chapter 6). 
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Table 7.3 Overview of the evolution in soil solution and foliar chemistry found in this study 
in comparison to similar studies using data from long-term monitoring sites in Europe and 
the US. Symbols: ↑: increasing trend, ↓: decreasing trend, ↔: stable trend or inconsistent 
trends. 

Effect Trend   

 This study Similar studies 

Soil solution   

pH ↑ ↑ Akselsson et al. (2013), Löfgren et al. (2011) (Sweden) 

  ↔ / ↑ Vanguelova et al. (2010), Sawicka et al. (2016) (UK), Fölster et al. 

(2003), Löfgren and Zetterberg (2011), Pihl Karlsson et al. (2011) 

(Sweden) Johnson et al. (2013) (Ireland) 

  ↓ Boxman et al. (2008) (Netherlands), Jonard et al. (2012) (Wallonia), 

Fuss et al. (2011) (US) 

SO4
2- ↓ ↓ Borken et al. (2011), Meesenburg et al. (2016) (Germany), Jonard et al. 

(2012) (Wallonia), Boxman et al. (2008) (Netherlands), Vanguelova et 

al. (2010), Sawicka et al. (2016) (UK), Graf Pannatier et al. (2011) 

(Switzerland), Akselsson et al. (2013), Fölster et al. (2003), Löfgren et 

al. (2011), Löfgren and Zetterberg (2011), Pihl Karlsson et al. (2011) 

(Sweden), Ukonmaanaho et al. (2014) (Finland), Johnson et al. (2013) 

(Ireland), Fuss et al. (2011) (US) 

NO3
- ↓ ↓ Boxman et al. (2008) (Netherlands), Oulehle et al. (2011) (Czech 

republic), Fuss et al. (2011) (US) 

  ↔ / ↓ Graf Pannatier et al. (2011) (Switzerland), Ukonmaanaho et al. (2014) 

(Finland), Sawicka et al. (2016) (UK) 

  ↔ Vanguelova et al. (2010) (UK), Löfgren and Zetterberg (2011), Pihl 

Karlsson et al. (2011) (Sweden), Johnson et al. (2013) (Ireland) 

  ↔ / ↑ Meesenburg et al. (2016) (Germany) 

  ↑ Jonard et al. (2012) (Wallonia) 

BC ↓ ↓ Jonard et al. (2012) (Wallonia), Boxman et al. (2008) (Netherlands), 

Fölster et al. (2003), Akselsson et al. (2013) (Sweden), Fuss et al. 

(2011) (US) 

  ↔ / ↓ Graf Pannatier et al. (2011) (Switzerland), Sawicka et al. (2016) (UK) 

  ↔ Vanguelova et al. (2010) (UK), Johnson et al. (2013) (Ireland) 

Altot ↓ ↓ Boxman et al. (2008) (Netherlands), Fuss et al. (2011) (US) 

  ↔ / ↓ Vanguelova et al. (2010) (UK), Johnson et al. (2013) (Ireland), Löfgren 

et al. (2011), Löfgren and Zetterberg (2011), Pihl Karlsson et al. (2011) 

(Sweden) 

  ↔ Sawicka et al. (2016) (UK) 

  ↑ Jonard et al. (2012) (Wallonia), Fölster et al. (2003) (Sweden) 

BC:Altot ↓   

  ↔ / ↓ Graf Pannatier et al. (2011) (Switzerland) 

  ↔ / ↑ Meesenburg et al. (2016) (Germany) 
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Table 7.3 continued. 

Effect Trend   

 This study Similar studies 

ANC ↑ (< 0) ↑ (< 0) Akselsson et al. (2013), Löfgren et al. (2011) (Sweden), Fuss et al. 

(2011) (US) 

  ↔ / ↑ Fölster et al. (2003), Löfgren and Zetterberg (2011), Pihl Karlsson et al. 

(2011) (Sweden) 

Ionic 

strength 

↓ ↓ Löfgren et al. (2011) (Sweden), Vanguelova et al. (2010) (UK) 

  ↔ / ↓ Löfgren and Zetterberg (2011) (Sweden) 

DOC ↑ ↑ Vanguelova et al. (2010), Sawicka et al. (2016) (UK), Oulehle et al. 

(2011) (Czech republic), Borken et al. (2011) (O horizon, Germany) 

  ↔ / ↑  Johnson et al. (2013) (Ireland) 

  ↔ Ukonmaanaho et al. (2014) (Finland), Borken et al. (2011) (upper 

mineral soil, Germany) 

  ↔ / ↓ Löfgren and Zetterberg (2011) (Sweden), Fuss et al. (2011) (US) 

  ↓ Akselsson et al. (2013), Löfgren et al. (2011) (Sweden), Clarke and 

Lindroos (2010) (Norway), Borken et al. (2011) (deeper mineral soil, 

Germany) 

DON ↑ ↑ Vanguelova et al. (2010) (UK), Oulehle et al. (2011) (Czech republic) 

Foliage    

N ↔ ↔ Jonard et al. (2012) (Wallonia), Jonard et al. (2015) (Europe) 

  ↓ Oulehle et al. (2011) (Czech republic), McNulty et al. (2017) (US) 

P ↔ ↓ Jonard et al. (2012) (Wallonia), Jonard et al. (2015) (Europe) 

N:P ↔ ↑ Jonard et al. (2012) (Wallonia), Jonard et al. (2015) (Europe) 

BC:N ↔ ↓ Meesenburg et al. (2016) (Germany) 

 

 On what term, if at all, could we expect a substantial recovery? 7.2.2

A burning question from both a scientific point of view and for forest managers and policy 

makers is how fast, if at all, forests in Flanders could substantially recover from 

acidification and eutrophication. 

Until now long-term trends of SO4
2- and NH4

+ depositions in the five Level II plots 

decreased approximately linearly, suggesting that deposition targets will be reached and 

critical loads for ground vegetation will be respected within the next few years (Chapter 3, 

section 7.1.2). However, the increasing marginal cost to further reduce emissions could 

cause deposition trends to increasingly level off, as already observed in the UK (Sawicka 

et al., 2016). Since 2010, the air concentrations of SO2 in the BRA site are stagnating 

(Cools et al., 2016) and the same holds for the air concentrations of NH3 at 17 Flemish 
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monitoring stations in open vegetation since 2008 (VMM, 2017). This may indicate that 

deposition trends will begin to level off in the near future. 

