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Nederlandse samenvatting
–Summary in Dutch–

Eenvoudig gezegd komt elke situatie waarbij “klanten” wachten in rijen om een
of andere vorm van bediening te ontvangen, neer op een wachtlijnsysteem. Zodra
deze klanten bediend zijn, verlaten ze ofwel het systeem of treden ze toe tot een an-
dere wachtlijn. Zo maken ze opnieuw deel uit van een wachtlijnsysteem. De term
“klant” is hier een natuurlijke abstractie, die zowel kan verwijzen naar wachtende
mensen bij een kassa, naar pakjes die in het postkantoor wachten om verdeeld te
worden, als naar een digitaal informatiepakket dat wacht op transmissie over een
of ander transmissiekanaal, enz. Hetzelfde principe geldt voor de “bediening” die
door deze klanten gevraagd wordt, die in feite een abstractie vormt voor de tijds-
duur dat de klant de server bezet houdt. Zo bijvoorbeeld is het de tijd die het
inscannen van de boodschappen aan de kassa in beslag neemt, de uren of minuten
tot een postpakje bij het postkantoor zijn weg vindt naar de juiste bestelwagen, of
de transmissietijd van een digitaal pakket.

De meeste wachtlijnsystemen delen de eigenschap dat zowel de aankomsttijd-
stippen van klanten als de hoeveelheid bediening die de klanten vereisen, niet op
voorhand gekend zijn. Indien dit wel het geval was, zou de serviceprovider een
planning voor de klanten kunnen opstellen of de noodzakelijke bedieningscapaci-
teit kunnen voorzien, zodat geen enkele klant nog zou hoeven te wachten. Meer
concreet kunnen we het volgende voorbeeld geven: als een arts op voorhand zou
weten hoeveel tijd iedere consultatie in beslag zou nemen, zouden wachttijden
voor patiënten volledig vermeden kunnen worden. Iedere patiënt zou immers zijn
afspraak krijgen op het moment dat de consultatie van de vorige patiënt afloopt.

Wiskundig wordt het gebrek aan kennis of de onzekerheid over aankomsttijd-
stippen en bedieningstijden het handigst beschreven door middel van toevalsgroot-
heden. Wachtlijntheorie bestudeert daarom probabilistische modellen van wacht-
lijnsystemen. Door het modelleren van wachtlijnsystemen kan men inzicht ver-
werven in de dynamica van het wachtlijnsysteem door het berekenen van diverse
prestatiematen, zoals gemiddelde wachttijden en wachtlijnbezettingen. Een der-
gelijke prestatie-analyse is essentieel bij het ontwerp van een wachtlijnsysteem —
het ontwerp omvat o.a. hoeveel wachtruimte en hoeveel servers men dient te voor-
zien — aangezien het toelaat de verwachte prestatie in te schatten vooraleer het
wachtlijnsysteem wordt gebouwd. De toevalsprocessen die de tijdsdynamica van
een wachtlijnsysteem beschrijven, behoren veelal tot de klasse van de Markovpro-
cessen. De klasse van de Markovprocessen is niet alleen een veelzijdige klasse
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van stochastische processen die een breed gamma aan toevalsfenomenen kan mo-
delleren, maar is tevens een klasse van processen waarvoor men verschillende ka-
rakteristieken daadwerkelijk kan berekenen. De voornaamste karakteristiek van
een Markovproces is zijn regimedistributie. Voor Markovprocessen die wacht-
lijnsystemen voorstellen zoals in dit werk kunnen de meeste prestatiematen van
het wachtlijnsysteem uitgedrukt worden in termen van deze regimedistributie. In
wachtlijnterminologie verwijst het oplossen van een wachtlijnmodel derhalve ge-
woonlijk naar het vinden van de regimedistributie van het onderliggende Markov-
proces.

Dit proefschrift bestudeert een specifiek type van wachtlijnmodellen, de zo-
genaamde multidimensionele wachtlijnmodellen. Een multidimensioneel wacht-
lijnmodel is een model dat bestaat uit meerdere wachtlijnen met gedeelde servers.
In tegenstelling tot klassieke wachtlijnmodellen met één enkele wachtlijn of net-
werken van wachtlijnen met toegewezen servers waarbij de bedieningssnelheid
van elke server enkel afhangt van de toestand van zijn wachtlijn, zullen we ons
in dit proefschrift concentreren op modellen waarbij de inhoud van elke indivi-
duele wachtlijn een effect heeft op de prestatie van de andere wachtlijnen en van
het systeem in het algemeen. Modellen met wachtlijnen die onderling afhankelijk
zijn van elkaar vertonen een specifieke dynamica, die niet teruggevonden wordt
bij traditionele wachtlijnsystemen. Deze modellen laten toe complexe systemen
voor te stellen waarbij de interactie tussen de wachtlijnen kan veroorzaakt worden
door meerdere factoren zoals blokkering of gedeelde servers. Specifiek worden in
dit proefschrift vier verschillende wachtlijnmodellen voorgesteld en geanalyseerd,
komende uit toepassingsscenario’s in de domeinen van industriële productiesyste-
men en draadloze communicatie.

Het numeriek oplossen van multidimensionele wachtlijnmodellen is computa-
tioneel moeilijk, omwille van de enorme toestandsruimte van Markovprocessen
met meerdere dimensies. Dit staat bekend als het probleem van toestandsruimte-
explosie, wat betekent dat de toestandsruimte exponentieel groeit met het aantal
betrokken dimensies (of wachtlijnen). Reeds bij enkele wachtlijnen van een ma-
tige capaciteit omvat de toestandsruimte duizenden toestanden. Een dergelijk mo-
del is dan ook moeilijk te analyseren, aangezien het betekent dat zeer grote stelsels
van lineaire vergelijkingen moeten worden opgelost. Bestaande wachtlijntheoreti-
sche methoden laten toe complexe modellen op een efficiënte manier op te lossen.
Deze methoden zijn echter enkel toepasbaar op Markovmodellen met een zekere
vereenvoudigde structuur, die de modellen met onderling interagerende wachtlij-
nen typisch niet bezitten. Niettemin laten verschillende eigenschappen van de ge-
neratormatrix een vereenvoudigde oplossing toe. Bijvoorbeeld, voor alle systemen
die in dit proefschrift bestudeerd worden, zijn de generatormatrices ijl omwille van
de beperkte set van transities die bereikbaar zijn vanuit elk van de toestanden van
het systeem. Aan de andere kant, zelfs wanneer we gebruik maken van structurele
eigenschappen, stuiten we vaak op een onhandelbare computationele complexiteit
van de exacte oplossing. Daarom zullen we in dit proefschrift vooral een nume-
rieke benaderingstechniek onderzoeken die steunt op een perturbatie-analyse van
de regimedistributie van het Markovproces.
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Dit proefschrift bestaat uit vijf hoofdstukken. In het eerste hoofdstuk intro-
duceren we de praktische toepassingen die aanleiding geven tot de onderzochte
multidimensionele wachtlijnmodellen, evenals de wiskundige basistechnieken die
in dit proefschrift gebruikt worden om deze wachtlijnmodellen op te lossen. Ver-
dere hoofdstukken specifiëren de onderstellingen omtrent de beschouwde wacht-
lijnsystemen en gaan dieper in op de numerieke methoden die toegepast worden
om benaderende oplossingen te bekomen. Hoewel in alle gevallen reeksontwikke-
lingstechnieken gebruikt worden, vraagt elk wachtlijnmodel toch een individuele
aanpak om de gewenste prestatiematen te berekenen. In hoofdstuk 2 introduceren
we een model voor een voorraadsysteem met meerdere producten, dat zich bevindt
vóór een assemblagelijn. De voorraden aan verschillende onderdelen worden ge-
modelleerd als wachtlijnen, waarbij de onderdelen de rol van de klanten vervullen,
terwijl de assemblagelijn zelf de server vormt van het wachtlijnsysteem. Hoofd-
stuk 3 bestudeert een gelijkaardig model. Als een uitbreiding van het model uit
hoofdstuk 2 introduceert hoofdstuk 3 echter de bijkomende onderstelling dat alle
onderdelen uit de voorraad moeten gebruikt worden vóór een zekere vervaldag.
Onderdelen die niet gebruikt worden vóór dat tijdstip, worden uit de voorraad ver-
wijderd.

Hoewel de vervaldag het enige verschilpunt is tussen de modellen in hoofdstuk
2 en hoofdstuk 3, wordt hierbij een geheel andere dynamica geobserveerd. Daar
waar de dynamica in hoofdstuk 2 bepaald wordt door serverblokkering (de server
blokkeert wanneer één van de voorraden leeg is), domineert het verwijderingspro-
ces dikwijls de dynamica in hoofdstuk 3. De laatste twee hoofdstukken behelzen
wachtlijnmodellen voor een aantal specifieke scenario’s bij draadloze communi-
catie. Hoofdstuk 4 betreft transmissies vanaf een draadloos toegangspunt naar
meerdere gebruikers toe, waarbij een opportunistische scheduleringsstrategie ge-
bruikt wordt. Het model brengt de toevallige kanaalvariaties in rekening, terwijl
de prestatie-analyse de efficiëntie van verschillende scheduleringsschema’s evalu-
eert en vergelijkt. In hoofdstuk 5 richten we ons op een zogenaamd Drive-thru-
Internetscenario, waarbij een toegangspunt dat zich langs een weg bevindt, inter-
netconnectie voorziet voor de mobiele gebruikers in de auto’s in een omgeving met
meerdere voertuigen.

Voor al deze systemen hebben we aangetoond dat numerieke reeksontwikke-
lingstechnieken toelaten de prestatie zowel snel als nauwkeurig te evalueren. De
methodologie die hier werd ontwikkeld, is niet alleen toepasbaar op de specifieke
wachtlijnsystemen die in dit proefschrift werden onderzocht, maar wordt verwacht
ook toepasbaar te zijn voor een breed gamma aan wachtlijnmodellen met meerdere
interagerende wachtlijnen.





English summary

Any real-world situation which involves customers that join waiting lines in order
to receive some service is a queueing system. Once the customers have received
the requested service, they either leave or join another waiting line in the queueing
system. The term “customer” is an abstraction which can equally refer to people
waiting at the checkout counter, parcels at the post office waiting to be distributed,
a digital packet with information waiting to be transmitted over some transmission
channel, etc. Likewise, the“service” that is requested by these customers is an
abstraction for the duration that the customer occupies the server. For example,
it is the time to process the groceries at the checkout counter, the time needed to
route a parcel to the correct delivery van at the post office, or the transmission time
of the digital packet.

Most queueing systems share the property that arrival instants of customers
as well as the amount of service they require are not known in advance. If this
was the case, the service provider could either schedule the customers such that
no customer will have to wait, or provide the necessary service capacity to avoid
queueing. For example, if a physician would know in advance how long each pa-
tient’s consultation would take, patient waiting times could be completely avoided
by scheduling the next patient at the end of the consultation of the preceding pa-
tient.

Mathematically, the lack of knowledge or uncertainty about arrival times and
service times is most conveniently described by random variables. Queueing the-
ory therefore studies probabilistic models of queueing systems. By modelling
queueing systems, one can gain an understanding of the queueing systems dy-
namics by calculating various performance measures, like expected waiting times
and queue lengths. Such a performance analysis is an essential tool while design-
ing the queueing system — the design comprises a.o. how much space one should
allocate for queueing and how many servers one should provide — as it allows
for estimating the expected performance prior to building the queueing system.
The random processes which represent the queueing dynamics over time belong
most often to the class of Markov processes. The class of Markov processes is
not only a versatile class of stochastic processes which can model a wide range
of random phenomena, it is also a class of processes for which one can actually
calculate various characteristics. The most important characteristic of a Markov
process is its stationary distribution. For Markov processes representing queueing
systems like in this work, most performance measures of the queueing system can
be expressed in terms of this stationary distribution. In queueing parlance, solving
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a queueing model therefore usually refers to finding the stationary distribution of
the underlying Markov process.

This dissertation studies a specific type of queueing models, referred to as mul-
tidimensional queueing models. A multidimensional queueing model is a model
which involves multiple queues with shared servers. In contrast to classic queueing
models with a single queue or networks of queues with dedicated servers where
the service speed of every server only depends on the state of its queue, we focus
on models where the content of each individual queue affects the performance of
the other queues and the system in general. Models with dependent queues ex-
hibit specific queueing dynamics, which are not observed in traditional queueing
systems. These models allow for representing complex systems where the interac-
tion between the queues can be caused by multiple factors like blocking or server
sharing. In particular, four different queueing models are proposed and analysed
in this dissertation coming from application scenarios in the areas of industrial
manufacturing systems and wireless communications.

Numerically solving multidimensional queueing models is computationally
hard due to the size of the state space of Markov processes with multiple dimen-
sions. This is known as the state space explosion problem. The state space grows
exponentially in the number of dimensions (or queues) involved. Already with
a few queues with a modest capacity, the state space attains thousands of states.
Such a model is hard to analyse, as it implies solving very large systems of linear
equations. Existing methods of queueing theory allow for solving large models
efficiently, however, they are applicable only to Markov models with a certain
simplified structure, that the models with interacting queues typically do not have.
Nevertheless, several properties of the transition rate matrix allow for a simplified
solution. For example, for all the systems studied in this dissertation, the gener-
ator matrices possess sparsity due to the limited set of transitions reachable from
each state of the system. On the other hand, even utilising structural properties,
we often encounter unsustainable computational complexity of the exact solution.
Therefore, in this dissertation we mainly investigate a numerical approximation
technique which relies on a perturbation analysis of the stationary distribution of
the Markov process.

