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Abstract 

Rapid growth of resistive random access memory (ReRAM) requires fully understanding 

the various complex, defect-mediated underlying mechanisms to further improve 

performance. While thin film oxide materials have been extensively explored, the switching 

properties of nanoparticle assemblies remain underexplored, due to difficulties in 
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fabricating ordered structures. Here a simple flow coating method for facile deposition of 

highly ordered HfO2 nanoparticle nanoribbon assemblies is employed. We observe the 

resistive switching character of nanoribbons comprising HfO2 nanoparticles as a function 

of ligand length, using oleic, dodecanoic, and undecenoic acid capping layers. Through 

direct comparisons of the forming process, operating set/reset voltages, and resistance 

states, we demonstrate tunability in the resistive switching response as adjusted by 

varying the ligand types, thus providing a base correlation for solution-processed ReRAM 

device fabrication. 

Introduction 

Due to the scaling limits of flash memory, recent studies have focused on emerging non-

volatile devices such as resistive random access memory (ReRAM),1-3 phase change memory 

(PCM)4 and ferroelectric random access memory (FeRAM)5. Of these, ReRAM exhibits 

outstanding properties such as fast switching speed, good reliability and low power consumption, 

thus the promise for the next generation nonvolatile memory device.1-2 Resistive switching 

behavior describes a reversible change between a high resistance state (HRS) and low resistance 

state (LRS) within a metal-oxide-metal structure that depends on the history of an applied electric 

field.6 Generally, an electroforming process creates ionic defects within the oxide layer of the 

pristine device under a high applied bias, thus initiating the subsequent SET/RESET operations. 

Despite intense research focus on the fabrication and characterization of resistive switching oxide 

thin films,7-10 nanoparticles,11 and nanowires,12 the development of rapid and low-cost solution-

processed systems as an alternative to complicated multistep lithographic approaches remains 

stunted. Hafnia, HfO2, is a prototype resistive switching binary oxide that exhibits excellent 

scalability, reliability, and CMOS compatibility in both amorphous and crystalline structure.13 Here 

we introduce a facile, low-cost method to prepare HfO2 nanocrystals in highly ordered nanoribbon 

arrays via convective self-assembly. Recent studies demonstrated the charge transport effect 
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within solution-processed semiconductors such as colloidal CdSe quantum dots14 and PbS 

photovoltaic nanoparticles,15 but not for resistive switching nanoparticles where the capping ligand 

interparticle interface can profoundly affect the response.16-17 Correlating the changes in ligand 

chemistry with operating voltages, device stability, and switching mechanism are therefore critical 

to modulating and improving the performance of solution-processed systems. 

This study systematically compares the resistive switching behavior of individual 

nanoribbons comprising single-crystalline HfO2 nanocrystals (NCs) capped with oleic, dodecanoic, 

and undecanoic acid ligands of various lengths. The convective self-assembly approach 

addresses typical issues facing nanocrystal assembly (i.e. scalability and periodicity ) to produce 

ordered nanostructure arrays without the complexity of fabrication templates or lithographic 

patterning.18 We previously demonstrated memristive functionality within nanoribbons comprising 

perovskite strontium titanate (SrTiO3) nanocubes that retained or changed its memristive 

functionality as transferred from the original substrate to a second, arbitrary substrate.19 In this 

study HfO2 nanoribbons exhibit both threshold switching (TS) and bipolar resistive switching (BRS) 

induced by controlling the conductive filament morphology, similar to recent studies of HfO2 thin 

films.20 We determined that both the forming voltage and SET voltage scale with ligand length, 

suggesting that the interparticle tunnel distance is responsible for the carrier transport within HfO2 

ribbon.  