Besides the decreasing BC depositions (Chapter 3), at least two other factors are 

delaying recovery in Flemish forests. First, the increasing trends of soil solution DOC and 

DON concentrations (Chapters 4 and 5) might have led to an increasing organic acid 

concentrations, which might partly counterbalance the decrease in acidifying depositions 

(Johnson et al., 2013). At present, the pH-CaCl2 in most soils is about 3.5‒4.5, and so 

pH-H2O is likely still partly below the pKa of carboxylic groups (4-6). Consequently, a 

large share of these SOM constituents will release protons into soil solution as pH 

increases, countering recovery from acidification. This delaying effect would be larger in 

soil with more OM. Secondly, large amounts of S and N have accumulated in these forest 

soils, which have thick forest floors and mineral layers developed in sand and loess 

deposits, with a relatively high nutrient storage capacity. Accumulation of S was 

confirmed by the leaching of SO4
2- that exceeded SO4

2- deposition in two Level II plots 

between 1994 and 2010 (Chapter 3). Hence SO4
2- desorption of previously deposited S, 

which releases co-adsorbed H+ and comes alongside with higher leaching of neutralizing 

base cations (Johnson and Reuss, 1984; Gustafsson et al., 2015), is probably also 

delaying recovery from acidification, as already observed for several other long-term 

monitoring sites in Europe and the US (Alewell et al., 2000; Oulehle et al., 2006; 

Akselsson et al., 2013; Fakhraei et al., 2014; Meesenburg et al., 2016). Sulphur can be 

stored in and released from different pools in forest soils, including organic matter and 

SO4
2- adsorbed on Al and Fe hydrous oxides (Johnson and Reuss, 1984). Except the 

total S pool down to a depth of 1 m (Fleck et al., 2016), the size of individual S pools in 

the Flemish Level II plots has to date not been determined, so predictions of how long 

and to what extent accumulated S will continue to influence ecosystem processes remain 

very tentative. The importance of this N and S accumulation in these soils can be seen 

from comparisons to other soils. E.g. McNulty et al. (2017) demonstrated that after the 

cessation of a 30-year N addition experiment in a Red spruce stand on soils with very thin 

A, B, and C horizons, and thus low nutrient storage capacity, recovery of foliar and forest 

floor N concentrations could be surprisingly fast. 

Studies based on long-term forest monitoring data showed that acidifying depositions in 

the past century caused a strong decline of soil exchangeable BC and that it will probably 

take decades to restore the buffer capacity (Alewell et al., 2000; Reinds et al., 2009; 

Meesenburg et al., 2016). It is uncertain whether the depleted soil BC stocks in the 
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Flemish forests could be naturally restored. Input of BC is from atmospheric deposition 

(which is decreasing), mineral weathering (which is probably low on these relatively poor 

and very acidic sand, sandy loam and loam soils), and decomposition of organic matter. 

Future prospects are probably best for the GON site, where the soil contains more clay in 

the deeper mineral layers and has maintained a higher base saturation. The same may 

be true for the BRA site where locally shallow clay lenses are present (Chapter 2). 

An often used method to remediate soil degradation caused by acidification and 

eutrophication is liming with Ca and Mg (Kreutzer, 1995; Geary and Driscoll, 1996; 

Boxman and Roelofs, 2006; Battles et al., 2014). After dissolution of the liming material 

the BC are partly retained in the soil, often resulting in a temporary increase in soil pH 

and ANC (Kreutzer, 1995; Simmons et al., 1996; Meiwes et al., 2002; Nohrstedt, 2002). 

In Germany, where about half of the forest area has been limed, initial recovery from 

acidification during the past two decades was more pronounced in forest soils that 

underwent liming (König et al., 2017). In the Hubbard Brook Experimental Forest, New 

Hampshire, US tree growth recovered after Ca addition (Battles et al., 2014). The concept 

of liming in forests is, however, subject of debate, because a number of undesired side 

effects have been observed. In general, liming also (temporarily) stimulates respiration, 

mineralisation and nitrification in the upper humus layer, often leading to soil losses of 

SOM and C and increased NO3
- leaching, especially in N saturated forests (Belkacem 

and Nys, 1995; Kreutzer, 1995; Geary and Driscoll, 1996; Simmons et al., 1996; Corre et 

al., 2003). Higher soil solution NO3
- concentrations come alongside with increased N 

availability, which commonly leads to shifts in ground vegetation composition by 

promoting nitrophilous competitive and ruderal species, particularly when sufficient light 

penetrates the canopy (Becker et al., 1992; Dulière et al., 1999; De Keersmaeker et al., 

2000; Dulière et al., 2000). It is therefore questionable whether liming would be a good 

measure to mitigate the long-term impacts of acidification and N saturation in Flemish 

forests. However, to enable recovery the excess of N first has to be removed from the 

forest ecosystem in some way. Liming may be the only possible method to do this within 

a reasonable period of time (through increased NO3
- leaching), however then one should 

temporarily accept the negative effects mentioned above. 

Recovery from acidification did not result immediately in a strong increase in pH, but it 

generally induced a higher topsoil mobilization of DOC and even more for DON 

(decreasing DOC:DON ratios), which could be explained mainly by the decreasing soil 

solution ionic strength, which was linked to decreasing SO4
2- deposition (Chapter 5). This 
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mobilization of DOC and DON may in time impact DOC inputs into the aquatic cycle 

(Freeman et al., 2001; 2004; Cole et al., 2007; Battin et al., 2009; Ciais et al., 2013; 

Lapierre et al., 2013; Regnier et al., 2013), but it should be remarked that this concerns 

relatively small fluxes (19–61 kg ha-1 yr-1). In part transport of DOC to groundwater will 

also be limited by likely re-adsorption in deeper mineral layers. 

For the five Level II plots studied, it is impossible to predict future timing for normalization 

of foliar N:P ratios because of two main reasons (Chapter 6). Firstly, the on-going soil pH 

increases are still in the low end of the Al buffer range (pH 4.0 for gibbsite). A relatively 

small increase in pH, in combination with lowering of ionic strength, could then both 

abruptly lower soil solution levels of Al3+, Al(OH)2+ and Al(OH)2
+ and reduce the formation 

of organo-metal complexes and increase OM solubility (Monteith et al., 2007; Scheel et 

al., 2007). This could have positive effects on P availability as well (Kochian et al., 2004). 