This dissertation consists of five chapters. The first chapter introduces the
practical applications leading to the multidimensional queueing models under in-
vestigation, as well as the basic mathematical techniques which are used in this
dissertation to solve these queueing systems. Further chapters specify the assump-
tions regarding the queueing systems of interest and elaborate on the numerical
methods applied to obtain the approximate solutions. Even though in all cases
series expansion techniques are employed, each queueing model requires an indi-
vidual approach to calculate the performance measures of interest. In Chapter 2
we introduce a model of a multi-product inventory located in front of an assem-
bly line. The inventories with the parts are modelled as queues, the parts being
the customers, while the assembly line itself is the server of the queueing system.
Chapter 3 studies a similar model. However, as an extension of the model of Chap-
ter 2, Chapter 3 introduces the additional assumption that all parts in the inventory
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have to be used before a due date. Parts that are not used before their due date
are removed from the inventory. While the expiration date is the only difference
between the models in Chapter 2 and Chapter 3, completely different dynamics are
observed. While in Chapter 2 the dynamics are governed by service blocking (the
server blocks if one of the inventories is empty), the abandonment process often
dominates the dynamics in Chapter 3. The last two chapters deal with queueing
models for some specific scenarios in wireless communications. Chapter 4 focuses
on multi-user downlink transmissions by a wireless access point, working under
an opportunistic scheduling policy. The model accounts for the random channel
variations while the performance study evaluates efficiency and compares various
scheduling schemes. In Chapter 5 we address a Drive-thru Internet scenario, where
an access point located along a road provides Internet connection for the mobile
users in the cars in a multi-vehicular environment.

For all these systems, we have shown that numerical series expansion tech-
niques allow for evaluating the performance both fast and accurately. The method-
ology developed here not only applies to the specific queueing systems that were
investigated here, but is expected to apply to a wide range of queueing models
involving multiple interacting queues.





1
Introduction

1.1 Introduction

Waiting in line or queueing is not only one of the more undesirable situations in
our life to be in, it is also the subject of a vast research area named queueing
theory. The need for waiting in line is intuitively clear. A number of people would
like the same service at the same time and arrive at the same place to find it. In
old times this would immediately result in confrontation, but in modern society
we respectfully wait our turn and form a structured queue or, in other words, a
queueing system. Any queueing system is characterised by arrivals and departures
of customers, wanting to receive some kind of service and possibly having to wait
for it.

To some extent, most of us practice queueing analysis on a daily basis. When-
ever we have to choose between joining different queues, we make an educated
guess in which queue we have to wait the least. For example, in a supermarket we
may simply opt for the waiting line with the least number of customers, or make
a more refined estimation by accounting for the number of items in the waiting
customers’ baskets. Also while waiting in line, we perform some sort of queueing
analysis. We can comfort ourselves by measuring the progress we make in the
queueing system, which is equivalent to measuring the time it will take till it is our
turn. For example, in a traffic jam we count down the distance to the junction or
the narrowing of the road which causes the jam. Sometimes, we even compare the
service speed of queues, for example by evaluating if it is worth changing queues.
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The arguments one intuitively uses to estimate waiting times are made pre-
cise by queueing theory. For such a rigorous analysis, queueing theory starts with
a well-defined queueing model. A queueing model clearly specifies all assump-
tions on customer arrivals, their service requirements and the order in which the
queueing system’s server attends the customers, the common assumption being
that customers arrive in accordance with some well-specified stochastic process,
have random service requirements and are served in order of arrival. Given these
assumptions, the model can be solved, either analytically or numerically. Here
solving means that we can express various performance measures of the queueing
system in terms of the parameters of the arrival and service processes. An ana-
lytical solution provides a closed-form formula for these performance measures
whereas a numerical solution proposes an algorithm which can efficiently calcu-
late these performance measures. The performance measures of interest usually
describe the long-term queueing behaviour and include throughput (the average
number of customers that the queueing system can serve per time unit), the mean
waiting time or the waiting time distribution of an arbitrary customer, the mean
and the distribution of the number of waiting customers at some point in time, etc.
These performance measures can then be used to dimension queueing systems.
Dimensioning problems include questions like how many servers do we need to
guarantee that customers do not have to wait overly long, or how much space do
we need for waiting customers. In addition, queueing analysis can also help while
designing a queueing system. Design questions include the placement of queues
(e.g. one long queue vs. multiple dedicated queues) as well as the choice of queue-
ing disciple (the order in which customers are served).

Since the concept of queueing analysis was introduced by A.K. Erlang in
1909 [1], queueing models found multiple applications in various fields, the most
important fields being telecommunication systems and production systems. Since
its inception, queueing theory has grown into a vast research field. While many
important queueing systems have been analysed, there are even more queueing
systems which have not been analysed yet. This does not entirely come as a sur-
prise as existing results in queueing theory show that an apparently slight modi-
fication of the assumptions regarding arrivals, service times or service discipline,
can often have a profound impact on the queueing dynamics, and therefore also
on the performance of the queueing system. Therefore, despite the extensive body
of literature on queueing systems, there is still a need for new efficient analysis
methods.

This work focusses on a particular type of queueing models. We investigate
queueing models that are comprised of multiple queues, where the customers in
these different queues are served by a common service provider. Hence, each cus-
tomer is not only affected by the presence of other customers in its own queue,
but also by the presence of customers in all the other queues. To carefully capture
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how customers in the different queues affect each other’s performance, one cannot
study a single queue in isolation. Instead, the queueing system should be studied as
a single system with multiple queues which considerably complicates the analysis.
We will adopt the term multidimensional queueing model for any such queueing
system with multiple queues and shared service. For specific multidimensional
queueing systems like particular multi-priority queueing systems, polling systems
and processor sharing systems, analytical or numerical solutions are available.
However, for the multidimensional queueing systems that are investigated in this
work, such results were not available. For these systems, performance evaluation
was practically conducted by means of simulation-based methods, while analytical
or numerical solution would be more desirable to reduce the time it takes to con-
duct the performance analysis. This is most important if one wishes to dimension
the queueing system. Optimal dimensioning being an optimisation problem and
any optimisation routine requiring multiple evaluations of the performance mea-
sures for different parameter values, enabling fast calculation of the performance
measures of interest also allows for fast performance optimisation.

The remainder of this introductory chapter is organised as follows. We first
describe the details of the applications in the area of telecommunication networks
and production systems that motivated the multidimensional queueing models that
are analysed in this work. We then describe the theoretical background on Markov
chains and their solution methods in section 1.3. We discuss these solution meth-
ods in the context of multidimensional queueing systems in section 1.4, before
outlining the remainder of the dissertation in section 1.5. We list the publications
that resulted from this work in section 1.6.

1.2 Applications of multidimensional
queueing models

The first step in assessing the performance of a real-life queueing system comprises
the construction of a mathematical (queueing) model. The modelling process aims
at identifying the key determinants that govern the queueing dynamics and affect
the performance measures of interest. The modelling process in general leads to a
set of simplifications to ensure reasonable model complexity, while avoiding over-
simplification as this would lead to incorrect quantitative results. Ideally, we would
like to achieve a perfect trade-off between model complexity and accuracy, aim-
ing for a precise performance estimation via the simplest model possible. While
from the vantage point of queueing analysis, one-dimensional Markovian queueing
models are preferred as these are easier to analyse, many performance problems
emerging in telecommunication networks [2–4], and manufacturing and assembly
systems [5–7], can only be studied by multidimensional Markov models.
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In the remainder of this section, we describe the details of the three main per-
formance problems that motivated the multidimensional queueing systems studied
in this dissertation: performance evaluation of opportunistic scheduling in wireless
networks, of Drive-thru Internet in vehicular communication, and assembly from
multi-product inventory systems.

1.2.1 Opportunistic scheduling in wireless networks

Recent advances in wireless communication systems include a number of rapidly
developing technologies within the framework of current 4G and future 5G net-
works like cognitive radio, multiple input multiple output (MIMO) systems, and
opportunistic scheduling. While absorbing state-of-the-art ideas and technologies
along with introducing new services, the evolution of wireless networks is driven
by the same main objectives from one generation to another: boosting the data
rates, expanding the bandwidth, reducing latency, and minimising energy con-
sumption. These central challenges have continuously motivated industrial and
academic research in the area of wireless communications [8, 9].

One of the technologies, leading to overall performance improvement in wire-
less communication is opportunistic scheduling. This concept refers to a cross-
layer media access control which utilises advanced features of the physical layer
by accounting for the channel conditions when selecting what to send next. The
basic scenario which utilises opportunistic scheduling considers communication
between a base station or access point (AP) and multiple mobile devices or users
as depicted in Figure 1.1. The AP sends to the users over a noisy channel, chan-
nel conditions differing for the different users. An ideal opportunistic scheduler
prefers to send to the users with the best channel conditions, while it also ac-
counts for fairness between its users. Utilising channel information, a scheduler
can greatly improve its average throughput in a multi-user system compared to a
channel-unaware scheduler like a round-robin scheduler which schedules in circu-
lar order and ignores channel variations.

While implemented only recently, the basic idea of channel-aware scheduling
emerged in literature more than 20 years ago [10]. The first proposed opportunis-
tic schedulers were MaxRate [10], MaxWeight [11] and Exp-rule [12]. These
schedulers are easy to implement, yet already exhibit a notable performance in-
crease in terms of overall throughput. Since then, a tremendous amount of new
scheduling schemes have been designed to cope with the changing performance
requirements for one wireless system over another. For a thorough description of
the history and tendencies in channel-aware scheduling, we refer to [13] and the
references therein. Currently, only few opportunistic schedulers are already im-
plemented [14], however, future generations of wireless communication protocols
are expected to employ this technology more extensively.
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Mobile nodes

Access Point

Figure 1.1: Illustration of wireless access point under varying transmission environment

One of the problems related to the design of opportunistic schedulers is to
quantify their performance such that an appropriate scheduler can be chosen for
a given application and its Quality of Service requirements. As any outstanding
packets for AP to mobile user communication and for mobile user to AP communi-
cation are stored in buffers awaiting transmission, the performance assessment of
opportunistic scheduling is basically a queueing performance problem. While the
dynamics of the long-term buffer behaviour under varying channel assumptions
can be studied by means of queueing theory, such an analysis is not straightfor-
ward. Indeed, opportunistic scheduling aims at finding the best trade-off between
sending packets that have been waiting for a long time and packets that can be
sent over the best channel. At least at the conceptual level, packets for the differ-
ent mobile users are kept in separate buffers. Whenever a packet is selected for
transmission, the choice not only affects the buffer of the packet that is selected,
but all other buffers as well, as no packet from these buffers was selected. Even if
the packets at the AP are stored in a single buffer, the scheduling accounts for the
channel conditions of their destination. In either case, the performance analysis
requires a multidimensional queueing model.

In Chapter 4, we present such a multidimensional queueing model and its per-
formance analysis. We make some simplifying assumptions to enable describing
the queueing dynamics by means of a continuous-time Markov chain with finite
state space. However, the modelling assumptions are sufficiently versatile to al-
low for (i) evaluating various buffer-size and channel-quality aware opportunistic
schedulers, (ii) to assess the impact of time correlation of the channel conditions
and (iii) to assess the impact of cross correlation of the channel conditions. The
latter can seriously affect the performance of opportunistic schedulers as an op-
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portunistic scheduler cannot optimise sending to the best channel if the different
channels are good or bad at the same time.

While the proposed queueing model is a continuous-time Markov process with
a finite state space, the state space is prohibitively large to allow for direct calcu-
lations of performance measures of interest. Moreover, the generator matrix lacks
structural properties like being skip-free in one direction or reversibility to sim-
plify the calculations (see section 1.3 below). Hence, in literature one often relies
on simulations-based methods to obtain performance measures of interest. In this
dissertation, we show that it is possible to calculate the performance measures at
acceptable computational cost, in two parts of the parameter space: under light
traffic conditions, when the AP load is low, and in overload conditions when the
load at the AP is very high.

1.2.2 Drive-thru Internet in vehicular communication

Again in the field of telecommunication systems, another application under study
in this dissertation focuses on a performance problem in the area of vehicle com-
munications. The emerging concept of Cooperative Intelligent Transportation Sys-
tems (C-ITS) suggests a widespread adoption of information and communication
technologies in diverse vehicular applications aimed at increasing transport safety,
efficiency and comfort. C-ITS vehicles exchange information with each other as
well as with the roadside infrastructure in a heterogeneous wireless networking
environment.

In particular, we consider a scenario of vehicle-to-infrastructure communica-
tion referred to in the literature as Drive-thru Internet [15]. Drive-thru Internet
provides access to internet services by installing wireless access points along the
road. This access is especially useful in remote regions where cellular networks
and urban internet resources might be unavailable. We focus on the performance
of downlink traffic from a single AP, that is, data traffic from this AP to the moving
vehicles that pass by. The coverage region of the AP is divided into several zones,
each zone associated with particular data rates. Both the range of service and the
length of the zones with equal data rate are defined by the technical characteris-
tics of the AP and additional environmental factors that influence channel capacity
along the road. As an example, in Figure 1.2, the range is divided in three parts,
namely, an entry zone, a production zone and an exit zone in accordance with [16].
While the AP provides internet connectivity within the coverage area, due to the
zone-dependent channel quality, the maximal throughput for users in both entry
and exit zones is significantly lower compared to the production zone.

The Drive-thru Internet scenario resembles the earlier problem of opportunis-
tic scheduling to some extent. Indeed, the AP has to send packets to multiple cars
in different regions with different channel qualities, temporarily buffering packets
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Figure 1.2: Drive-thru Internet scenario

at the AP prior to transmission. Again the packets for the different users are stored
in separate buffers, if not physically than at least conceptually. In contrast to the
opportunistic scheduler of the preceding section, the channel quality of a mobile
user now changes due to movement of the mobile user. From the vantage point of
performance analysis, this leads again to a queueing model with multiple dimen-
sions. The Drive-thru scenario however is more complex as now also the position
of the cars needs to be tracked.

In Chapter 5, a Markovian model for Drive-thru Internet is presented, which
tracks the positions of the cars and the number of packets for these cars at the
AP. Such a Markov model allows for evaluating schedulers for Drive-thru Internet.
The scheduler now decides on what to send next based on the positions of the cars
and the number of packets at the AP for these cars.

1.2.3 Assembly systems

A manufacturing process often consists of multiple operational steps, converting
parts, raw materials or structural items into semi-final products, and then finally
into end products.