Results and discussion 

HfO2 nanocrystals are synthesized from hafnium chloride and benzyl alcohol in a 

solvothermal process according to De Roo et al.21-22 After synthesis, the nanocrystals as washed 

with diethyl ether and functionalized with a carboxylic acid (oleic acid, dodecanoic acid, or 

undecenoic acid). Deposition of the HfO2 NCs into nanoribbon assemblies required the 

implementation of the ‘stop-and-go’ flow coating method previously demonstrated for other 

colloidal systems.1–3 Details are introduced in the method section. Nanoribbons were fabricated 
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comprising HfO2 NCs capped with three types of ligands; oleic acid, dodecanoic acid, and 

undecenoic acid, labeled hereafter as HfO2-O, HfO2-D and HfO2-U, respectively. Figure 1 shows 

the nanocrystalline morphology of the HfO2 nanoparticles and schematic illustration of the 

convective self-assembly processes. The transmission electron microscopy (TEM) image of HfO2-

D in Figure 1a shows the as-prepared nanocrystal morphology, while the inset shows a high-

resolution TEM image that indicates NP dimensions on the order of 5 nm. The x-ray diffraction 

(XRD) in Figure 1b reveals the phase pure, monoclinic structure of HfO2 NPs. The stop-and-go 

flow coating method, as illustrated in Figure 1c, deposits nanoparticles onto a hard substrate by 

flowing a colloidal solution under the flexible coating blade. The height and the width of the ribbon 

can be precisely controlled from nanoscale to bulk dimensions by varying the stop time of the 

state shift, thus enabling the direct fabrication of nanostructures ranging from individual 

nanoribbons to nanocrystal films. The optical microscopy image in Figure 1d shows highly ordered 

arrays of individual HfO2 nanoribbons prepared by flexible blade deposition with an average width 

of 6 µm. Figure 1e shows the three-dimensional topographic profile of an individual HfO2 

nanoribbon collected via atomic force microscopy (AFM), indicating that nanoribbons possess a 

wedge-like cross sectional profile.  

 Conductive AFM (c-AFM) is a powerful tool for studying RS behavior with the ability to 

spatially resolve local heterogeneities within the electronic response, and probe the current 

distribution simultaneously.11, 23-24 Figure 2a illustrates the general c-AFM setup, where a Pt/Ir 

coated silicon tip is placed in direct contact with the surface of individual HfO2 nanoribbons, 

creating a Pt/Ir/HfO2 NCs/Pt test structure. Here the bias is applied to the bottom Pt electrode, 

with the current flowing through the ribbon vertically, which is then read via a grounded, 

conductive tip rastering along the top surface of the nanoribbon.  

 No current is measured across the nanoribbons before a forming process is induced under 

a large voltage of 10 V applied to the ribbon locally. The large applied field manifests as a bright 
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spot corresponding to a highly conductive region, as shown in Figure 2b on the HfO2-D system. 

Current imaging was conducted by scanning a single nanoribbon with an applied voltage of +2.5 

V (Figure 2b), followed by a scan under -2 V applied bias (Figure 2c), suggesting the conducting 

path formed during forming/SET process.   

The electroforming process induced filament formation within HfO2 nanoribbons capped 

with the three ligand systems is shown in Figure 3a, where the HfO2-U, HfO2-D and HfO2-O 

systems displayed forming voltages of 6.1 V, 8.2 V and 10 V, respectively. Note that HfO2-O 

requires an applied voltage larger than 10 V, which is the limit of the external bias source of the 

instrument. Figure 3b shows the semi-log I-V response of the three ligand capped HfO2 

nanoribbons. They all display typical bipolar switching character, where the SET and RESET 

process occur under positive and negative voltage, respectively, and exhibit a clear variation in 

operating voltage, current level and the resistance ratio between them. Here we found the HfO2-

D displays a smaller set voltage of 1.2 V while HfO2-O requires a larger set voltage of 2 V. A 

standard 1 MΩ resistor was used to transition between operative bipolar resistive switching and 

threshold switching modes in the nanoribbons. The current-voltage (I-V) character observed in 

Figure 3c represents the threshold behavior under voltage sweeping (±2 V, 1 Hz) when the 

resistor is connected in series with the HfO2-U system. Unlike the bipolar switching the threshold 

switching shows a symmetric I-V curve. Moreover, it shows a high resistance (109 Ω) initially 

followed by an abrupt increase in current level upon reaching a threshold voltage of approximately 

+1 V. The ribbon maintains LRS and recovers to the HRS suddenly at a hold voltage of +0.25 V. 