Secondly, the pH of the soil solution and pH-CaCl2 of the mineral soil is currently very low 

(3.5-4.5) in all studied soils. Since these conditions are in theory unfavourable for soil 

microorganisms, bacterial activity must be minimal and the observed onset of recovery 

likely is predominantly chemical (abiotic), as discussed in Chapter 6. However, 

(heterotrophic) bacterial activity could also increase non-linearly when pH-inflection points 

are reached and C limitation is being alleviated, which could be reflected by increasing 

DOC:NO3
- ratios (Taylor and Townsend, 2010; Helton et al., 2015). If so, NO3

- levels may 

increase again due to microbial decomposition of native soil organic matter (Aber et al., 

1989), while DOC and DON levels would change in unpredictable directions alongside. 

Also the diversity of (ecto)mycorrhizal fungi could benefit from a further increase in pH 

and decreasing N availability (Lilleskov et al., 2002; van Diepen et al., 2007; Cox et al., 

2010; Pardo et al., 2011; Kjøller et al., 2012; Suz et al., 2014; De Witte et al., 2017). 

Regarding the important role of ECM fungi in nutrient uptake (especially P) by the trees 

this could then also have beneficial effects on tree mineral nutrition (Talkner et al., 2015; 

De Witte et al., 2017). But as discussed in Chapter 6, changes in the foliar N content 

should probably not yet be expected in the early stages of recovery from N saturation, 

given the non-linear response of foliar N concentration in function of N availability 

(Galloway et al., 2003). 

While the legacy from acidification and N saturation may continue to produce after-effects 

in Flemish forests for decades, the impacts of climate change will be superimposed on 

this. Using the Standardised Precipitation-Evapotranspiration Index (SPEI), Sousa-Silva 

et al. (2017) found evidence for a structural desiccation in Flemish forests since 2007, 
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which increased defoliation in oak and beech plots of the ICP Forests Level I network. 

More frequent and intense drought and heat waves are suspected to be important drivers 

of (sudden) tree mortality (Solly et al., 2017) and to strengthen the impact of forest fires 

(Abatzoglou and Park Williams, 2016; Knorr et al., 2016) and indigenous and invasive 

pests and diseases (e.g. ash decline, oak decline) (Fischer and Schär, 2010; Brown et 

al., 2015; 2018). The introduction of invasive species, facilitated by transport and trade, is 

seen as one of the biggest global challenges and threats for forest health in the coming 

decades (Brockerhoff, 2017). One general measure that could help to mitigate impacts is 

to promote mixed forest stands, which were found to be more resilient to the effects of 

climate change than monocultures (Sousa-Silva et al., 2017). 

As explained in a review by Stevens (2016), the response time to changes in inorganic N 

depositions can vary greatly among ecosystem compartments. Soil solution NO3
- and 

NH4
+ concentrations can normalize relatively rapidly, but vegetation species composition, 

tree mineral nutrition, below-ground communities and soil processes could take much 

longer to recover. The results from this study confirm this and suggest that a substantial 

recovery could take decades, while natural soil buffer capacity will probably not be able to 

recover without active intervention (e.g., liming). 

 Implications for policy and management 7.3

 Air pollution policy 7.3.1

As discussed in sections 7.1 and 7.2 the negative effects of past air pollution on soil 

solution chemistry and on the mineral nutrition of trees in Flemish forests will likely persist 

for many decades. Moreover, it was found that air pollution levels are still too high, 

resulting in inorganic N depositions that are still several times higher than the critical N 

loads for epiphytic lichens and ectomycorrhizal fungi. While the PAS of the Flemish 

government is convincing as a strategy to further reduce NH3 emissions, the results of 

this thesis indicate that NOx emissions are currently underestimated and that policy 

makers should introduce stricter measures to reduce NOx emissions from traffic to protect 

Natura 2000 forest habitats by 2050. 

 Forest management 7.3.2

Apart from laws and regulations, forest managers could take specific actions to minimize 

excess anthropogenic acidification. Besides the partly controversial option of liming (see 
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section 0), an adequate selection of the tree species could provide a more natural buffer 

against soil acidification (Augusto et al., 1998), which may promote the biodiversity of 

acid-sensitive organisms (e.g. earthworms, plants) (Verstraeten, 2013; Thomaes, 2014; 

De Wandeler et al., 2016). Tree species with fast degrading litter (low C:N ratio) 

containing high concentrations of base cations are Tilia, Fraxinus, Betula, Prunus, 

Carpinus and Populus, while litter from Quercus, Fagus and coniferous tree species has 

less favourable properties (Muys and Lust, 1992; Augusto et al., 2002; Verstraeten et al., 

2004; De Schrijver et al., 2012). Particularly coniferous trees are less suitable from this 

point of view because their ever-green character makes them capture more acidifying 

deposition than deciduous trees (De Schrijver et al., 2004). Caution is needed with N 

fixing tree species, e.g. Alnus species, because this may induce further soil 

eutrophication and acidification (Dossche, 1998; De Schrijver et al., 2012). But of course 

litter quality should not be the single criterion to select tree species. Also abiotic site 

characteristics (soil type, hydrology) and their possible changes in the long term driven by 

climate change should be taken into account (Albert et al., 2017). 

 Research policy 7.3.3

This work also illustrates the major added value of long-term monitoring networks like the 

pan-European ICP Forests Level II network and the global LTER network. The relatively 

long time series allow for correlative analysis between multiple variables that change 

alongside (parallel trends), enabling to identify or at least suggest cause-effect 

relationships and to reveal the long-term effects of changing environmental conditions on 

forests, which is often not possible within the limited time span of a project-based study. 

Thanks to the harmonized and highly standardized methods for the collection and 

analysis of samples the Level II data also offer the possibility to compare results among 

countries and thus to verify results from local or regional studies at a larger spatial scale. 

Moreover, the Level II plots also function as active research platforms for additional more 

detailed and experimental studies, whereby the time series provide valuable background 

information on the environmental conditions and their changes over time. From a 

scientific point of view it is therefore paramount that these monitoring networks are 

maintained in the future, and receive continuing political and financial support from 

national and international governments. 
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 Suggestions for further research 7.4

Over the course of this study it became clear that predictions about recovery from 

acidification and N saturation in Flemish forests are complicated by several knowledge 

gaps. 