In this dissertation, the performance of an assembly operation of semi-finished
products into an end product or into another semi-finished product under uncer-
tainty in demand and production times is investigated. The assembly takes parts
from multiple inventories that offer temporary storage to smooth out uncertainty in
the various production processes and are constantly replenished by in-house pro-
duction facilities. Figure 1.3 shows an abstract representation of such an assembly
process. Multiple part inventories are replenished by production processes, the
parts itself being used to assemble the end product. Performance measures of in-
terest include the throughput of the assembly system as well as the distribution and
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Assembly line

Inventories

End product

Figure 1.3: Illustration of a manufacturing system with assembly line.

moments of the number of semi-finished parts in the different inventories.

If multiple part inventories are involved, it may be hard to allocate sufficient
space for all inventories near the assembly line. In this case, the semi-finished parts
can be collected into a specially designed container or kit and then delivered to the
assembly line. This strategy is referred to as kitting and not only mitigates storage
requirements at the assembly line, but also allows for reducing seek times during
assembly as all semi-finished products can be readily located in the kit [17–20].
As from a modelling perspective kit construction and assembly are equivalent, the
models for studying the assembly operation can also be used to study the kitting
process.

To model the assembly (or kitting) operation, one has to explicitly account for
the state of the multiple inventories as it is sufficient that one of the inventories
is empty to block the assembly operation. This in turn affects the performance of
the assembly system, performance measures of interest including the throughput
of the assembly system as well as the size of the part inventories. The need for a
multidimensional model contrasts with most stochastic inventory models in liter-
ature [21, 22]. In Chapter 2 and 3, Markovian models of the assembly operation
are investigated. In both chapters, the model accounts for the multiple inventories,
which are replenished in accordance with independent Poisson processes, while
the assembly time is exponentially distributed. In Chapter 3, semi-finished prod-
ucts additionally have a holding date, meaning that the products cannot be stored
indefinitely in the inventory, but will perish after some time. This perishability is
captured by abandonment processes from the different inventories. Food products
are a prime example of perishable semi-finished products. However, perishable
semi-finished products are also found in biochemical production, and in battery
and semiconductor manufacturing [23].
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1.3 Methodology
We introduce the main concepts of the theory of Markov chains, and their numer-
ical solution techniques.

1.3.1 Markov processes

Stochastic processes can be used to study the behaviour of dynamical systems in-
fluenced by random factors. In this dissertation, Markov processes play a predom-
inant role, as such processes combine versatility and analytical and/or numerical
tractability.

Let {Xt, t ∈ R+} be a stochastic process taking values in a denumerable set
X . That is, {Xt, t ∈ R+} is a collection of X -valued random variables indexed by
an index t ∈ R+, which is usually interpreted as time. Such a process is a Markov
process provided it possesses the ‘memorylessness’ or the Markov property [24],

Pr[Xt = xt|Xt0 = xt0 , Xt1 = xt1 , . . . , Xtn = xtn ]

= Pr[Xt = xt|Xtn = xtn ] (1.1)

for 0 ≤ t0 < t1 < t2 < · · · < tn < t and for xs ∈ X for s ∈ {t0, . . . , tn, t}. For
a Markov process, the set X is referred to as the state space of the Markov process,
an element of the state space being a state of the Markov process. The expression
above states that the probability distribution of the future state of the process Xt

can be predicted given the current state Xtn and does not depend on all previous
states. In other words, the past and the future are independent given the present.

From the Markov property we have,

Pr[Xt1 = xt1 , . . . , Xtn = xtn ] =

Pr[Xt1 = xt1 ]
n∏

m=2

Pr[Xtm = xtm |Xtm−1
= xtm−1

]

such that the joint distribution of the process at different time instants can be ex-
pressed in terms of the transition probabilities Pr[Xtm = xtm |Xtm−1 = xtm−1 ].
This implies that the process is completely characterised by the distribution of X0

and the transition probabilities.
It is often more convenient to describe the Markov process in terms of transi-

tion rates, rather than in terms of transition probabilities. The transition rate qij(t)
from state i to state j at time t ∈ R+ is defined as

qij(t) = lim
∆→0

Pr[Xt+∆t = j|Xt = i]

∆t
, i 6= j, i, j ∈ X . (1.2)

In the remainder, we always assume that the Markov process is time homogeneous,
meaning that the transition rates do not depend on time, qij(t)

.
= qij for all t ∈ R+.
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Let πi(t) = Pr[Xt = i] denote the probability that the Markov process is in
state i at time t. The probabilities πi(t) satisfy the set of differential equations,

dπi(t)

dt
= −πi(t)

∑
j∈X ,j 6=i

qij +
∑

j∈X ,j 6=i

πj(t)qji , i ∈ X . (1.3)

It is often convenient to introduce the following matrix representation of this
set of equations. Let π(t) denote the row vector with elements πi(t), i ∈ X , and
let Q be the matrix,

Q = [qij ]i,j∈X ,

where the diagonal elements are equal to,

qii = −
∑
j 6=i

qij . (1.4)

Q is the (possibly infinite) generator matrix of the Markov process. In view of
these definitions, the set of differential equations can be written as,

dπ(t)

dt
= π(t) Q .

The main quantitative result that we aim to obtain from the Markov model is
its stationary distribution,

π
.
= lim
t→∞

π(t) .

The stationary distribution allows for studying the long-run dynamics of the model
and can be found by solving the system of balance equations

πQ = 0 , (1.5)

combined with normalisation condition,

π1> = 1 . (1.6)

Here 0 is a row vector of zeros, 1 is a row vector of ones of appropriate dimension
and 1> denotes the transpose of 1.

In this dissertation, the Markov processes represent queueing systems, the tran-
sitions corresponding to arrivals and departures of customers, and the state of the
Markov process representing the number of customers in some subsystem of the
system. Usually, the ultimate goal of solving a queueing system is to quantify the
system behaviour under various loads. Once the stationary distribution π is calcu-
lated, various performance measures of the system can be found directly. LetX be
distributed as the stationary distribution of the Markov process. Most performance
measures can then be expressed in terms of the expectation of some function ofX ,

E[f(X)] =
∑
i∈X

πif(i) .
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For example, if a function g maps the state X of the system on the total number of
customers Q in the system, Q = g(X), the mean and variance of the number of
customers in the system can be calculated as,

E[Q] =
∑
i∈X

πig(i) , var[Q] =
∑
i∈X

πig(i)2 −

(∑
i∈X

πig(i)

)2

.

1.3.2 Numerical methods for solving queueing models

Generally speaking, directly solving a system of N equations (like equation (1.5)
where the number of states in X equals the number of equations N ) comes with a
computational complexity not smaller than N2. It leads to a practically unattain-
able computational demand for systems with a large state space. However, it is
sometimes possible to benefit from particular structural properties of the system of
equations (or of the corresponding generator matrix), thereby significantly reduc-
ing the numerical complexity. In this subsection we describe a number of common
approaches and the corresponding queueing models that allow for such a reduction
in numerical complexity.

1.3.2.1 Product-form solutions

For many queueing systems, the state space of the underlying Markov process is
either X = NK for some fixed K ∈ N0, or a subset of NK . The state space is
multidimensional and most often each dimension tracks the state of a particular
subcomponent of the queueing system. For example, for a Jackson network (a
network of M/M/1 queues with random routing, see [25]), each dimension tracks
the number of customers in a particular queue.

The state of the Markov process is then a K-dimensional vector with non-
negative integer elements. For x = [x1, . . . , xK ] ∈ X , let πx denote the stationary
probability to be in state x,

πx = Pr[X = x] .

Here X = [X1, . . . , XK ] is a random variable, distributed like the stationary dis-
tribution of the Markov process.

Now assume that the stationary distribution can be decomposed as follows,

πx = B

K∏
k=1

π(k)
xk

,

where {π(k)
y , y ∈ N} is a (one-dimensional) probability distribution for each k =

1, . . . ,K and where B is a constant which ensures the normalisation of the joint
distribution. Such a solution is referred to as a product-form solution as the joint
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distribution of the system state can be written as the product of one-dimensional
distributions.

Clearly, if there is a product-form solution, the number of unknown probabil-
ities that need to be calculated is far smaller. Indeed, if there are M states for
each dimension, the total number of states is MK , meaning that MK state prob-
abilities need to be calculated. On the other hand, there are only MK unknown
probabilities in the product-form formulation and one unknown constant. While
the system of equations for these unknown probabilities is no longer linear (as can
be seen from plugging the product-form representation in the balance equations),
it turns out that the numerical complexity for solving the balance equations can
be greatly reduced. As it is most convenient to describe the numerical solution
methods for multidimensional Markov processes with a product-form solution in
terms of cooperating subsystems, we will do so below.

RCAT formulation The Markov process X models a finite set of subcompo-
nents S1, . . . , SK , the state of the kth component being described by the kth el-
ement of the vector X. We now define the possible transitions of the different
subcomponents. Consider the kth subcomponent. All transitions are characterised
by a label ak and by the departing state xk and arrival state x′k of the kth sub-
component corresponding to this transition. Active transitions additionally have a
rate, denoted by q(xk

ak→ x′k), whereas passive transitions do not have such a rate.
Imposing that all transitions with the same label and of the same component are
either active or passive, let Ak and Pk denote the sets of active and passive labels
for the kth subcomponent.

The Markov process is now defined such that whenever the kth subcomponent
is in state xk, and there is an active transition to some other state x′k with label ak
and with rate q(xk

ak→ x′k), then there is a transition with this rate for the complete
Markov chain, where the transition not only invokes a change of the state of the
kth subcomponent, but also state changes in all other components where there are
passive transitions with the same label.

The subcomponents cannot be directly studied in isolation, as a transition in
one subcomponent triggers state changes of other subcomponents. The Reversed
Compound Agent Theorem (RCAT) algorithm [26], roughly stated, calculates the
rates of the passive transitions of all components, such that the components can be
studied in isolation. The following theorem gives conditions such that the complete
Markov chain has product form, see [26, 27].

Theorem 1. Given a set of cooperating subcomponents S1, . . . , SK , assume that
the following conditions are satisfied:

1. for all k, if a ∈ Ak, then for each state xk of Sk, there is exactly one state
x′k such that x′k

a→ xk;
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2. for all k, if a ∈ Pk, then for each state xk of Sk there is exactly one state x′k
such that xk

a→ x′k;

3. there exists a set of positive valuesK = {Ka, a ∈ Ak∪P`, k, ` = 1, . . . ,K}
such that when all subcomponents are closed using these values (closing
means that the rates of the passive transitions are fixed), we have that Ka

is the rate of all transitions labeled by a in the reversed processes of all
subcomponents.

Then, the stationary distribution of each positive recurrent state x is in product
form,

πx = B

K∏
k=1

π(k)
xk

,

where π(k) is the stationary distribution of the kth component (after closing).

The above method establishes existence of a product-form solution. The Itera-
tive Numerical Algorithm for Product Forms (INAP) [26, 27] allows for calculat-
ing the solution. The base version of INAP operates as follows:

1. Initialisation: f ← 0, set up randomly π(k)[0] for all k = 1, . . . ,K;

2. For all synchronising transitions a (a transition is synchronising if it invokes
a transition in another subcomponent), compute Ka[f ] as the mean of the
reversed rates of the transitions labelled by a, using π(k)[f ] with k such that
a ∈ Ak;

3. For all k = 1, . . . ,K, close the subcomponents with the rates Ka found in
3, for all all a ∈ Pk;

4. f ← f + 1;

5. For all k = 1, . . . ,K, compute π(k)[f ] as the stationary solution of Sk (after
closing);

6. If there exists a k ∈ {1, . . . ,K} such that π(k)[f ] 6= π(k)[f − 1] within
precision ε and f ≤ T , cycle to step 2.

7. Terminate with one of the following options:

• If f > T return “No product-form solution found”;

• For all synchronising transitions a, use π(k)[f ] with k such that a ∈
Ak to check if the reversed rates of all transitions labelled with a are
constant. If this is the case for all k, return the product-form solution∏
k π

(k)[f ]. If this is not the case, return “No product-form solution
found”.

In the above T is the maximal number of iterations and ε is the precision.
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Jackson Networks To illustrate how the availability of a product-form solution
can simplify the solution, we consider a Jackson network, a queueing network
proposed by J.R. Jackson [25] for analysing the operation of a job shop. A more
recent application of such networks can be found in [20], in which the authors
investigate the performance of a flexible manufacturing system that can process
various jobs synchronously. For Jackson networks, a solution is available in closed
form, hence there is no need to apply the INAP algorithm.

A Jackson network is a network of K > 0 queues, such that (i) any external
arrivals to the different queues constitute Poisson processes, (ii) all service times
are exponentially distributed and (iii) the service discipline at all queues is first-
come, first-served. Finally, (iv) upon service completion at queue k, the customer
joins queue ` with probability pk` or leaves the system with probability

p̄k = 1−
K∑
`=1

pk` .

This is a so-called open network, there are also variants which are closed or semi-
open, see [28]. In a closed network there are neither external arrivals nor depar-
tures from the system, such that a fixed number of customers move from queue to
queue. Semi-open networks combine features of both open and closed networks
by allowing external arrivals and departures but also by limiting the total number
of customers in the system.

To find the solution of the network, one first calculates the arrival rates θk
at the different queues (k = 1, . . . ,K). The arrival rate not only includes the
external arrival rate to the queue λk, but also the rate at which customers from other
queues arrive at the kth queue. Noting that all customers that enter the queue, also
eventually leave the queue, one finds the following set of equations for the arrival
rates,

θk = λk +

K∑
`=1

θ`p`k .

Let µk(n) denote the service rate at the kth queue, when there are n customers in
this queue. Given the different θk, the product-form solution then reads,

π(x) =

K∏
k=1

π(k)
xk

with,

π(k)
x =

1∑∞
y=0

(θk)y∏y
n=1 µk(n)

(θk)x∏x
n=1 µk(n)

,

provided that the sum in the denominator of the first factor of the right hand side
converges. If this sum does not converge for some k, the queueing network is not
stable.
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1.3.2.2 Matrix-geometric method

Consider a Markov process X(t) = [L(t), P (t)] with a two-dimensional state
space. Here, L(t) is the level and P (t) is the phase of the process X(t). Now
assume that the system only takes a finite number of possible phases, and that tran-
sitions between levels are skip-free. This means that one can only have transitions
to adjacent levels. By ordering the states according to levels first, one sees that the
generator matrix of the Markov process has the following block representation,

Q =


B1 B2

A10 A11 A12

A20 A21 A22

A30 A31 A32

. . . . . . . . .