This threshold behavior can be tuned with the external resistor for each sample, exhibiting similar 

operating voltage ranges and stability. Figure 3d shows 50 switching cycles within a single HfO2-

U nanoribbon, suggesting the TS behavior remains stable, with a selectivity of 103. When the 

resistor is removed, the typical bipolar resistive switching hysteresis is observed.  
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 To evaluate the effect of ligand length on memristive behavior we estimated the 

interparticle spacing of the three samples based on the covalent chain length: HfO2-U (1.44 nm), 

HfO2-D (1.57 nm), HfO2-O (2.2 nm). Figure 4a plots the SET and RESET voltage distribution for 

bipolar switching as a function of the ligand length. The SET voltage clearly scales with increasing 

ligand length, while the RESET voltage exhibits a smaller dependence on length. An increase in 

the VSET distribution can also be observed in the statistical plot with the increased ligand length, 

while for VRESET, however, no clear correlation is found. Figure 4b presents the cumulative 

distribution function of the LRS and HRS of the three ligand types. The results were collected 

using DC sweeping mode at a read voltage of 0.5 V. The resistance in LRS exhibits a much 

smaller variation compared to the large variations observed for HRS for all three types. The HfO2-

O system shows a large HRS fluctuation range of about 104 while the HfO2-U and HfO2-D systems 

show improved uniformity of about 103 and 102, respectively. Furthermore, HfO2-U possesses a 

higher HRS resistance that results in a smaller leakage current, which is attributed to its shorter 

ligand length. In general, the variation of LRS and VRESET come from either varying filament 

diameter size or the number of conducting filaments formed during the SET process, while the 

variation in HRS and VSET is highly dependent on variations in the tunneling gap.13  

 Previous studies of PbSe NCs showed that the carrier mobility depends on nanoparticle 

size and the ligand length, the latter of which determines the interparticle tunnel distance.16 Using 

the same nanoparticle size for all samples, we posit the variation in the ligand length causes the 

observed difference in RS behavior. The charge transport mechanism involves sequential 

electron hopping through nanoparticles, as described by an Arrhenius-type activated tunneling 

model:17 

𝜎(𝛿, 𝑇) = 𝜎0(𝑒
−𝛽𝛿)𝑒−𝐸𝐴/𝑘𝐵𝑇, (1) 
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where 𝛽 is the electron-tunneling coefficient that is determined by the chemical nature of the 

ligand, 𝛿 is the average interparticle spacing depends on the length of the ligand and 𝐸𝐴 is the 

activation energy. Here 𝐸𝐴 is determined by the equation: 

𝐸𝐴 =
𝑒2

8𝜋𝜀𝜀0
(
1

𝑟
−

1

𝑟+𝛿
), (2) 

where r is the average radius of the particles, 𝛿 is the interparticle distance, and 𝜀 is the dielectric 

constant of the matrix by the ligand. Here both the forming (Figure 3a) and the subsequent SET 

process (Figure 4a) display a ligand length dependence, as both VF and VSET increase with 

increasing ligand length.  

 During the charge transfer process the ligand facilitates electron tunneling by effectively 

serving as an insulating spacer.25 Using the c-AFM tip as the top electrode forms a Pt/Ir tip-HfO2 