More information is needed about the amount of NHy captured by the forest canopy via 

dry deposition, which is likely underestimated by the Canopy Budget Model. Therefore it 

would be useful to measure the dry deposition of NH3 at the Level II plots. This could be 

done indirectly using wet-only collectors in the open field. In combination with the bulk 

deposition data, the wet deposition data allow to estimate the local dry deposition factor 

of NH3 in the open field (Staelens et al., 2005; Balestrini et al., 2007). Currently, one wet-

only collector is already operational at the BRA site since 2006. 

In order to get a better insight in the complex link between NOx emissions, NOy air 

concentrations and NO3
- depositions in Flemish forests it would be useful to monitor NO, 

NO2 and the intermediate N species that could form a temporary sink in the atmosphere 

(N2O5, HNO3, HNO2, PAN and particulate NO3
-) and O3 in the open field near the Level II 

plots. This is possible with passive samplers, as currently done for NH3 since 2009 and 

for O3 (2009‒2011) in the Level II plots. 

It is also not known how the on-going changes in soil solution chemistry are influencing P 

availability for the trees in the Level II plots. As mentioned in Chapter 6 on-going possible 

abrupt lowering of soil solution levels of Al3+, Al(OH)2+ and Al(OH)2
+ as soil pH moves out 

of the Al buffer range could have positive effects on P availability. Given the relatively low 

foliar P concentrations, which were occasionally even within the P deficiency range in 

some sites, information about P availability is crucial to evaluate changes in tree 

nutritional status. It would therefore be useful to measure the different (organic and 

inorganic) soil P pools based on the analyses performed on the soil samples collected in 

the plots in 1991, 2004 and 2014. The same accounts for the size of individual soil S 

pools, which could provide a better insight in how the slow re-release of long term SO4
2- 

accumulation could negatively influence ecosystem processes. There is thus ample 

scope for further research on both the soil samples and the data from the Level II sites. 

In order to better understand the relative role of recovery from acidification and climate 

change in changing DOM dynamics, more detailed studies into the driving factors of DOM 

dynamics in these changing forest ecosystems would be needed. While this study was 
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not aimed at a detailed mechanistic understanding of formation, degradation and 

mobilization processes of DOC and DON, we made a first attempt to elucidate this using 

linear regression models, linear mixed-effects models and structural equation models. 

Models were evaluated to determine the percentage of variance in DOC and DON 

concentrations and fluxes that could be explained by different variables decided to be 

relevant based on literature, including precipitation, soil humidity, soil temperature, SO4
2- 

and DIN deposition and soil solution pH and ionic strength. However, despite pre-

selection of variables to avoid a combination of highly inter-correlated variables in the 

models, the results were unreliable, because models were fraught with hidden 

multicollinearity among variables, which could not be resolved due to the very limited 

number of plots, and therefore this analysis was not elaborated in this PhD-thesis. First 

steps could be to experimentally establish the relation between pH and ionic strength and 

i) soil solution Al; ii) nutrient availability (P, K, Ca, Mg, ...); iii) DOC and DON. This will 

allow us to better evaluate if forwarded hypotheses on causality between lowered ionic 

strength and increased DOC and DON mobility could be correct. Secondly, it would be 

relevant to test the response of soil microbial activity to increasing soil pH and lowering 

ionic strength in acidified Flemish sandy forest soils. Of particular interest could be to test 

short to medium term response of soil biological activity, N and P availability to liming. 

For the present study, soil water fluxes have been calculated from TF and soil solution 

concentrations using Na+ as a tracer ion, assuming that uptake by vegetation, adsorption 

and mineral weathering of Na+ are negligible. Water fluxes for the BRA site were also 

calculated by dr. Johan Neirynck using the MetHyd model and this gave comparable 

results (INBO, unpublished results). The simple Na+ tracer method thus seems to yield 

realistic soil water fluxes for these specific plots. Still, it would be useful to further 

elaborate this topic and to also calculate water fluxes in the future using mechanistic 

water balance models, as was done e.g. for Flemish forest plots by Sleutel et al. (2009). 

Use, calibration and validation of such models will be possible with the Frequency 

Domain Reflectometry (FDR) soil moisture probes that are currently being calibrated in 

these plots using monthly measurements of the gravimetric soil moisture content during a 

2-year period (April 2015 till June 2017). 

There are several well documented historical forest liming experiments in Flanders (e.g. 

in Sonian, Ravels, Pijnven, …) where different liming treatments (various materials and 

doses) have been applied several decades ago. Revisiting these sites could provide 
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useful information about the long-term effects of liming on soils and the potentials of 

liming for an active restoration of Flemish forest soils. 

This study clearly showed that soil solution chemical composition responded faster to 

changes in SO4
2- and inorganic N depositions than foliar nutrient concentrations. It would 

be interesting to evaluate the evolution of the soil solution DOC:NO3
- ratio and DON:TDN 

ratio also at the European scale and to check whether there are signs of recovery also in 

areas with lower depositions. Regarding the still high soil solution NO3
- concentrations 

around the critical level of 5.22 for the soil solution DOC:NO3
- ratio as proposed by Taylor 

and Townsend (2010), it would be useful to investigate whether this critical limit needs to 

be adjusted for European forest soils. 

 Strengths, weaknesses and uncertainties of the methods used 7.5

All research presented in this thesis is based on long-term monitoring data collected in 

five ICP Forests Level II plots (see section 2.1). While such a small number of plots 

cannot possibly be fully representative for the entire region of Flanders, the sites were 

thoroughly pre-screened for being important combinations of soil type and tree species. 

In that sense, these sites collectively are representative for the major forest types in 

Flanders. Still, this limited number of plots and the lack of replicates admittedly is a weak 

point of this study, because local factors which play an important role may be confounded 

with the factors tree species or soil type when comparing to the other plots or with 

literature. While bearing these limitations in mind, we are convinced that the results 

obtained in these plots do allow to make (cautious) generalisations/extrapolations to 

Flanders’ forests at large, and thus make an invaluable contribution to our knowledge of 

acidification and eutrophication in these ecosystems. Moreover, the representativeness 

could further be improved by making links to other monitoring networks (e.g. the Level I 

network, national forest inventories). 