 ,

where B2, Ai0, and Ai2 are matrices with non-negative entries and where the
non-diagonal entries of B1 and Ai1 are non-negative as well. Finally, the diagonal
entries of B1 and Ai1 are negative such that the row sums of Q are zero. Such
Markov processes are referred to as Quasi-Birth-Death processes (QBD), as there
are only transitions between adjacent levels, like there are only transitions between
adjacent states in birth-death processes.

We focus in particular on QBDs which are homogeneous in the following way,

Q =


B A2

A0 A1 A2

A0 A1 A2

A0 A1 A2

. . . . . . . . .

 .

For such systems, the stationary solution can be efficiently calculated by means of
the matrix geometric method [29]. Some applications of Markovian queues which
are represented by QBDs include queueing systems with Markovian arrival pro-
cesses including the interrupted Poisson process, multiserver queues with phase-
type distributed service times, queues with a traffic shaper, priority queues where
one class has a finite buffer, etc.

For ease of notation, consider the following block representation of the station-
ary distribution

π = [π0,π1,π2, . . . ] , (1.7)

where
πk = [π(k, 1), . . . , π(k,M)] , (1.8)

with
π(k,m) = lim

t→∞
Pr[L(t) = k, P (t) = m] ,
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for m = 1, . . . ,M . Here M represents the number of possible phases (such that
the matrices A0, A1, A2, and B are M ×M matrices).

For the block representations of the stationary probability vector and the gen-
erator matrices, one directly obtains the following set of equations,

π0B + π1A0 = 0 , (1.9)

πk−1A2 + πkA1 + πk+1A0 = 0 , (1.10)

for k > 0. As transitions between the levels of the QBD are invariant to the level,
one expects that the solution takes the form,

πk = πk−1R = π0R
k , (1.11)

for k > 0 and some unknown M × M rate matrix R. If one now plugs the
proposal solution (1.11) into (1.10), one finds that the rate matrix R is the minimal
non-negative solution of the quadratic matrix equation

A2 + RA1 + R2A0 = 0 . (1.12)

This equation suggests the following iterative algorithm to calculate R. Start with
R = 0, the M ×M matrix with all entries equal to zero. Then update the matrix
as follows,

R← −(A2 + R2A0)A−1
1 ,

till there is convergence. This recursion indeed converges provided the QBD pro-
cess is an ergodic Markov process. An irreducible QBD process is ergodic if the
following stability condition holds [30],

πAA01
> < πAA21

> , (1.13)

where row vector πA satisfies

πA(A0 + A1 + A2) = 0 .

This stability condition means that the drift of the process to higher levels is
smaller than the drift to the lower levels. In addition, if the QBD process is er-
godic, it can be shown that the largest eigenvalue of R is less than one, such that

∞∑
k=0

Rk = (I−R)−1 ,

where I denotes the M ×M identity matrix.
Combining (1.9) and (1.11), the remaining unknown vector π0 adheres,

π0B + π0RA0 = 0 . (1.14)
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This equation only allows for determining π0 up to a normalising constant. The
normalisation condition π1> = 1 combined with (1.11) finally yields

∞∑
k=0

πk1
> =

∞∑
k=0

π0R
k1> = π0(I−R)−11> = 1 , (1.15)

such that this normalising constant can be determined.

1.3.2.3 Iterative methods

Both Markov processes with product-form solutions and QBD processes provide
computationally attractive solution techniques. However, both types of processes
impose hefty structural properties on the Markov processes which are often not
met for practical applications. In many realistic applications product form does
not hold due to types of interdependencies between the different queues. Simi-
larly, for many problems, the state space cannot be ordered such that the generator
matrix takes a block diagonal form. In cases where the Markov processes do not
allow for a simplified solution, the stationary distribution must be found by directly
solving the system of balance equations (1.5). A direct solution of the system of
linear equations is most often computationally prohibitive. For example, Gaussian
elimination exhibits a numerical complexity of order O(N3), with N the number
of unknowns. To mitigate the computational demands of exact methods, one can
rely on iterative methods instead. The order of complexity for stationary itera-
tive methods is O(N2) for each iteration and additional gain in computation time
can be achieved by the parallel implementation. Moreover, the generator matrix
is often sparse, the number of non-zero entries in the generator matrix being far
smaller than N . If the number of non-zero elements does not grow with N , the
computational complexity for a single iteration is justO(N), meaning that iterative
methods can be very fast provided not too many iterations are required.

Iterative methods for solving large systems of linear equations mostly rely on
projection techniques to obtain an approximate solution. Here we review basic
iterative methods that are applied in this dissertation: Jacobi, Gauss-Seidel and
Successive Over-Relaxation (SOR) [31]. We discuss methods for a system of
equations

Ax = b , (1.16)

where A is a real matrix of size N × N , and b ∈ RN and x ∈ RN are column
vectors with N entries. For further use, we also introduce some notation for the
decomposition of A into a matrix with A’s diagonal elements D, and a matrix R

with A’s off-diagonal elements R,

A = D + R .
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In addition, R can be further decomposed into a matrix E with the lower triangular
entries of R and a matrix F with the upper triangular entries of R,

R = E + F .

All the considered iterative methods calculate consecutive proposal solutions
x(r), r = 0, 1, . . . of the system of equations (1.16). One starts with an initial
solution x(0). Given the rth solution, the (r + 1)st solution x(r+1) is calculated
using the results from the preceding iteration. The exact way to recalculate the next
proposal solution differentiates the different solution methods that are discussed
below. All iterative methods aim at annihilating the elements of the residual vector
b−Ax(r) for increasing r. Of course, once the residual vector converges to 0 for
some r, x(r) is the solution of the matrix equation (1.16). Typically, the iterative
procedure however only converges for an infinite number of iterations. Hence, the
procedure is terminated once the elements of the residual vector are sufficiently
small. An example of a convergence criteria is given below

||x(r) − x(r−1)||1
||x(r)||1

< ε, (1.17)

where threshold ε is chosen to ensure the precision of the approximate solution
and || · ||1 denotes the `1 norm.

Before introducing the different procedures, note that it is easy to write the
balance equations, combined with the normalisation condition in the form (1.16).
Let 1 be a row vector of ones, we then have from (1.5) and (1.6),

(Q + 1>1)>π> = 1> ,

where x> denotes the transpose of x.

Jacobi method The simplest iterative procedure is the Jacobi method. This
method is easy to implement and exhibits low complexity. Jacobi iterations aim to
reduce the residual vector as follows,

x(r+1) = D−1(b−Rx(r)) . (1.18)

In component-wise form, this can be written as,

x(r+1)
n =

1

ann

bn −∑
m 6=n

anmx
(r)
m

 , (1.19)

for n = 1, . . . , N with anm the (n,m)th element of A and x(r)
n the nth element

of x(r). The Jacobi method converges to the exact solution, provided the spectral
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radius of D−1R is less than one. A sufficient condition for convergence is that A

is strictly diagonally dominant. That is, the absolute values of the elements anm
satisfy the inequalities,

|ann| >
∑
m6=n

|anm| ,

for n = 1, . . . , N .

Gauss-Seidel method The Gauss-Seidel method is similar to the Jacobi method,
the only difference being that the Gauss-Seidel method uses the already updated
elements of x(r+1), while calculating further elements of x(r+1). In matrix form,
the Gauss-Seidel method calculates x(r+1) as follows,

x(r+1) = D−1(b−Ex(r+1) − Fx(r)) . (1.20)

In element-wise form, we have,

x
(r+1)
i =

1

aii

bi − i−1∑
j=1

aijx
(r+1)
j −

n∑
j=i+1

aijx
(r)
j

 , (1.21)

for i = 1, . . . , N . Compared to the Jacobi method, the elements of x can be over-
written as they are computed in this algorithm. Therefore, only one storage vector
is needed. The Gauss-Seidel method converges when A is symmetric positive-
definite or strictly diagonally dominant. Both are sufficient but not necessary con-
ditions for convergence.

Successive Over-Relaxation method Finally, in the SOR algorithm, the itera-
tion takes the form

x(r+1) = ωD−1(b−Ex(r+1) − Fx(r)) + (1− ω)x(r) , (1.22)

where a pre-selected relaxation parameter ω is chosen to accelerate or stabilise
convergence. When ω = 1, the SOR method reduces to the Gauss-Seidel method.
The case ω < 1 corresponds to under-relaxation and can be applied if the Gauss-
Seidel method does not converge. The case ω > 1 refers to over-relaxation and
allows for accelerating convergence in comparison with the Gauss-Seidel method.

Relaxation can also be applied on the Jacobi method, which then leads to the
weighted Jacobi method

x(r+1) = ωD−1(b−Rx(r)) + (1− ω)x(r) , (1.23)

a typical choice for ω being ω = 2/3.
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1.3.2.4 Series expansion techniques

Series expansion techniques allow for calculating the Taylor series expansion of
the stationary distribution of the Markov process in some parameter of the system.
Rather than calculating the solution for a single parameter setting, series expansion
techniques can be used to calculate the stationary distribution where one param-
eter is allowed to vary in a region around some fixed parameter value. Series
expansion techniques for Markov processes are sometimes referred to as perturba-
tion techniques, the power series algorithm or light-traffic approximations. While
the naming is not absolute, perturbation methods are mainly motivated by sen-
sitivity analysis of performance measures with respect to the system parameters.
In particular singular perturbations where the perturbation does not preserve the
class-structure of the non-perturbed chain, have received considerable attention
in literature, see [32–34] and the references therein. The power series algorithm
transforms a Markov chain of interest in a set of Markov chains parametrised by
an auxiliary variable ε. For ε = 0, the chain can be solved efficiently, and one can
also obtain the perturbation of the chain in ε. For ε = 1, the original Markov chain
is retrieved such that the series expansion can be used to approximate the solution
of the original Markov chain, provided the convergence region of the series expan-
sion includes ε = 1, see e.g. [35–38]. Finally, light-traffic approximations often
correspond to a series expansion in the arrival rate at a queue. For an overview on
the technique of series expansions in stochastic systems, we further refer the reader
to the surveys in [39] and [40]. We focus on regular perturbations below, and in-
dicate how such perturbation techniques can be used to efficiently study Markov
processes.

Regular perturbation Consider a Markov process with finite state space and
generator matrixQε, where we added the subscript to make its dependence on the
parameter ε explicit. We assume that the transition rates are linear functions of the
parameter ε, such that the generator matrix can be written as,

Qε = Q(0) + εQ(1) , (1.24)

where neither Q(0) nor Q(1) depends on the perturbation parameter ε. These ma-
trices represent the unperturbed and perturbed parts, respectively. The steady-state
probability vector function obviously also depends on ε; we write π(ε), such that
the balance equations read,

π(ε)Qε = π(ε)(Q(0) + εQ(1)) = 0 . (1.25)

We now consider the series expansion around some value ε0. To this end, we
introduce the Taylor series expansion,

π(ε) =

∞∑
n=0

πn(ε− ε0)n . (1.26)



INTRODUCTION 1-21

Note that by Cramer’s rule, one directly finds that the elements of π(ε) are rational
functions of ε. If the Markov process is ergodic for ε = ε0, the elements of π(ε)

are finite. Hence, the elements of π(ε) have no pole in ε = ε0, which implies that
the elements of π(ε) are analytic functions in a neighbourhood of ε0. This in turn
justifies the series expansion.

We focus on regular perturbations. In this case, Qε0 is the generator matrix of
a Markov process with a single ergodic class. Plugging the series expansion (1.26)
into (1.25), we get

π(ε)Qε =

∞∑
n=0

πn(ε− ε0)n(Q(0) + ε0Q
(1) + (ε− ε0)Q(1)) = 0 . (1.27)

We can now identify the terms with equal powers of (ε − ε0). This leads to the
following set of equations for the terms in the series expansion of π(ε),

π0(Q(0) + ε0Q
(1)) = 0 , πn+1(Q(0) + ε0Q

(1)) = −πnQ(1) ,

for n = 0, 1, . . .. Complementing the former set of equations with the normalisa-
tion conditions,

π01
> = 1 , πn1> = 0 , (1.28)

allows for recursive calculation of the terms πn, for n > 0.
From a computational point of view, the equations for calculating the terms in

the series expansion resemble the balance equations. Hence, in the general case,
the numerical complexity for calculating the terms in the series expansion is of the
same order as the calculation of the stationary vector. As such, the method does
not simplify the complexity of the calculation, but rather shows that the series
expansion can be calculated with the same complexity. In this dissertation, we
rely on the iterative procedures of the preceding section to solve the equations for
the different terms in the series expansion.

For many systems however, it turns out that the series expansion is consider-
ably easier to calculate, at least for particular ε0-values. This is the case, if the
matrix (Q(0) + ε0Q

(1)) is upper or lower triangular. In these cases, the matrix
equation can be solved in just O(N) (assuming the matrix is sparse as well), with
N the size of the state space. In other words, assuming that the generator matrix is
sparse, we get the series expansion at the computational cost of getting the value
in a single point by an iterative procedure.

Multiple expansions For a fixed ε0, the series expansion only converges to the
correct value in a limited region around ε0. The region of convergence is an open
disk, centred in ε0, and with radius equal to the distance between ε0 and the closest
(complex) pole of π(ε). Note that there is no pole for all ε for which the Markov
process is ergodic, as then π(ε) is well defined. If the Markov process is ergodic
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Figure 1.4: Illustration of the convergence radius of two series expansions of a function
with a complex pole. Convergence regions R0 and R1 of Taylor series for ε = 0 and

ε = ε1 correspondingly of a function with a complex pole.

for all non-negative ε, this means that the poles are either complex or real and
negative. No matter how many terms we calculate in the series expansion, there is
no convergence to the correct value beyond this region of convergence.

Therefore it makes sense to consider the series expansion in multiple points,
say ε0, ε1, etc. One would prefer to choose the next value within the region of
convergence of one of the preceding values. In this case, the series expansion in
the preceding value can be chosen as an estimate of the next value. As this estimate
is already accurate, only a few iterations will be needed to calculate the terms in
the next point. However, in many practical applications, the position of the poles of
π(ε) prevents one to considerably extend the region of convergence by calculating
the terms in a point within the region of convergence. This is most clearly the case
if the closest pole is close to the real axis, at the side where one aims at extending
the region of convergence.