NCs-bridge-metal structure, where the term bridge indicates the capping ligand separating 

neighboring NCs and the metal bottom electrode with the bulk HfO2 NCs. When a positive voltage 

is applied to the bottom electrode during the electroforming process, the high electric field enables 

the creation of oxygen vacancies within the NCs and induces migration toward the tip along the 

grain boundary to form a low resistance conductive path.26 The electrons injected from the tip 

under the negative voltage thus pass through the conductive channel and tunnel between NPs, 

inducing a transition from HRS to LRS. When a negative voltage is applied to the bottom electrode, 

the oxygen vacancies migrate towards the counter electrode as driven by the electric field of 

opposite sign, thus severing the conductive channel. The observed TS and BRS characteristics 

are explained by variations in the morphology of the conducting filament. Limiting the current flow 

with an external resistor induces an instability within the filament, ultimately resulting in filament 

rupture after the applied voltage is removed. Once the conducting filament formed, any 

subsequent growth is suppressed due to the small amount of current passing through, resulting 
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in a fragile filament. Conversely, the current increases when the resistor is removed such that a 

stronger, more continuous filament is formed, manifesting as bipolar resistive switching.  

 To demonstrate a solution-processed memristive platform, we fabricated a crossbar 

device with a flow-coated HfO2-U thin film sandwiched between Ti top and Pt bottom electrode. 

The schematic of the cross-point HfO2-U test structure is shown in Figure 5a. Using the same 

solution concentration, the width of the ribbon is simply extended by varying the stopping distance 

and substrate velocity. Using the longer stopping distance, we fabricated a 5x5 µm2 crossbar type 

device comprising a 40 nm thick HfO2-U thin film sandwiched between 30 nm thick Pt electrodes. 

The bipolar resistive switching I-V response was measured by sweeping a DC voltage from -0.5 

V to +1.5 V after a forming process using a compliance current of 100 µA (Figure 5b). An ALD-

deposited 10 nm HfO2 ReRAM device with the same area was fabricated for comparison. Here 

the solution-processed HfO2-U device clearly exhibits smaller operating voltages, narrow 

distribution/increased uniformity, and larger ON/OFF ratio as shown in Figure 5c, d. The average 

SET and RESET voltages were 0.97 V and -0.36 V, respectively for HfO2-U; the ALD-deposited 

HfO2 displayed values of 3.2 V and -2.5 V, respectively. The ON/OFF ratio improved from 10 for 

ALD HfO2 to 105 for the HfO2-U at the expense of a small decrease in the uniformity of the 

resistance. Thus, the solution-processed device exhibits both stable switching behavior and small 

operating voltages that are competitive with more commonly employed ALD-deposited HfO2 

ReRAM devices.  

Conclusion 

In summary, we introduced a facile, inexpensive and versatile fabrication method to 

produces memristive nanoribbon structures comprising solution-processed, binary hafnium oxide 

nanoparticles. We demonstrated that ligand length direct affects the resistive switching behavior 

by comparing three commonly employed ligand chemistries. Our c-AFM results showed that 

individual HfO2 nanoribbons demonstrated both threshold switching and bipolar resistive 
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switching modes, dependent upon an external resistance applied to the system, which attributed 

to changes in the filament morphology. The forming and SET voltage scale strongly with 

increasing ligand length, while the reset voltage displays only a slight dependence. Moreover, 

different ligands affect the stability of the resistance in HRS due to the variation in the tunneling 

distances. We conclude that intrinsic oxygen vacancies formed during hydrothermal process are 

responsible for the switching behavior, and the operating parameters correlate directly with ligand 

length. Finally, our solution-based device demonstrated promising advantages, including low cost 

and time saving process, lower operating voltages, increased uniformity, and larger ON/OFF ratio 

compares to the typical ALD thin film HfO2 memory device. The chosen ligands for this study are 

frequently used for nanoparticle stabilization, and thus should immediately apply to optimizing 

resistive switching behavior in other complex oxide nanoparticle systems. 

Methods. HfO2 nanocrystals (0.4 mmol HfO2) were synthesized from HfCl4 and benzyl alcohol 

according to De Roo et al.[cite] After solvothermal synthesis and washing with diethyl ether, the 

nanocrystals are redispersed in chloroform (4mL). 0.2 mmol of fatty acid (oleic acid, dodecanoic 

acid, or 10-undecenoic acid) was added to the milky suspension. In case of 10-undecenoic acid, 

5 % of dodecanoic was also added to ensure colloidal stability. Under stirring or ultrasonication, 

oleylamine (0.15 mmol or 50 µL) was added until a transparent and colorless suspension was 

obtained. Finally, the particles are purified three times by adding acetone to induced precipitation, 

followed by centrifugation and resuspension in chloroform. After the last purification, the 

nanocrystals were dispersed in toluene. 