The strength of this work is clearly the relatively long time series and consequent 

fortnightly acquisition of both the deposition and soil solution data, and the judicious 

statistical analysis and interpretation of the temporal trends. This greatly enhances our 

understanding of the processes playing when the soils recover from acidification and 

eutrophication for some specific cases (soil/stand type combinations), although additional 

research is needed to confirm the importance of internal processes, including 

mineralization, nitrification, the sources of DOC and DON, etc. 
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Another point that needs to be addressed is that the Level II network is not static, but has 

developed and will continue to develop over time. For example, initially only two 

lysimeters per depth were available, and the pooled sample volume was therefore often 

too small to enable chemical analysis, resulting in a higher proportion of missing values 

compared to more recent years (part of the data was excluded from the analysis because 

of this reason, see section 3.2.4). There were also two changes in the laboratories that 

conducted the analyses (1988‒1998: Laboratory of Soil Science, Ghent University; 1999‒

2007: Laboratory for Applied Analytic and Physical Chemistry, Ghent University; 2008‒

present: INBO) and analytical methods and equipment became more sophisticated and 

accurate over time. Also quality assurance and control within and among laboratories was 

further fine-tuned and harmonized and checked via periodic ring tests, resulting in an 

improving performance of the labs, including at INBO. Consequently, data quality 

gradually improved over time, which may also have influenced the time series and trends. 

The modified Kjeldahl method may underestimate the TKN content of samples due to 

loss of N during sample preparation or incomplete digestion of organic matter in the 

samples. Because DON was calculated as TKN – NH4+ and TDN was calculated as TKN 

+ NO3- + NO2-, this could also result in an underestimation of DON and TDN. The INBO 

laboratory, however, always performed very well for TKN in the ring tests, suggesting that 

this effect was negligible. 

The analysis of the data involved a large number of statistical tests, which come along 

with uncertainties. One main type of error is to detect an effect that is not there (false 

positives or Type I error) (Sheshkin, 2004). The chance that this error occurs at a 

significance level (α) of α = 0.05 (p < 0.05) is 5% (1 in 20). Many of the trends that were 

found in this thesis were very significant (p < 0.001), which means that the number of 

Type I errors probably is limited. 

In this work the assumption was made that measured total aluminium (Altot) in soil 

solution occurred entirely as Al3+. While this assumption might be true based on the 

theory (pH buffer) regarding the very low pH (3.5‒4.5) of the soil solution in the mineral 

soil (Reuss and Johnson, 1986; Ulrich, 1991; Tipping et al., 2002), this was not verified by 

modelling speciation of Al by including complexation reactions or by measuring Al 

species. The high concentrations of DOC in the upper soils suggest that a substantial 

part of Al might be complexed to organic anions. The knowledge of dominant Al species 
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in soil solution is pertinent to assess the risk of toxicity to plants (Løkke et al., 1996; 

Brunner and Sperisen, 2013). 

In sections 7.1.1 and 7.1.2 total deposition was included to give an idea of the amount of 

N taken up by the canopy, which is not included in TF deposition. Total deposition was 

calculated with the Canopy Budget Model of Ulrich (Ulrich, 1983; Draaijers and Erisman, 

1995). However, it has to be mentioned that this model involves many assumptions and 

that the outcome may vary considerably depending on the time step, type of precipitation 

data and tracer ion used in the model (Adriaenssens et al., 2013). 

 Conclusions 7.6

Analysis of long-term data collected in five Level II plots in Flanders since 1994 showed 

that air pollution abatement policy resulted in significant decreases of the atmospheric 

depositions of non-marine SO4
2- and NH4

+ in Flemish forests, but had little effect on the 

depositions of NO3
- during the past two decades. More stringent measures will be needed 

to reduce NOx emissions from road transport beyond the targets of the BAU2030-

scenario included in the PAS. 

Despite the decreasing acidifying and eutrophying depositions, the critical N loads for 

ground vegetation and certainly for sensitive ectomycorrhizal fungi and epiphytic lichens 

were still exceeded. Signs of an onset of recovery from acidification and N saturation 

were observed in the soil solution, including decreasing concentrations of the main 

pollutants and their counter ions (SO4
2-, NO3

-, Ca2+, K+, Mg2+, Altot) and ionic strength, 

while DOC, DON, DOC:NO3
- ratios, DON:TDN ratios and pH increased. Nevertheless, 

soil solution BC:Altot ratios were stable or decreasing and the ANC was increasing but 

overall kept a negative value. Soil solution acidification is thus continuing, be it at 

decreasing speed, because BC depositions are declining simultaneously and short-term 

soil buffering processes (SO4
2- desorption, and perhaps increasing organic acid 

concentrations) are delaying recovery. The critical levels for elevated NO3
- leaching were 

also still exceeded at most sites despite that the critical level for the DOC:NO3
- ratio was 

no longer surpassed in four plots, indicating that this critical level might need to be 

adjusted for European forests. The simultaneousness of increasing trends in DOC 

mobility and changes in N leaching complicates the use of DOC-based indicators to 

evaluate forest N status. The pH of the soil solution and the pH-CaCl2 of the soil is also 

still very low (3.5‒4.5) and unfavourable for soil microorganisms, suggesting that the 
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current recovery is purely chemical (abiotic). Moreover, foliar N and P concentrations 

revealed luxury consumption of N by the trees and relatively low P nutrition (and even 

temporal P deficiency in a few situations) while N:P ratios were near or above the critical 

limits, indicating a stable but unbalanced tree mineral nutrition. Biotic recovery is thus 

lagging behind on the changes in soil solution chemistry. 

This study demonstrated, for the first time, that processes of acidification and N saturation 

in Flemish forests are slowing down, but the road to recovery will be long because of the 

N depositions that are still relatively high, the legacy effects induced by S and N 

accumulation in soils, the decreasing input of BC, and the expected increasing impacts of 

climate change. 
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SUMMARY 

Background 

Elevated atmospheric depositions of non-marine SO4
2- and inorganic N, as a 

consequence of air pollution, resulted in a progressive acidification and N eutrophication 

of European forest ecosystems since the start of industrialization. In Flanders, one of the 

high-deposition regions in Europe, forest soils progressively acidified during the second 

half of the 20th century and exhibited episodic NO3
- leaching, a typical sign of N 

saturation. Since the 1980s, international emission abatement protocols were 

implemented for SO2 (1985 Helsinki protocol, 1994 Oslo protocol) and later also for 

inorganic N (1998 Sofia protocol, 1999 Gothenburg multi-pollutant protocol). This resulted 

in an overall sharp decrease in non-marine SO4
2- depositions in European forests, while 

inorganic N depositions decreased less rapidly and only in high-deposition areas in 

central NW-Europe. In areas where acidifying depositions strongly decreased, an onset of 

recovery from acidification was observed recently in several long-term forest monitoring 

sites, while the results for ecosystem N status were inconsistent, varying between a 

tendency towards recovery and increasing N saturation. It is not clear to what degree 

European forests can ultimately recover from acidification and N eutrophication and how 

long this will take. 