The problem of choosing the value for the next series is illustrated in Figure
1.4. The first series expansion is around ε = 0 (this is a Maclaurin series expan-
sion), and has convergence radius R0, which is equal to the modulus of the com-
plex pole with the smallest absolute value. The position of this pole is indicated
on the figure as well. To extend the region of convergence, a new series expansion
is calculated around ε = ε1. The convergence radius R1 is determined by the pole
which is closest to ε1. In the figure, this is the same pole that determined the radius
of convergence of the first expansion. Of course, it is possible that other poles are
closer to ε1, in which case the regions of convergence of the expansions may not
overlap. If one would choose ε1 within the region of convergence of the expansion
around ε = ε0, the extension of the region of convergence is at most the indicated
distance ∆ between R0 and the complex pole.
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Performance measures. Once the terms of the expansion π0,π1, . . . ,πN are
found, we can again calculate various performance measures. Let Xε be a random
variable with stationary distribution π(ε), let X be the corresponding state space,
and let f : X → R be a deterministic function, then we have

E[f(Xε)] =

N∑
n=0

∑
i∈X

πn(i)(ε− ε0)nf(i) ,

where (with a slight abuse of notation) πn(i) denotes the nth component in the
series expansion around ε = ε0 of the stationary probability to be in state i.

1.4 Multidimensional queueing models
In this subsection we discuss the model assumptions and numerical challenges
related to the multidimensional queueing systems studied in this work. Gener-
ally speaking multidimensionality of the stochastic process appears if the model
under study combines several individual stochastic processes. In this work, the
subcomponents are mostly Markovian queues (queues with Poisson arrivals and
exponential service times), although sometimes an additional dimension is intro-
duced for a modulating background process. Such processes are Markov processes
with a limited number of states which modulate the parameters of the other queue-
ing processes. More precisely, in each state of the modulating process, a fixed set
of parameters of the other processes can be chosen, see also Chapters 3 and 4.

The aggregated state space of the combined process is the product space of
the state spaces of the different subcomponents. If there are K such components,
each component being in one of N possible states, the size of the aggregated state
space is NK . As there might be a transition from any state to any state, there can
be NK(N − 1)K transitions. Luckily, the number of possible transitions is far
less in the models considered in this work. For each state, the number of possible
transitions is typically of the order O(K), which means that the transition matrix
is sparse. For such sparse matrices, iterative solution techniques can be readily
applied. We however will combine such iterative techniques with series expansion
techniques and identify numerous cases in which the numerical complexity of cal-
culating a single term in the series expansion has the computational complexity
of a single iteration in iterative solution techniques. In addition, some of the nu-
merical methods will benefit from identifying a block matrix representation of the
generator matrix, like in the matrix geometric methods. To illustrate our contribu-
tions, we discuss the numerical approach for two of the queueing systems which
will be investigated in detail in the following chapters.

Coupled queueing As an example of a multidimensional queueing model, con-
sider a system with K queues and coupled service as depicted in Figure 1.5. Ser-
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Figure 1.5: Queueing model for assembly systems.

0 2 4 6 8 10

10
2

10
4

10
6

10
8

10
10

C

st
at

e 
sp

ac
e 

si
ze

 

 

K = 1
K = 5
K = 10

0 2 4 6 8 10

10
2

10
4

10
6

10
8

10
10

K

 

 

C = 1
C = 5
C = 10

Figure 1.6: State space size of the coupled queueing system vs. the queue capacity C for
different numbers of queues (left) and vs. the number of queues K for different queue

capacities (right).

vice coupling means that customer departures from the queues are synchronised,
service is provided for a batch of customers, one customer from each queue. More-
over, once one of the queues is empty, there is no service. This is a queueing
model for assembly operations with in-house production and is discussed in detail
in Chapter 2 and Chapter 3. The queues represent inventories of semi-finished
products that supply the assembly line. Production is only possible if all invento-
ries are nonempty, meaning that the inventories are coupled.

Assuming that all arrivals occur in accordance with a Poisson process and that
service times are exponentially distributed, the state of the system is described by
the number of customers in the different queues. If all queues have capacity C and
there are K queues, the size of the state space is (C + 1)K . Clearly, the size of the
state space grows very fast, both in C and K. This is also illustrated in Figure 1.6,
which depicts the state space size of the coupled queueing system vs. the queue
capacity C for different numbers of queues and vs. the number of queues K for
different queue capacities. In contrast, from any state there are at most K + 1

possible transitions: K transitions correspond to arrivals in the different queues,
and 1 transition corresponds to a service completion. Of course, when some queues
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are empty, there is no service, and when a queue is full, there cannot be arrivals.
In other words, the number of transitions from a state is O(K) and the generator
matrix of the process is sparse.

As the generator matrix is sparse, we can readily apply iterative solution tech-
niques. Moreover, if the service rate is sent to 0, the resulting generator matrix has
additional structure: assuming the states are ordered lexicographically, there are
only upward transitions (such that the generator matrix is upper triangular). By
this observation, it is possible to calculate the terms in the series expansion around
service rate 0 in O(CK) (the order of the state space). Expansions around other
service rates do not have this structural property. For these expansions, we use
iterative methods to calculate the terms in the series expansion.

Opportunistic scheduling As another example, we briefly describe a model for
downlink traffic in a multi-user wireless access point scenario with a channel-
aware scheduler and multiple mobile nodes. The model is extensively studied in
Chapter 4. The queueing model consists of K queues as depicted in Figure 1.7,
each queue holding the packets destined for a particular mobile node. The packets
in all queues arrive in accordance with Poisson processes and have exponentially
distributed packet sizes. The transmitter of the wireless access point operates an
opportunistic scheduling policy, meaning that the transmitter is aware of the chan-
nel conditions of the different mobile nodes and can choose which node it sends
to next, depending on the channel and queueing conditions. Introducing a back-
ground process for the channel conditions — this is a finite Markov process such
that there are different channel conditions in each state — the transmission rate for
the kth queue µk(m, i) is a function of the state m of the background process of
the channel conditions and the vector of queue sizes i.

The size of the state space of this multidimensional Markov model is (C +

1)KM where C, K and M denote the queue size, the number of mobile nodes
and the number of different channel conditions. Again, the number of possible
transitions is far smaller. There can be arrivals and departures from all queues,
as well as state changes of the background process, leading to at most 2K + M

transitions.

In contrast to the preceding section, neither sending the arrival rates nor the
transmission rates to 0 leads to a triangular generator matrix as changes of the
background process can be both upward or downward (whatever the ordering of
the state space). However, the generator matrix does have a block triangular repre-
sentation in both the light-traffic case (arrival rates to 0) as well as in the overload
case (service rates to 0). By this observation, it is possible to calculate the terms
in the series expansion around service rate or arrival rate 0 in O(CKM3), which
is only slightly larger than the size of the state space if M is not too large.
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Figure 1.7: Queueing model for multi-user wireless access point.

1.5 Dissertation outline

This section lays out the structure of the rest of the dissertation. The consecutive
chapters focus on the applications introduced in section 1.2, emerging in the fields
of wireless communications and assembly processes. The 4 resulting queueing
models are discussed in Chapters 2 to 5. Methodologically, the numerical tech-
niques are based on series expansions and iterative solution methods. Moreover,
all numerical results are validated by means of simulation.

Chapter 2 investigates performance of a service-coupled queueing system un-
der intermediate load, motivated by assembly operations, see section 1.2. In par-
ticular, the Taylor series expansion of the stationary solution (in the service rate)
is calculated around a non-zero service rate. The terms of the expansion are cal-
culated by the weighted Jacobi algorithm. Examples show that the convergence
region of the Taylor series expansion allows for a valid approximation in the whole
range of intermediate loads by means of a single series expansion.

Chapter 3 introduces an extended version of the model in Chapter 2 with cou-
pled queues, where customers may leave the queue prior to service due to impa-
tience. In the context of the assembly operation, impatience models products with
an expiration date. Along with the numerical approximation with Maclaurin series
expansions, we also assess the performance of the coupled queueing system by its
fluid limit. The fluid approximations complement the Maclaurin series approxima-
tions well. Furthermore, a lower bound of the region of convergence of the series
expansion is calculated.

Chapter 4 studies the performance evaluation of the multi-user wireless access
point that was introduced in Section 1.2. As was already pointed out in Section 1.4,
the light-traffic and overload regimes can be studied efficiently by means of series
expansion techniques as the generator matrices have a block triangular structure,
the dimensions of the blocks being equal to the number of states of the channel.
We show that the model allows for studying an access point with multidimensional
Rayleigh fading channels. These channels exhibit both temporal as cross-channel
correlation.
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Chapter 5 focusses on a queueing model for a Drive-thru Internet scenario in
the framework of vehicle-to-infrastructure communication. In order to approxi-
mate the performance measures of the roadside base station, we again rely on Tay-
lor series expansions in a wide range of system loads. The terms of the expansion
are obtained by the SOR method.

Finally, we draw conclusions in Chapter 6.
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Abstract. This paper investigates the performance of a queueing model with
multiple finite queues and a single server. Departures from the queues are syn-
chronised or coupled which means that a service completion leads to a departure
in every queue and that service is temporarily interrupted whenever any of the
queues is empty. We focus on the numerical analysis of this queueing model in a
Markovian setting: the arrivals in the different queues constitute Poisson processes
and the service times are exponentially distributed. Taking into account the state
space explosion problem associated with multidimensional Markov processes, we
calculate the terms in the series expansion in the service rate of the stationary dis-
tribution of the Markov chain as well as of various performance measures (i) when
the system is overloaded and (ii) under intermediate load. Our numerical results
reveal that by calculating the series expansions of performance measures around a
few service rates, we get accurate estimates of various performance measures once



2-2 CHAPTER 2

queues

serviceλ1

µ

i1
λ2

i2

λK
iK

Figure 2.1: Service-coupled queueing system

the load is above 40% to 50%.

2.1 Introduction

Numerical methods for queueing systems involving multiple queues like queueing
networks [1], polling systems [2], priority queues [3] and fork-join queues [4] of-
ten suffer from the state-space explosion problem. State-space explosion refers to
the problem that multidimensionality of Markov processes leads to processes with
a very large state space. Indeed, the size of the state space of a multidimensional
Markov process is the product of the number of states in each of its dimensions.
Once a few dimensions are involved, the state space becomes very large and di-
rect solution techniques for Markov processes fail. For some particular types of
Markov processes, a solution can be readily found, but this depends on structural
properties of the Markov chain at hand. We mention Markov chains with prod-
uct form solutions (like Jackson networks) [5] and M/G/1-type and G/M/1-type
Markov processes [6] as particular examples. However many queueing problems
do not possess these structural properties, thereby requiring non-standard solution
techniques.

This is the case for the queueing system investigated in this paper. We consider
a queueing system with K queues in parallel as depicted in Figure 2.1. Customers
in all queues receive service simultaneously and there is a departure from every
queue upon service completion. Moreover, whenever one of the queues is empty,
the server remains idle. That is, an empty queue completely blocks service for
all other queues. This queueing system is a natural abstraction for an assembly
operation with in-house production. The queues represent inventories for semi-
finished products which are replenished by in-house production facilities. The final
assembly requiring all semi-finished products, the assembly operation is halted
once any of the inventories is completely depleted. Finally, the service time of the
coupled queueing system represents the assembly time.

We study the service-coupled queueing system under Markovian assumptions.
That is, we assume independent Poisson arrivals to all queues with arrival rates
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λ1, . . . , λK respectively, and independent exponentially distributed service times
with rate µ. Even for these simplified assumptions, the analysis of the coupled
queueing system is challenging. First, one cannot impose the often simplifying
assumption that queues have infinite capacity as the resulting Markov process is
either null recurrent if all arrival rates are equal or transient if this is not the case,
see [7] for the coupled queueing system with only two queues. Secondly, the
state space of the Markov process for the system with K queues of capacity C is
(C+1)K such that a direct solution of the Markov chain is not numerically feasible
for moderate C and K. Finally, matrix-analytic methods for neither M/G/1-type
nor G/M/1-type queueing systems apply, nor is there a product form solution.

To overcome these challenges, literature proposes two alternative approaches,
both focusing on approximations for various performance measures of the cou-
pled queueing system. The first approach aims at decomposing the queueing sys-
tem into a number of independent queueing systems which can be analysed in
isolation [8]. Such an analysis approximates the interaction between the different
queues by a simpler process which in turn facilitates the analysis. The interaction
process is parametrised such that the simplified interaction process corresponds to
the expected interaction by the queue in isolation. Alternatively, the system can
be studied approximately by means of series expansion techniques if one limits
the study to a subset of the parameter space. This is the case in [9, 10] where the
coupled queueing system was studied in overload. In these papers it was shown
that the terms of the Maclaurin series expansion of the steady-state distribution in
the service rate can be obtained at low computational cost. The series expansion of
the performance measures can then be easily obtained from the calculated steady-
state distribution. However, the numerical approach advocated there only leads to
good results when the service rate is close to 0, or equivalently, when the system
is considerably overloaded.

Series expansion techniques for Markov chains go by different names in lit-
erature, including perturbation techniques, the power series algorithm and light-
traffic approximations. While the naming is not absolute, perturbation methods
are mainly motivated by sensitivity analysis of the results with respect to some
system parameter. In particular singular perturbations where the perturbation does
not preserve the class-structure of the non-perturbed chain, have received consid-
erable attention in literature [11–13]. The power series algorithm transforms a
Markov chain of interest in a set of Markov chains parametrised by a variable ρ.
For ρ = 0, the chain is not only easily solved, but one can also obtain the series
expansion in ρ. For ρ = 1 one gets the original Markov chain such that the series
expansion can be used to approximate the solution of the original Markov chain,
provided the convergence region of the series expansion includes ρ = 1 [14–17].
Finally, light-traffic approximation often corresponds to a series expansion in the
arrival rate at a queue. For an overview on the technique of series expansions in
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stochastic systems, we further refer the reader to the surveys in [18] and [19].
The present contribution builds on the results of [9] and [10], but considers

the service-coupled queueing system when the load of the system is lower. In the
context of assembly systems, the overload situation is only natural if assembly is
the bottleneck in the production/assembly system. In case production is the actual
bottleneck, the assembly queues are not overloaded and the results of [9] and [10]
do not apply. However, it is still worth to investigate the assembly system in this
case as assembly will be interrupted more often due to a lack of semi-finished
products.