HfO2 Nanoribbon Convective Self-Assembly: The custom-built flow coating instrument uses a 

silicon wafer (University Wafer Inc.) cut to an edge length of 15 mm as a fixed blade. This blade 

is attached to a tilt-translation stage with pitch, roll and height control capability. With visual 

guidance, the blade edge is aligned parallel to the substrate at the approximate height 150-300 

µm for all coating procedure. The substrate is attached to a programmable nanopositioner 
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(Burleigh Inchworm controller 8200), which performs a series of stop-and-go steps. Here the 

primary variables that control the nanoribbon geometry (height, width) are solution concentration, 

stop time (td), spacing (d) and velocity (v). The HfO2 nanoribbons in this study were prepared 

using the following parameters: v = 1500 µm/s, solution concentration = 1 mg/ml, d = 200 µm, 

and a td between 1000 to 6000 ms. Different stop times were used to vary the nanoribbon height 

(h) and width (w), td = 1000 ms (h = 80 nm, w = 8 µm), td = 3000 ms (h = 160 nm, w = 13 µm), and 

td = 6000 ms (h = 230 nm, w = 17 µm).  A fixed volume of HfO2 NC solution (10 µl) is injected 

between the fixed blade and the substrate, where capillary forces confine the solution to the blade 

edge. The HfO2 NC nanoribbons were deposited directly on silicon wafer substrates (undoped 

<100>, University Wafer Inc.). Before deposition all substrates and blades were rinsed with 

isopropyl alcohol and toluene then dried after each step with a filtered stream of N2 gas. 
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Figures and Figure Captions 

 

Figure 1 a, TEM image shows the crystalline structure of HfO2 nanoparticles with the scale bar 

denotes 50 nm. Inset: HRTEM image of NCs indicates the lattice fringe and size of 5 nm. b, X-

ray diffraction patterns of monoclinic HfO2. c, An illustration of the “stop-and-go” flow coating 

process. The shape and profile of the ribbon are confirmed by d, three-dimensional AFM image. 

e, An optical micrograph (scale bar 200 µm) showing highly ordered ribbons comprising HfO2 

nanoparticles.   
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Figure 2 a, An illustration of the c-AFM measurement setup across an individual HfO2 nanoribbon. 

b, Current mapping of individual HfO2-D ribbon with an applied voltage of +2.5 V, displaying a 

yellow conducting spot formed after a forming voltage of +6 V. c, Corresponding current mapping 

of the area with an applied voltage of -2 V. No observed conducting spot indicates the locally 

reset process occurred. 
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Figure 3 a, I-V curves for the forming process of HfO2-U, HfO2-D and HfO2-O, respectively. b, 

Representative I-V response of BRS for three samples. c, I-V curve of the TS behavior of HfO2-

U sample. d, 50 cycles endurance of TS by sweeping at a read voltage of 0.5 V, showing a 

selectivity of 103. 
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Figure 4 a, The statistical distribution plot of switching voltages as a function of ligand length. 

Both VSET and its distribution scale with increasing ligand length. b, The cumulative probability for 

the LRS and HRS of HfO2-U (purple; square), HfO2-D (green; circle), and HfO2-O (orange; 

triangle), respectively. 
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Figure 5 a, Schematic of a single Pt/HfO2-U/Pt ReRAM device. b, The representative I-V 

characteristics of Pt/HfO2-U/Pt ReRAM device. c, Comparative statistic cumulative probability of 

the operating voltage for HfO2-U and ALD-prepared HfO2. d, The cumulative probability of the 

resistances in each state of HfO2-U and ALD-prepared HfO2. 
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