Objectives 

This thesis aimed to firstly evaluate the evolution of atmospheric depositions of non-

marine SO4
2- and inorganic N in forests in Flanders during the past decades. Secondly 

we wanted to assess the impact of the evolution in depositions on soil solution chemistry 

in Flemish forests. Ultimately the aim was to check whether the rates of acidification and 

N saturation are slowing down or recovery has started. 

This thesis bundles a number of results from the intensive forest monitoring network 

(Level II) in Flanders. The Level II network was established officially in 1994 by the 

International Co-Operative Programme on Assessment and Monitoring of Air Pollution 

Effects on Forests (ICP Forests, www.icp-forests.net). The long-term data on atmospheric 

depositions, soil solution chemistry and tree mineral nutrition from five core plots formed 

the basis of all research presented in this thesis. 

Long-term deposition trends 
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Trend analysis indicated an overall strong decrease in the TF of non-marine SO4
2- (56‒

68%) and NH4
+ (40‒59%) in all five Level II plots between 1994 and 2010. The TF of 

NO3
- decreased between 1994 and 1996, but was stable thereafter. Also the TF of ACID 

decreased (45‒74%), but it was partly offset by a simultaneous decrease in the TF of BC 

(19‒41%). Despite the substantial decrease in acidifying and eutrophying depositions, 

inorganic N depositions in the Level II plots in 2015 still exceeded critical load ranges for 

safeguarding ground vegetation and ectomycorrhizal fungi and are still several times 

higher than the critical load for sensitive epiphytic lichen species. 

The decrease in non-marine SO4
2- could be explained by SO2 emission reduction 

measures in industry, including the introduction of desulfurized fuels. For NH4
+ probably 

the agricultural sector contributed most by reducing NH3 emissions from stables, 

transport of manure and its application in the field (introduction of soil injection 

techniques). But the decreasing NH4
+ depositions may also be partly the result of a 

diminished co-deposition with SO4
2-. The stagnation of NO3

- depositions since 1996 could 

likely be explained by an underestimation of the NOx emissions from road transport, since 

vehicles with a diesel engine (61% of the car fleet in 2015) emit 6‒7 more NOx under road 

conditions than during standard laboratory testing (the “dieselgate” scandal). There is 

however a lack of data on the air concentrations of intermediate oxidized N compounds 

(N2O5, HNO3, HNO2, PAN and particulate NO3
-), which makes it difficult to link between 

NOx emissions and NO3
- depositions. 

The current Programmatic Approach to Nitrogen (PAS) under the EU Habitats Directive 

(https://www.natura2000.vlaanderen.be/pas) of the Flemish Government was launched 

with the intention to further reduce N emissions but is predominantly focused on a further 

reduction of NH3 emissions by the agricultural sector. Because of the nearly stable trends 

of the BD and TF of NO3
- in the Level II plots, the PAS’s BAU2030-scenario is likely too 

optimistic, and measures included in the PAS will not be sufficient to protect Natura 2000 

forest habitats by 2050. 

Long-term trends in soil solution 

The between 1994 and 2010 decreasing acidifying and eutrophying depositions were 

paralleled by decreasing ion concentrations in soil solution (NO3
-, Altot, SO4

2- and BC) and 

decreasing ionic strength in the five Level II plots. The pH of the soil solution in the 

mineral soil further decreased until 2004, but then reclined and increased by about 0.5 
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units in the decade thereafter. Increasing soil solution pH and decreasing Al 

concentrations and ionic strength both could explain increasing trends of soil solution 

DOC concentrations in the O horizon and in the mineral soil between 2002 and 2012. 

Fluxes of DOC also increased in the O horizon, but were nearly stable in the mineral soil. 

Soil solution concentrations and fluxes of DON showed similar increasing trends between 

2005 and 2013. Apparently DON was more mobile than DOC, probably due to its 

selective re-adsorption in mineral horizons. The soil solution molar DON:TDN ratio 

(2005‒2014) and the molar DOC:NO3
- ratio (2002‒2014) showed increasing trends. This 

rise of both ratios was partly the result of DOC and DON mobilization and so not entirely 

indicative for an improvement in forest soil N status. 

The ANC of the soil solution increased but remained negative, indicating that soil solution 

acidification is slowing down but still continued. Moreover, the soil solution BC:Altot ratio 

further decreased in the mineral soil of four plots, probably because the amount of BC 

leached from the soil is not compensated by the input from decomposition, mineral 

weathering and decreasing BC depositions. In the three plots on sandy soils with low 

cation exchange capacity and base saturation, the BC:Altot ratio still exceeds the critical 

limit for damage to fine roots, reduced tree stability, inhibited root growth and growth 

reductions of up to 80% of mean growth. Recovery from acidification was delayed by 

SO4
2- desorption and perhaps also by increasing organic acid concentrations, as 

indicated by the increasing soil solution DOC concentrations. 

The observed changes in the soil solution likely are purely chemical (abiotic), regarding 

the still very low soil solution pH and pH-CaCl2 in the mineral soil (3.5‒4.5), which is 

unfavourable for soil microorganisms. 

Long-term trends in foliage 

The foliar concentrations of N were above the critical levels, indicating luxury 

consumption of N by the trees, while foliar P concentrations were in the lower normal 

range and sometimes indicated deficiency. The foliar N:P ratio was above the upper 

critical limit in three plots. Foliar N concentration decreased only in the BRA site, while 

foliar P concentration, the foliar N:P ratio and the foliar BC:N ratio were unchanged 

between 1999 and 2013, indicating a nearly stable and unbalanced tree mineral nutrition 

in the Level II plots. Biotic recovery thus appeared to be lagging behind on the changes in 

soil solution chemistry. This means that a multiple indicator approach (monitoring of tree 
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nutritional status alongside soil processes) is needed to monitor the evolution of 

temperate forest N status. When recovery from acidification results in pH rising above the 

Al buffer range in decades to come, sudden changes in soil solution Al and in connected 

availability of P and other nutrients (K, Mg, Ca, ...) may take place with, however, at 

present unpredictable biotic responses. 