Balancing computational cost and accuracy, we investigate the use of Taylor
series expansions to calculate the performance measures for a wider range of the
service rate. In contrast to the Maclaurin series expansions in [9, 10], the terms
in the Taylor series expansion around some service rate µ = µ0 6= 0 cannot be
obtained directly. Therefore we rely on iterative solution methods to solve for the
terms in the Taylor series expansion. So, in contrast to the power series algorithm,
our approach does not primarily aim for simplifying the solution of the Markov
chain, but aims for obtaining the solution in a wide subset of the parameter space
at once and relies on iterative procedures to do so.

For any iterative method, a good initial guess of the solution can reduce the
number of required iterations considerably. In the present setting, such an initial
guess is available if one considers a sequence of Taylor series expansions around
increasing values of the service rate starting at µ = 0. As shown in [9, 10], the
initial series expansion around µ = 0 can be calculated efficiently. For higher µ,
the expansion around the preceding µ-value can be used to get an initial guess.

The remainder of this paper is organised as follows. The model at hand and the
numerical evaluation method are described in the next section. We then illustrate
our approach by numerical examples in section 3, prior to drawing conclusions in
section 4.

2.2 Performance analysis

We consider a queueing system withK finite capacity queues as depicted in Figure
2.1. We denote the capacity of the kth queue by Ck. The arrival process to the kth
queue is assumed to be a Poisson process with a fixed rate λk, the arrival processes
to the different queues being mutually independent. As mentioned above, service
is coupled. This means that there are simultaneous departures from all queues with
rate µ as long as all queues are non-empty, while there are no departures when any
of the queues is empty.

In view of the Markovian assumptions on both arrival and service processes,
the state (in the Markovian sense) of the queueing system is completely described
by the numbers of customers in the different queues. That is, the state of the system
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is described by a vector i = (i1, i2, . . . , iK) ∈ C where ik denotes the number of
customers in the kth queue and where C = {0, . . . , C1} × . . . × {0, . . . , CK} is
the state space. We have the following state transitions from state i ∈ C:

• Arrival in queue k (for k = 1, . . . ,K): when ik < Ck, the arrival rate in
queue k is λk, the new state being i+ek. Here ek is a vector of zeroes, apart
from its kth element which is one. There are no arrivals in queue k when
ik = Ck.

• Departure: when all queues are non-empty (i1 > 0, . . . , iK > 0) there is a
departure from all queues with rate µ. The new state is i − e, where e is a
vector of ones.

Given the summary of the possible transitions above, the balance equations of
the Markov process are readily retrieved. For i ∈ C, let π(i) be the steady-state
probability vector of the queueing system. Equating the total probability flow out
of and into state i, we then have the following set of balance equations,

π(i)

(
µ

K∏
k=1

1{ik>0} +

K∑
k=1

1{ik<Ck}λk

)
= π(i+e)µ+

K∑
k=1

π(i−ek)λk , (2.1)

for i ∈ C, where 1{X} denotes the indicator function of the eventX , and where we
have assumed π(i) = 0 for i /∈ C to simplify notation. Since already for a moderate
number of queues, the state space is prohibitively large to compute the stationary
distribution directly, we rely on a series expansion approach in the remainder.

As the system of equations (2.1) is finite, we find by Cramer’s rule that the
stationary probabilities π(i) can be expressed as rational functions of µ with at
most M distinct poles and no other singularities. Here M =

∏K
k=1(Ck + 1) is the

size of the state space C. Denoting the set of singularities byM, this observation
implies that for any µ0 ∈ R+ \M, the Taylor series expansion in µ of π(i) around
µ = µ0 converges to the correct value in a neighbourhood of µ0. For further
reference, let π(µ0)

n (i) be the nth term in the Taylor series expansion in µ of π(i)

around µ0 ∈ R+ \M. Hence, in a neighbourhood of µ0, we have,

π(i) =

∞∑
n=0

π(µ0)
n (i)(µ− µ0)n . (2.2)

First, when µ is close to 0, we approximate the stationary probabilities by their
Maclaurin series expansion in µ as investigated in [9]. Plugging the expansion
(2.2) for µ0 = 0 in the balance equations (2.1) and comparing terms in equal
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powers of µ, we obtain,

π(0)
n (i)

K∑
k=1

1{ik<Ck}λk

= −π(0)
n−1(i)

K∏
k=1

1{ik>0} + π
(0)
n−1(i + e) +

K∑
k=1

π(0)
n (i− ek)λk , (2.3)

for n ≥ 1 and i 6= c = [C1, . . . , CK ]. For i = c, we find by the normalisation
condition,

π(0)
n (c) = −

∑
i∈C\{c}

π(0)
n (i) , (2.4)

for n ≥ 1. For n = 0 and i 6= c, we further find,

π
(0)
0 (i)

K∑
k=1

1{ik<Ck}λk =

K∑
k=1

π
(0)
0 (i− ek)λk , (2.5)

which shows that π(0)
0 (i) = 0 for i ∈ C \ {c} (by evaluation of the expression in

lexicographical order). The normalisation condition then further yields π(0)
0 (c) =

1, such that,
π

(0)
0 (i) = 1{i=c} ,

for i ∈ C. The 0th order terms are trivial and the higher order terms can be cal-
culated one by one in lexicographical order of i by expressions (2.3) and (2.4)
above. The numerical complexity of finding the terms of a single order for all
i ∈ C is O(MK) at most. However, one easily verifies that π(0)

n (i) = 0 for all
i lexicographically smaller than c − ne, which further reduces the computational
complexity of finding the nth order terms to O(min(nK ,M)K). Note that for
large Ck, nK is considerably smaller than M .

While the terms in the Maclaurin series expansion can be calculated efficiently,
the resulting expansion only converges to the exact solution in a neighbourhood of
0 as, in general, the region of convergence of the series expansion will be finite.
Therefore, we now consider Taylor series expansions around µ = µ0 6= 0 to get
results for a wider range of the service rate.

Plugging the series expansion (2.2) in the balance equations (2.1) and isolating
terms in (µ− µ0)n, we get, for i 6= c,

π
(µ0)
0 (i)

(
µ0

K∏
k=1

1{ik>0} +

K∑
k=1

1{ik<Ck}λk

)

= π
(µ0)
0 (i + e)µ0 +

K∑
k=1

π
(µ0)
0 (i− ek)λk , (2.6)
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and

π(µ0)
n (i)

(
µ0

K∏
k=1

1{ik>0} +

K∑
k=1

1{ik<Ck}λk

)

= −π(µ0)
n−1(i)

K∏
k=1

1{ik>0} + π
(µ0)
n−1(i + e)

+ π(µ0)
n (i + e)µ0 +

K∑
k=1

π(µ0)
n (i− ek)λk , (2.7)

for n ≥ 1, whereas the normalisation condition yields,∑
i∈C

π(µ0)
n (i) = 1{n=0} . (2.8)

In contrast to the Maclaurin expansion above, the system of equations (2.6)–
(2.8) cannot be solved easily. Therefore, we rely on iterative solution methods to
find the solution of this system of equations. More specifically, we use weighted
Jacobi iteration which calculates the terms in the series expansion by iteratively
evaluating,

π
(µ0)
n,r+1(i) = (1− ω)π(µ0)

n,r (i) + ω×

−π(µ0)
n−1(i)

K∏
k=1

1{ik>0} + π
(µ0)
n−1(i + e) + π(µ0)

n,r (i + e)µ0 +

K∑
k=1

π(µ0)
n,r (i− ek)λk

µ0

∏K
k=1 1{ik>0} +

∑K
k=1 1{ik<Ck}λk

.

(2.9)

Here ω < 1 denotes the weight of the weighted Jacobi iteration. For each term n =

0, 1, . . . and i ∈ C, we evaluate for r = 0, 1, . . . and approximate πn(i) by πn,r(i)
for r sufficiently large. In practice, we stop iterating when the corresponding terms
in the series expansion of the mean and second order moment of the queue content
(cf. infra) converge (up to 6 to 8 significant digits).

This iterative approach is computationally feasible as the number of possible
transitions from a state is far less than the number of states (the generator matrix
is sparse). More precisely, the number of transitions is related to the number of
queues such that the numerical complexity of a single iteration for finding the nth
order terms for all i ∈ C is O(MK).

If µ0 is within the radius of convergence of the preceding expansion, say
around µ∗0, we use the preceding expansion to get a first approximation for π(µ0)

n (i)
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as to reduce the number of iterations till convergence. That is, we choose,

π
(µ0)
n,0 (i) =

1

n!

dn

dµn

(
N∑
m=0

π
(µ∗0)
m (i)(µ− µ∗0)m

)∣∣∣∣∣
µ=µ0

=

N∑
m=n

π
(µ∗0)
m (i)

m!

n!(m− n)!
(µ0 − µ∗0)m−n .

If µ0 is not within the radius of convergence of the preceding expansion, we set

π
(µ0)
0,0 (i) =

K∏
k=1

(1− ρk)ρikk
1− ρCk+1

k

with ρk = λk/(µ0(1− α)) and with,

α = 1−
K∏
k=1

(
1− 1− λk/µ0

1− (λk/µ0)Ck+1

)
.

That is, we approximate the coupled queueing system, by a queueing system with
independent M/M/1/Ck queues with service rate µ0(1− α), where α is a crude
approximation for the probability that at least one queue is empty. In addition, we
set π(µ0)

n,0 (i) = 0 for n > 0.
Once the terms in the series expansion are found, we can find approximations

for various performance measures. For instance, the N th order expansion of the
rth moment of the queue content is calculated as,

E[Qr] , E[Qr11 Q
r2
2 . . . QrKK ] ≈

N∑
n=0

∑
i∈C

π(µ0)
n (i)(µ− µ0)nir

,
N∑
n=0

∑
i∈C

π(µ0)
n (i)(µ− µ0)n

K∏
k=1

irkk ,

whereQk denotes the queue content of the kth queue and with r = [r1, r2, . . . , rK ].
In particular, the mean E[Qk] and variance var[Qk] of Qk can be approximated as,

E[Qk] ≈
N∑
n=0

∑
i∈C

π(µ0)
n (i)(µ− µ0)nik ,

var[Qk] ≈
N∑
n=0

∑
i∈C

π(µ0)
n (i)(µ− µ0)nik

2 − E[Qk]2 . (2.10)

Note that the above approximation for the variance is not the N th order series
expansion of the variance as the approximation of the square of the mean also
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contains terms in (µ− µ0)n for n > N . By numerical experimentation, we found
that these higher order terms hardly influence the results.

Analogously, let the system content Q be defined as the total number of cus-
tomers in all queues, then we can approximate the mean E[Q] and variance var[Q]

of the system content as,

E[Q] ≈
N∑
n=0

K∑
k=1

∑
i∈C

π(µ0)
n (i)(µ− µ0)nik ,

var[Q] ≈
N∑
n=0

∑
i∈C

π(µ0)
n (i)(µ− µ0)n

(
K∑
k=1

ik

)2

− E[Q]2 . (2.11)

Again the same remark applies to the approximation of the variance.
The effective load is defined as the fraction of time that the server is serving.

As the server is serving whenever all queues are non-empty, we find the following
N th order expansion of the effective load ρeff,

ρeff ≈
N∑
n=0

∑
i∈C

π(µ0)
n (i)(µ− µ0)n

K∏
k=1

1{ik>0} .

Finally, let the blocking probability be the fraction of customers that cannot
be accepted upon arrival in the queueing system. The effective load allows for
calculating the blocking probability bk in the kth queue. Indeed, noting that all
accepted customers must be served, we have,

λk(1− bk)
1

µ
= ρeff ,

or, equivalently,
bk = 1− ρeff

µ

λk
.

Notice that bk only depends on the queue capacity through ρeff. The latter is influ-
enced by the capacities of all the different queues, which particularly implies that
the capacity of one queue influences the blocking probabilities of the other queues.

2.3 Numerical results
We now evaluate our numerical approximation approach by some numerical ex-
amples. We focus on the mean and standard deviation of the queue content as
well as on the blocking probability. Noting that in a coupled queueing system with
non-equal arrival loads, the performance is mainly determined by the queues with
the lowest loads (the queues with higher load can be neglected when studying the
overall performance), we first focus on a coupled queueing system with an equal
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Figure 2.2: N th order approximations for heavy and intermediate traffic for the mean
queue content of the coupled queueing system with K = 5 queues, each having capacity

C = 15 and arrival rate λ = 1 for each queue.

arrival rate λ in all queues. Without loss of generality, we set λ = 1 (as we can
scale µ to investigate a different λ). We consider K = 5 queues, each having
capacity C = 15.

Figures 2.2, 2.3 and 2.4 depict the mean queue content versus the service rate
µ, the blocking probability versus the service rate µ, and the standard deviation
of the queue content versus µ, respectively. Note that we have the same blocking
probability and the same mean and variance of the queue content for every queue
due to symmetry and that we approximate the standard deviation of the queue
content by

√
var[Qk] with var[Qk] given in (2.10). Each figure shows the 5th,

15th and 30th order approximation on a separate subfigure, and we combine the
Maclaurin expansion around 0 with the approximation around µ0 = 1.5 for all
performance measures. For visual reference, the point µ0 is marked on all the
figures with a cross. The order N of the expansion refers to both the order of the
expansion around 0 and the order of the expansion around µ0. In addition, we
show simulation results for the performance measures at hand, which allows for
evaluating the accuracy of the approximations. We used uniformisation to simulate
the queueing system (based on the balance equations) and generated 108 samples,
for each simulation point. We calculated the confidence interval by means of the
batch means method, but omitted the confidence intervals from the plots as the
obtained upper and lower bounds are visually indiscernible.

For the coupled queueing system under study with K = 5 queues of capacity
C = 15, the Markov chain has M = 1.048.576 states. The figures show that the
approximations of the mean queue content and the blocking probability are already
fairly accurate for the 5th order expansion (N = 5), whereas the standard deviation
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Figure 2.3: N th order approximations for heavy and intermediate traffic for the blocking
probability of the coupled queueing system with K = 5 queues, each having capacity

C = 15 and arrival rate λ = 1 for each queue.
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Figure 2.4: N th order approximations for heavy and intermediate traffic for the standard
deviation of the queue content of the coupled queueing system with K = 5 queues, each

having capacity C = 15 and arrival rate λ = 1 for each queue.
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Figure 2.5: N th order approximations for heavy and intermediate traffic for the mean
queue content for two asymmetric queues of the coupled queueing system with K = 6

queues, each having capacity C = 10, and arrival rates λ1 = 1 for half of the queues and
λ2 = 2 for the rest.

of the queue content requires some more terms (N = 15). As the order N of the
expansions further increases, the approximations even more closely approximate
the performance measures at hand. The figures further reveal that the match is very
good in a limited region (of 0 or of µ0), while the approximations quickly grow
to very large values outside this region. This is not unexpected as the region of
convergence is finite for sure (π(i) is a rational function of µ, cf. supra). While
the sharp deterioration of the approximation prevents one to extend the results
outside the region of convergence of the series expansion, it does give a clear
indication where the approximation is accurate. Overall, we find that the 30th
order approximations for the mean queue content, the blocking probability and the
standard deviation are accurate for loads above 45% (µ below 2.25).

The effect of increasing µ on the mean queue content and on the blocking
probability confirms intuition. If the service speed increases, the mean content
decreases and as it is less likely that the queues are full, the blocking probability
decreases as well. The decrease is fast for low µ and slower for larger µ, the
change of the decay rate being around µ = 1 (or a load of 100%) for the blocking
probability and just above µ = 1 for the mean queue content. For the standard
deviation, we observe that it increases with µ.

Next, we study an example with non-equal arrival rates at the different queues.
In particular, we consider a system with K = 6 queues, each having capacity
C = 10, which results in a Markov chain with M = 1.771.561 states. In order to
investigate the impact of non-equal arrival loads, we consider a system with two
arrival rates: arrival rate λ1 = 1 for half of the queues and arrival rate λ2 = 2 for
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Figure 2.6: N th order approximations for heavy and intermediate traffic for the blocking
probability for two asymmetric queues of the coupled queueing system with K = 6 queues,
each having capacity C = 10, and arrival rates λ1 = 1 for half of the queues and λ2 = 2

for the rest.
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Figure 2.7: N th order approximations for heavy and intermediate traffic for the standard
deviation of the queue content for two asymmetric queues of the coupled queueing system
with K = 6 queues, each having capacity C = 10, and arrival rates λ1 = 1 for half of the

queues and λ2 = 2 for the rest.
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Figure 2.8: 30th order approximations for heavy and intermediate traffic for the mean
queue content and blocking probability of three queueing systems with 2, 4 and 6 queues;

for each system queue capacity C = 10, arrival rates λ = 1.

the remaining queues.
Figures 2.5, 2.6 and 2.7 depict the mean queue content, the blocking proba-

bility, and the standard deviation of the queue content versus the service rate µ,
respectively, for queues with arrival rate λ1 as well as for queues with arrival rate
λ2. We again depict approximations of order N = 5, 15 and 30 on different sub-
figures. For every order N , we consider the expansion around 0 and the expansion
around µ0 = 1.5, the point µ0 being marked with a cross on all plots. The plots
again reveal that the approximations are quite accurate, especially the 30th order
approximation which is again accurate for µ up to 2.25. An increase of µ leads
to a decrease of the mean queue content and of the blocking probability as for
the symmetric case, while it leads to an increase of the standard deviation of the
queue content. Also, the queues with the highest arrival rate (λ2) have higher mean
queue content and blocking probability as there are more arrivals, which also leads
to a reduction of the standard deviation of the queue content, as the more heavily
loaded queue is close to full most of the time.

As a final example, we assess the impact of the number of queues involved. To
this end, we compare the performance of the queueing system withK = 2, K = 4

and K = 6 queues. All queues have capacity C = 10 and equal arrival rate λ = 1.
Figure 2.8 shows the 30th order approximations (in 0 and 1.5) for the mean queue
content and the blocking probability as a function of the service rate µ. We can
readily observe that adding queues leads to performance degradation (higher mean
queue content and higher blocking probability), especially when the system is not
in overload. This is not unexpected as it is more likely that one of the queues is
empty in systems with more queues. For coupled queueing systems in overload,
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the number of queues involved has hardly any impact on performance though. In
overload, it is unlikely that queues are empty, so the number of queues does not
matter.

2.4 Conclusions

In this paper we presented a numerical approach for the performance evaluation of
coupled queueing systems. The study was motivated by an assembly-like system,
where inventory replenishments can be modelled by Poisson processes. The pre-
sented method focuses on coupled queueing systems working under intermediate
load and builds on a previously designed method for such systems in overload. We
showed that the region where an accurate estimation is obtained, can be extended
to lower loads by iteratively calculating the terms of the Taylor series expansion of
the steady-state probability vector.

An important contribution of the study is that the problem is tackled numer-
ically, while existing analysis methods for large-scale queueing systems mainly
rely on simulation. We showed that our analysis method allows for performance
evaluation under intermediate load, although the specific region of accuracy may
vary depending on the system size and structure.

References

[1] Y.V. Malinkovskii. Jackson networks with single-line nodes and limited so-
journ or waiting times. Automation and Remote Control, 76(4):603–612,
2015.

[2] K. Avrachenkov, E. Perel, U. Yechiali. Finite-buffer polling systems with
threshold-based switching policy. TOP, 24(3):541–571, 2016.

[3] T. Maertens, J. Walraevens, H. Bruneel. Priority queueing systems: from prob-
ability generating functions to tail probabilities. Queueing Systems, 55(1):27–
39, 2007.

[4] A. Thomasian. Analysis of fork/join and related queueing systems. ACM
Computing Surveys, 47(2):17, 2015.

[5] W. Henderson, P.G. Taylor. Product form in networks of queues with batch
arrivals and batch services. Queueing Systems, 6(1):71–87, 1990.

[6] D.A. Bini, G. Latouche, B. Meini. Numerical methods for structured Markov
chains. Oxford University Press, 2005.



2-16 CHAPTER 2

[7] G. Latouche. Queues with paired customers. Journal of Applied Probability
18(3):684–696, 1981.

[8] W.J. Hopp, J.T. Simon. Bounds and heuristics for assembly-like queues.
Queueing Systems, 4(2):137–155, 1989.

[9] K. De Turck, E. De Cuypere, S. Wittevrongel, D. Fiems. Algorithmic ap-
proach to series expansions around transient Markov chains with applications
to paired queuing systems. In Proceedings of the 6th International Conference
on Performance Evaluation Methodologies and Tools, pages 38–44, 2012.

[10] E. De Cuypere, K. De Turck, D. Fiems. A Maclaurin-series expansion ap-
proach to multiple paired queues. Operations Research Letters, 42(3):203–
207, 2014.

[11] J.B. Lasserre. A formula for singular perturbations of Markov chains. Jour-
nal of Applied Probability, 31(3):829–833, 1994.

[12] E. Altman, K.E. Avrachenkov, R. Núñez-Queija. Perturbation analysis for
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Abstract. Motivated by assembly processes, we consider a Markovian queueing
system with multiple coupled queues and customer impatience. Coupling means
that departures from all constituent queues are synchronised and that service is in-
terrupted whenever any of the queues is empty and only resumes when all queues
are non-empty again. Even under Markovian assumptions, the state-space grows
exponentially with the number of queues involved. To cope with this inherent
state-space explosion problem, we investigate performance by means of two nu-
merical approximation techniques based on series expansions, as well as by deriv-
ing the fluid limit. In addition, we provide closed form expressions for the first
terms up in the series expansion of the mean queue content for the symmetric cou-
pled queueing system. By means of an extensive set of numerical experiments,
we show that the approximation methods complement each other, each one being
accurate in a particular subset of the parameter space.
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3.1 Introduction

We investigate the performance of a particular Markovian queueing system with
K parallel queues, as depicted in Figure 3.1. The queues have finite or capacity;
let Ck ∈ N+ be the capacity of the kth queue. Customers arrive at the kth queue
in accordance with a Poisson process with rate λk > 0, the arrival processes at the
different queues being independent. We further assume that departures from the
different queues are coupled. This means that there are simultaneous departures
from all queues with rate µ as long as all queues are non-empty. If one of the
queues is empty, no service takes place. Finally, customer impatience is assumed:
each customer leaves the kth queue prior to service with abandonment rate αk with
the exception of customers whose service has started.

The queueing system described above is a natural abstraction for an assembly
process with multiple inventories; see [1, 2] and the references therein for advances
in stochastic inventory models. The different queues represent part inventories for
the different parts that are used during assembly. These inventories are contin-
uously replenished by in-house production facilities (in accordance to a Poisson
process), the inventories offering temporary storage to smooth out uncertainty in
the various production processes. Parts are assumed to be perishable, meaning
that they should be used before a (random) due-date or be discarded once this
due-date is crossed. This perishability is captured by the abandonment processes
from the different queues. Food-products are a prime example of perishable semi-
finished products. However, perishable semi-finished products are also found in
biochemical production, and in battery and semiconductor manufacturing [3]. Fi-
nally, assuming that assembly requires that all the necessary inputs are available, it
can only proceed if the inventories (or queues) are not empty, which corresponds
to the notion of the coupled departures introduced above.

The two-buffer coupled queueing system without customer impatience is well
understood. If the buffer capacity is infinite, the uncontrolled queue process is
null recurrent in the Markovian setting. The inherent instability of such queueing
systems is demonstrated in [6] where the buffer content difference is studied in the
two-queue case. Assuming finite capacity buffers, Hopp and Simon developed a
model for a two-buffer kitting process with exponentially distributed processing
times for kits and Poisson arrivals [5]. The exponential service times and Poisson
arrival assumptions were later relaxed in [16] and [17], respectively.

Only a few authors have studied coupled (or paired) queueing systems with
multiple (i.e. more than two) queues. In [4], Harrison studies stability of coupled
queueing under very general assumptions: K ≥ 2 infinite-capacity buffers, gener-
ally distributed interarrival times at the different buffers, and generally distributed
service times. He proves that stability requires buffer control, or more precisely,
that the distribution of the vector of waiting times (in the different queues) with-
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Figure 3.1: Representation of the coupled queueing system with customer impatience

out control and infinite queue capacity is defective. When the queues are finite,
such a control is not necessary. The queue content of the coupled queueing system
with finite buffers is studied in [18], assuming exponential service and Poisson ar-
rivals. As the size of the state-space of the associated Markov chain grows quickly
with the number of queues involved, [18] presents an approximation for the queue
content when the system is in overload.

In contrast to the uncontrolled coupled queueing system, the controlled cou-
pled queueing system has received considerable attention in the scientific litera-
ture. Ramakrishnan and Krishnamurthy adopt the term synchronisation station and
present a recent account on approximations of such systems [8]. A particular type
of control of coupled queues relates to fork-join type queueing system [9, 10]. In
fork-join systems, a job is forked into different sub-jobs, run on different servers.
Upon completion of all sub-jobs, there is a final service joining the sub-jobs again.
The server joining the sub-jobs operates as a coupled server, albeit with a con-
trolled arrival process. Indeed, the sub-jobs that need to be merged, are already
present in the fork-join system. These will be available for the coupled server after
some delay.

Coupled queueing may also refer to different types of multi-queueing systems,
most prominently to systems with discriminatory processor sharing. In discrimina-
tory processor sharing the total service capacity is distributed amongst all queues
that have waiting customers, some queues getting a larger share than others. Once
one of the queues is empty, its share is moved to the queues with waiting cus-
tomers. The authors in [11] investigate such a two-queue system where customers
are served in both queues at unit rate when both queues are non-empty, while the
non-empty queue is served at a higher rate when the other is empty. A similar
system is studied in [12] in the heavy traffic regime while [13] allows for time
varying arrival rates and the possibility of jobs abandoning. In contrast to [11–13],
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jobs in the first queue do not leave the system but move to the second queue upon
completion in [14]. Finally, [15] studies the stability of a more generic system
with multiple queues where the service rate of each queue depends on the number
of customers in all queues.

The present paper investigates approximations for multi-buffer coupled queu-
ing systems with customer impatience. We investigate two numerical approxima-
tion techniques as well as the fluid limit of the system at hand. The numerical
approximation methods rely on a Maclaurin-series expansion of the steady-state
probability vector, either around λ = 0 (light-traffic) or around α = µ = 0

(overload). Series expansion techniques for Markov chains are referred to as per-
turbation techniques, the power series algorithm and light-traffic approximations.
While the naming is not absolute, perturbation methods are mainly motivated by
sensitivity analysis of performance measures with respect to the system parame-
ters. In particular singular perturbations where the perturbation does not preserve
the class-structure of the non-perturbed chain, have received considerable attention
in literature, see [19–21] and the references therein. The power series algorithm
transforms a Markov chain of interest in a set of Markov chains parametrised by
an auxiliary variable ρ. For ρ = 0, the chain can be solved efficiently, and one can
also obtain the perturbation of the chain in ρ. For ρ = 1 the original Markov chain
is retrieved such that the series expansion can be used to approximate the solution
of the original Markov chain, provided the convergence region of the series expan-
sion includes ρ = 1, see e.g. [22–25]. Finally, light-traffic approximations often
corresponds to a series expansion in the arrival rate at a queue. For an overview
on the technique of series expansions in stochastic systems, we further refer the
reader to the surveys in [26] and [27].

The remainder of the paper is organised as follows. In the next section, we
introduce the balance equations and present the numerical light-traffic analysis.
Performance in overload is investigated in section 3.3, while section 3.4 focuses
on the fluid limit when αn > 0 and µ < λn. Finally, we assess the accuracy
of the approximations by means of numerical examples in section 3.5 and draw
conclusions in section 3.6.