Conclusions 

Long-term monitoring data collected in five Flemish Level II plots indicated that abiotic N 

status started to improve and acidification slowed down during the past two decades, due 

to a sharp decrease in non-marine SO4
2- and NH4

+ depositions. However, inorganic N 

depositions are still far above the critical loads for ectomycorrhizal fungi and epiphytic 

lichens and in the coniferous plots also for ground vegetation. Given the still very low soil 

pH (3.5‒4.5) unfavourable for microbial life, the generally observed tendency of increased 

DOC and DON mobility is likely a direct result of lowered ionic strength and partly rise in 

pH, both due to lowered acidifying deposition. Abiotic recovery is delayed by a 

simultaneous decrease in BC depositions and SO4
2- desorption. Biotic recovery is lagging 

behind on the changes in soil solution chemistry, as indicated by the stable but 

unbalanced tree mineral nutrition. More knowledge and data are needed on the air 

concentrations of intermediate oxidized N compounds. The results from this thesis 

indicate that the Programmatic Approach to Nitrogen (PAS) is partly missing its target for 

oxidized N compounds and that extra measures will be necessary to bring NOx emissions 

at an acceptable level. 
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SAMENVATTING 

Achtergrond 

Verhoogde atmosferische deposities van niet-marien SO4
2- en anorganische N als gevolg 

van luchtvervuilende emissies veroorzaakten een progressieve verzuring en eutrofiëring 

met N van bosecosystemen in Europa sinds de start van de industriële revolutie. 

Verschillende studies wezen uit dat ook Vlaamse bosbodems tussen 1950 en 2000 in 

toenemend tempo zijn verzuurd en duidelijke tekenen vertoonden van N-verzadiging. 

Sinds de jaren 1980 werden internationale protocols geïmplementeerd om de emissies 

van SO2 te reduceren (1985 Helsinki protocol, 1994 Oslo protocol) en later ook voor 

anorganische N (1998 Sofia protocol, 1999 Gothenburg multi-pollutant protocol). Dit 

resulteerde in een algemene scherpe daling van de niet-mariene SO4
2- deposities in 

Europese bossen. Stikstofdeposities zijn minder sterk gedaald en alleen in regio’s met 

hoge deposities, vooral in centraal NW-Europa. In een aantal lange termijn monitoring 

plots in bossen waar de verzurende deposities sterk afnamen werd recent een daling van 

de snelheid van verzuring vastgesteld, terwijl voor N-verzadiging uiteenlopende 

resultaten werden gevonden, variërend van een beginnend herstel tot verergering van de 

toestand. Het is onduidelijk in welke mate Europese bossen kunnen herstellen van 

verzuring en N-verzadiging en hoe lang dit zal duren. 

Doelstelling 

De eerste doelstelling van deze thesis was het evalueren van de evolutie van 

atmosferische deposities van niet marien SO4
2- en anorganische N in Vlaamse bossen 

tijdens de voorbije decennia. Tweede doelstelling was het evalueren van de impact op de 

chemische bodem(water)kwaliteit in Vlaamse bossen. De uiteindelijke doelstelling was 

om na te gaan of de snelheid van verzuring en N-verzadiging afneemt en of er al 

beginnend herstel optreedt. 

Deze thesis bundelt een aantal resultaten van het meetnet intensieve monitoring 

bosecosystemen (Level II) in Vlaanderen. Het Level II meetnet werd officieel opgericht in 

1994 door het International Co-Operative Programme on Assessment and Monitoring of 

Air Pollution Effects on Forests (ICP Forests, www.icp-forests.net). De langetermijndata 

van atmosferische deposities, elementconcentraties in de bodemoplossing en minerale 
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voedingstoestand van de bomen in vijf Level II plots vormden de basis van het onderzoek 

voorgesteld in deze thesis. 

Depositietrends 

Tussen 1994 en 2010 daalde de jaarlijkse TF van ACID in de vijf Level II proefvlakken 

met 45‒74%. Dit is in belangrijke mate te danken aan de daling van de TF van niet-

marien SO4
2- met 56‒68% en van de TF van NH4

+ met 40‒59%, Parallel is ook de TF van 

BC gedaald met 19‒41%, wat de afname van de TF van ACID (45‒74%) enigszins 

vertraagde. Ongunstig is de trend van de TF van NO3
-, die na een aanvankelijke daling in 

1994‒1996 quasi stabiel is gebleven. Actueel zijn de N-deposities nog steeds hoger dan 

de kritische lastenrange voor vegetatie en gevoelige ectomycorrhiza in verschillende 

proefvlakken, en bedragen ze een veelvoud van de kritische last voor gevoelige 

epifytische korstmossen. 

De daling van de TF van niet-marien SO4
2- is te verklaren door emissiebeperkende 

maatregelen in de industrie (SO2), waaronder de introductie van zwavelarme 

brandstoffen. Voor de daling van de TF van NH4
+ leverde vooral de landbouw een 

bijdrage door het beperken van de NH3-emissies van stallen en bij het transport en 

uitrijden van mest (introductie van mestinjectietechnieken). De daling van de NH4
+-

deposities is echter wellicht ook gedeeltelijk toe te schrijven aan een verminderde co-

depositie met SO4
2-. De stagnatie van de NO3

- deposities sinds 1996 kan wellicht 

verklaard worden door een onderschatting van de NOx-emissies door het verkeer, 

rekening houdend met het feit dat voertuigen met een dieselmotor (61% van het 

wagenpark in 2015) op de weg 6‒7 keer meer NOx uitstoten dan wat standaard 

labotesten doen uitschijnen (het “dieselgate” schandaal). Er zijn echter nauwelijks 

gegevens beschikbaar over de verschillende intermediaire geoxideerde N-verbindingen 

(N2O5, HNO3, HNO2, PAN en partikel-NO3
-) in de atmosfeer, wat het moeilijk maakt om 

de link te leggen tussen NOx-emissies en NO3
--deposities in Vlaamse bossen. 

De huidige Programmatische Aanpak Stikstof (PAS) van de Vlaamse overheid onder de 

EU Habitatrichtlijn (https://www.natura2000.vlaanderen.be/pas) werd gelanceerd met de 

bedoeling om de N-emissies verder te reduceren, maar is hoofdzakelijk gefocust op het 

verder terugdringen van de NH3-emissies door de landbouwsector. Rekening houdend 

met de stagnerende BD en TF van NO3
- in de Level II proefvlakken is het BAU2030-
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scenario wellicht te optimistisch, wat suggereert dat de PAS-maatregelen niet zullen 

volstaan om Natura 2000 boshabitats tegen 2050 voldoende te beschermen. 

Trends in de bodemoplossing 

De daling van de verzurende en vermestende deposities tussen 1994 en 2010 ing 

gepaard met een gelijktijdige daling van de ionenconcentraties in de bodemoplossing 

(NO3
-, Altot, SO4

2- and BC) in de vijf Level II proefvlakken. De pH van de bodemoplossing 

vertoonde tot 2004 nog een licht neerwaartse trend, nam tijdens de laatste 10 jaar met 

ongeveer 0.5 eenheden toe. De stijgende pH en dalende ionensterkte en Al-

concentraties in de bodemoplossing kunnen de toenemende DOC concentraties in de 

humuslaag en de minerale bodem tussen 2002 en 2012 verklaren. DOC fluxen namen 

eveneens toe in de humuslaag maar waren vrijwel stabiel in de minerale bodem. 

Concentraties en fluxen van DON in de bodemoplossing vertoonden gelijkaardige trends 

als DOC tussen 2005 en 2013. DON bleek mobieler te zijn dan DOC, mogelijk door 

selectieve re-adsorptie in de minerale bodem. De molaire DON:TDN verhouding (2005‒

2014) and the molaire DOC:NO3
- verhouding (2002‒2014) vertoonden eveneens 

toenemende trends. De toename van beide ratio’s was gedeeltelijk het resultaat van een 

toegenomen mobilisatie van DOC en DON en was dus niet volledig indicatief voor een 

verbetering van de N-status van de bosbodem. 

De ANC vertoonde een stijgende trend, maar bleef negatief, wat erop wijst dat de 

bodemverzuring vertraagt, maar nog steeds verdergaat. Bovendien vertoont de BC:Altot 

verhouding in de bodemoplossing een dalende trend, wellicht doordat de uitspoeling van 

BC onvoldoende gecompenseerd wordt door de input via strooiselomzetting, 

mineralisatie en de dalende deposities. In de drie Level II proefvlakken op zandige 

bodem met lage CEC en BS overschrijdt de BC:Altot verhouding nog steeds het kritieke 

niveau voor schade aan fijne wortels, verhinderde wortelgroei en groeireducties tot 80% 

van de gemiddelde groei. Het herstel van verzuring werd vertraagd door SO4
2--desorptie, 

de gelijktijdige daling van de BC-depositie en mogelijk ook door een stijgende organische 

zuurheid, zoals aangeduid door de toenemende DOC concentraties in de 

bodemoplossing. 

De waargenomen veranderingen in de bodemoplossing zijn wellicht puur chemisch 

(abiotisch) van aard, gezien de nog steeds zeer lage pH van de bodemoplossing en pH-
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CaCl2 van de minerale bodem (3.5‒4.5), die in principe ongunstig is voor micro-

organismen. 

Trends in de bladconcentraties 

De concentraties van N in de bladeren en naalden waren hoger dan de kritische limieten 

(luxeconsumptie), terwijl de P-concentraties zich in het lage gedeelte van het normale 

bereik bevonden en in bepaalde gevallen P-gebrek aanduidden. De N:P verhouding was 

in drie proefvlakken hoger dan de kritische limiet. De N:P verhouding, BC:N verhouding 

en P-concentraties bleven onveranderd tussen 1999 en 2013, terwijl de N-concentraties 

alleen in Brasschaat een dalende trend vertoonden, wat wijst op een stabiele, maar 

onevenwichtige minerale voedingstoestand van de bomen in de Level II plots. Het 

biotisch herstel bleef dus achter op de chemische veranderingen in de bodemoplossing. 

Dit betekent dat een multi-indicator benadering (monitoring van processen in de bodem 

en van de minerale voedingstoestand) vereist is om de evolutie van de N status in 

gematigde bossen op te volgen. Wanneer herstel van verzuring in de komende decennia 

resulteert in een toename van de pH van de bodemoplossing boven het Al-bufferbereik, 

dan kunnen mogelijk plotse veranderingen in de Al-concentraties en beschikbaarheid van 

P en andere nutriënten (K, Mg, Ca, ...) optreden met momenteel onvoorspelbare 

biotische reacties. 

Conclusies 

Langetermijndata verzameld in de vijf Vlaamse Level II proefvlakken tonen aan dat in 

Vlaamse bossen een beginnend chemisch herstel van N-verzadiging optreedt en dat de 

verzuring minder snel verloopt dan twee decennia geleden, dankzij een sterke daling van 

de deposities van niet-marien SO4
2- en NH4

+. De N-deposities liggen echter nog steeds 

ver boven de kritische lasten voor ectomycorrhiza en epifytische korstmossen en in de 

naaldboomproefvlakken ook voor de kruidvegetatie. Gezien de nog steeds zeer lage pH 

van de bodem (3.5‒4.5), wat ongunstig is voor microbieel leven, is de toegenomen 

mobiliteit van DOC en DON waarschijnlijk een direct gevolg van de gedaalde ionensterkte 

en deels ook de lichte toename van de pH van de bodemoplossing, beide het gevolg van 

de afname in verzurende deposities. Het abiotisch herstel wordt vertraagd door een 

gelijktijdige daling van de deposities van BC, en desorptie van SO4
2-. Het biotisch herstel 

loopt achter op de veranderingen in de bodemoplossing, wat blijkt uit de vrijwel stabiele, 

maar onevenwichtige minerale voedingstoestand van de bomen. Meer kennis en data 
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zijn nodig inzake de concentraties van intermediaire geoxideerde N-verbindingen in de 

lucht. De resultaten van deze thesis wijzen uit dat de Programmatische Aanpak Stikstof 

(PAS) deels zijn doelstelling mist voor wat geoxideerde N-verbindingen betreft en dat 

extra maatregelen nodig zullen zijn om de NOx-emissies naar een aanvaardbaar niveau 

te brengen. 
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