3.2 Light traffic analysis

We first derive the balance equations for the coupled queueing system. In view
of the modelling assumptions introduced above, the state of the coupled queueing
system is described by the number of customers in the queues. Let Xk(t) be the
number of customers in the kth queue at time t and let X(t) = [X1(t), . . . , XK(t)] ∈
X , where X denotes the state space of the Markov chain,

X = {0, 1, . . . , C1} × . . .× {0, 1, . . . , CK} .
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Further, let π(x) = limt→∞ P[X(t) = x] be the stationary probability vector of
the process, for x = [x1, . . . , xK ] ∈ X . In particular, π(x) = 0 for x /∈ X which
simplifies the notation.

The following notation is introduced for further use. Let 1{·} be the indicator
function which evaluates to one if its argument is true and to 0 if its argument
is false. The vector ek = [ 1{`=k}]`=1,...,K denotes a row vector with all its
elements zero, apart from the kth element which is 1, whereas e =

∑
k ek denotes

a row vector with K ones. Given the description of the queueing system and its
notation in section 3.1, and the notation introduced above, we can now summarise
the possible state transitions from state x.

• Provided that the kth queue is not full (xk < Ck), new customers arrive at
this queue with rate λk, inducing a transition to state x + ek.

• Provided that no queue is empty (xk > 0 for all k), there is a departure event
with rate µ. A departure event corresponding to a single departure from each
queue results in the new state being x− e.

• Finally, customers abandon the kth queue with rate α(xk − 1) if all queues
are non-empty (as the customer being served does not abandon) and with
rate αxk if at least one queue is empty (in this case, there is no service).
After the abandonment in the kth queue, the new state is x− ek.

Accounting for the different types of transitions, we find the following set of
balance equations,

π(x)A(x) = π(x+e)µ+

K∑
k=1

π(x−ek)λk+

K∑
k=1

π(x+ek)αk(xk+1−E(x+ek))

(3.1)
for x ∈ X , with,

A(x) =

K∑
k=1

αk (xk − E(x)) +

K∑
k=1

λk 1{xk<Ck} + µE(x) ,

and with E(x) the indicator function that all queues are non-empty,

E(x) =

K∏
k=1

1{xk>0} .

For the light-traffic approximation, we express all λk
.
= κkλ in terms of λ

and we then send λ to zero. The system of balance equations (3.1) has a matrix
representation

πA = π(A0 + λA1) = 0 (3.2)
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where π = [π(x)]x∈X is the stationary probability vector, and where A, A0 and
A1 are S × S matrices that do not depend on λ. Here S = |X | denotes the size of
the state space,

S =

K∏
k=1

(Ck + 1) . (3.3)

Note that A0 only contains transition rates corresponding to service completions
and/or abandonments, while A1 only contains transitions corresponding to ar-
rivals.

3.2.1 Numerical series expansion

Direct solution of the system of equations (3.1), or of (3.2), is only possible if
the number of queues and their capacities is limited, as the size of the state space
grows quickly with the number of queues, see (3.3). Therefore, we introduce the
Maclaurin series expansion of the stationary probability π(x),

π(x) =

∞∑
n=0

πn(x)λn ,

or, equivalently, of the stationary vector π,

π =

∞∑
n=0

πnλ
n . (3.4)

This series expansion is justified in section 3.2.3 where a lower bound for the
region of convergence of the series expansion is calculated.

Plugging (3.4) into (3.2) and equating the terms in λn yields,

π0A0 = 0 , πnA0 = −πn−1A1 , (3.5)

for n ∈ N+, whereas the normalisation condition πe′ = 1 yields,

π0e
′ = 1 , πne′ = 0 ,

for n ∈ N+.
Assuming that the states are ordered lexicographically, one finds that A0 is

lower triangular asA0 collects the transition rates corresponding to departures (ei-
ther by impatience or after a service completion). As a consequence, the recursive
equations (3.5) can be readily solved. We express the recursion in terms of the
system parameters below.

In absence of arrivals (λ = 0), the stationary solution is the empty queue. That
is, π0 equals,

π0(x) =

{
1 for x1 = 0,. . . , xK = 0,
0 otherwise.
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Given π0, we can calculate the higher order terms recursively. Given the (n− 1)st
vector πn−1, we can calculate the values πn(x) in reverse lexicographical order
by,

πn(x) =

( K∑
k=1

πn−1(x− ek)κk − πn−1(x)

K∑
i=1

κi 1{xi<Ci} + πn(x + e)µ

+

K∑
k=1

πn(x + ek)αk(xk + 1− E(x + ek))

)

×

(
K∑
k=1

αk (xk − E(x)) + µE(x)

)−1

, (3.6)

for x 6= [0, 0, . . . , 0]
.
= 0. Finally, for x = 0, the normalisation condition yields,

πn(0) = −
∑

x∈X\{0}

πn(x) .

Remark 1. The recursion above closely resembles the well-known Gauss-Seidel
method. Indeed, the transition matrix A is decomposed into a lower and upper
triangular matrix, which yields a recursion where each step is easily solved. In
the present setting, the Gauss-Seidel method allows for calculating the stationary
probability vector for a single value λ. In contrast, we obtain a polynomial ex-
pression for the stationary probability vector which accurately approximates the
probability vector in some interval [0, λmax].

Remark 2. The above recursion can be used when the capacity of some (or all) of
the queues is infinite. Indeed, let Xn = {x ∈ X , |x| ≤ n} be the set of system
states where the total system content does not exceed n. A careful analysis of the
recursion above reveals that πn(x) = 0 for x ∈ X \ Xn. Hence, the number of
non-zero terms in the nth order expansion is finite, even if the queue capacity is
infinite. This observation confirms the so-called n-events rule which states that for
an nth order expansion, only sample paths with n or fewer perturbed events must
be considered [26].

Remark 3. When the capacity of all queues is infinite, the complexity of calculat-
ingN terms in the expansion isO(NK+1K). In view of the preceding remark, the
number of non-zero values in πn isO(nK), the calculation of a single term having
complexityO(K). When the buffer size is finite, the number of values to calculate
is also bounded by the size of the state space. Assuming buffers with equal finite
capacity C, the computational complexity of calculating N terms in the expansion
is O(min(C,N)KKN). Indeed, for each term in the series expansion, we need to
calculate (C + 1)K values at most.

Remark 4. The computational complexity further decreases when the arrival rates
and abandonment rates in the different queues are equal. By symmetry, one then
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has πn(x) = πn(y) for any permutation y of x. Limiting the discussion to the case
of infinite capacity buffers (which naturally forms an upper bound), the number of
values to calculate for the nth order term is [29]

cn =

n∑
m=0

pK(m+K) .

Here pk(n) is the number of partitions of the integer n into exactly k positive
integer parts, satisfying the recursion,

pk(n) = pk(n− k) + pk−1(n− 1) , p0(0) = 1 ,

assuming pk(n) = 0 for k > n. The first 10 values of the sequence cn for any
C > 10 are given below,

1, 2, 4, 7, 12, 19, 30, 45, 67, 97, . . . .

3.2.2 Closed form expressions for the symmetric coupled queue-
ing system

For the symmetric coupled queueing system we obtain closed-form expressions
for the Kth order expansion of the first two moments of the queue content. As the
system is symmetric we have αk = α and κk = 1 for k = 1, . . . ,K. In addition,
we assume that the queue capacities exceed K: Ck > K for all k = 1, . . . ,K.

Repeated application of the set of recursive equations, then yields the following
series expansions of the first two moments of the queue content X (that is, the
content of an arbitrary queue),

E[X] =
1

α
λ− K(µ− α)

µαK
λK +O(λK+1) , (3.7)

E[X2] =
1

α
λ+

1

α2
λ2 − K(µ− α)

µαK
λK +O(λK+1) . (3.8)

Notice the disappearing terms in the power expansion (from 2 up to K − 1 in case
of E[X], from 3 to K−1 in case of E[X2]). This can be explained by the n events
rule: for the nth order expansion in λ we need to consider only n arrivals, and
when n < K, there are only departures due to impatience (and not due to service
completion), hence it can be intuited that the first term containing the parameter µ
is indeed of the Kth order.

3.2.3 Lower bound for the radius of convergence

We now focus on a lower bound for the radius of the series expansion. The basic
ideas for finding such a bound date back to the seminal work of Schweitzer [28].
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We validate the series expansion by explicitly constructing the expansion. To do
so, we first introduce some additional notation and the basic notion of the deviation
matrix of a CTMC.

Let π(λ) denote the steady state solution [π(x)]x∈X of the balance equations
(3.1). We have made the dependence of π(λ) on λ explicit for ease of notation.
With this notation, the balance equations can be written in matrix notation as fol-
lows,

π(λ)A(λ) = π(λ)(A0 + λA1) = 0 , (3.9)

see equation (3.2). In view of the system assumptions it is readily seen that
A(0) = A0 only has one recurrent state, i.e. 0 (the empty state) is recurrent and
all the others are transient. Therefore, the stationary vector π(0) exists, with state
π(0)(0) = 1 and π(0)(x) = 0 for x ∈ X \ {0}.

Let D0 be the deviation matrix of the CTMC with generator matrix A0,

A0 =

∫ ∞
0

(P0(t)−Π0)dt . (3.10)

Here the family {P0(t) = exp(A0t), t ≥ 0} is the Markov semigroup of the
CTMC, and Π0 = limt→∞ P0(t) = e′π(0), e′ being a column vector of ones.
As the state-space X is finite, the deviation matrix is well defined. Moreover, the
deviation matrix satisfies D0e

′ = 0 — the row sums are zero — and,

D0A0 = A0D0 = Π0 − I , (3.11)

with I the identity matrix.

Theorem 2. The solution π(λ) of the CTMC adheres to the following power series
expansion,

π(λ) =

∞∑
k=0

(
π(0)(A1D0)k

)
λk , (3.12)

for 0 ≤ λ < λ0, λ−1
0 being the spectral radius of A1D0. Moreover, λ0 is bounded

from below by λ∗0 and λ∗1,

λ∗0 =

(
2

∫ ∞
0

(
1−

K∏
k=1

(1− exp(αkt))
Ck

)
dt

)−1

≥

(
2

K∑
k=1

Ck∑
`=1

1

`αk

)−1

= λ∗1 .

Proof. Multiplying (3.9) by D0 and invoking (3.11) yields,

π(λ)(A0 + λA1)D0 = π(λ)(Π0 − I) + π(λ)λA1D0 = 0 .

Moreover, we have π(λ)Π0 = π(λ)e′π(0) = π(0), such that,

π(λ)(I − λA1D0) = π(0) .
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The spectral radius of λA1D0 is λ/λ0. Hence for λ < λ0, (I − λA1D0) is
invertible and the Neumann series converges to the inverse,

∞∑
k=0

(λA1D0)k = (I − λA1D0)−1 .

Combining the previous expressions immediately yields the series expansion (3.12).
As all elements but the first column of Π0 are zero, only the first column ofD0

may contain negative values; see (3.10). Moreover, the row sums of D0 are zero,
hence the first column is equal in absolute value to the sum of the other columns.
The entries in the first column of D0 have the following interpretation,

[D0]xo = −
∫ ∞

0

(1− [P0(t)]xo)dt = −E[Tx] ,

where Tx is a random variable denoting the time it takes to reach the empty state
0 from state x (assuming no arrivals). This interpretation shows that γ .

= E[Tc] ≥
E[Tx] for all x ∈ X where c denotes the full state.

We have the following upper bound for γ. It is easy to see that γ decreases if
µ increases. Therefore, consider the system without service, that is with µ = 0.
Then each customer in the kth queue leaves at a rate αk and the bound for Tc is
the maximum of

∑
k Ck independent exponentially distributed random variables.

Hence, the corresponding cumulative distribution is the product of exponential
distributions. The bound γ∗0 for γ is calculated by integrating this distribution,

γ ≤ γ∗0 =

∫ ∞
0

(
1−

K∏
k=1

(1− e−αkt)Ck

)
dt .

Moreover, as the maximum of K non-negative random variables is bounded from
above by the sum of these random variables, we have the following crude upper
bound for γ∗0 (and γ),

γ ≤ γ∗0 ≤ γ∗1 =

K∑
k=1

Ck∑
`=1

1

`αk
, (3.13)

the kth term in the sum on the right-hand side corresponding to the mean time to
deplete the kth queue.

As the row sums of A1 are zero (A(λ) is a generator matrix for every λ), we
haveA1Π0 = 0. Moreover, for any induced matrix norm, we have ‖A1D0‖ ≥ λ0.
Therefore, we find,

λ−1
0 ≤ ‖A1D0‖ = ‖A1(D0 + γΠ0)‖ ≤ ‖A1‖ ‖D0 + γΠ0‖ .

In particular, using the maximum absolute row sum norm, we have ‖A1‖ =∑K
k=1 κk

.
= κ; [A1]xx = −κ if all queues are non-full in state x and [A1]xx > −κ
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if this not the case. In view of the definition of γ, one easily verifies that the ma-
trix D0 + γΠ0 has no negative entries. Recalling that D0 has zero row sums, this
shows that all row sums of D0 + γΠ0 equal γ: ‖D0 + γΠ0‖ = γ and,

1

λ0
≤ 2κγ ≤ 2κγ∗0

.
=

1

λ∗0
,

which proves the lower bound λ∗0 for λ0. The lower bound λ∗1 follows from
λ−1

0 ≤ 2κγ and the crude bound (3.13) for γ.

Remark 5. The former theorem establishes a lower bound for the region of conver-
gence of the series expansion. The existence of the series expansion in an interval
around λ = 0 can be established more easily. Indeed, by Cramer’s rule, one
directly verifies that the stationary probabilities are rational functions of λ. The
region of convergence of the Maclaurin series expansion is therefore determined
by the zero of the denominator with the smallest absolute value, which is distinct
from 0. As for every positive real λ the stationary probability is between 0 and 1,
one further notes that this smallest zero is definitely not real and positive.

3.3 Overload analysis

We now study the system in overload. To this end, let αi = βiν. The system of
equations (3.1) then has the following matrix representation,

πA = π
(
Â0 + µÂ1 + νÂ2

)
= 0 , (3.14)

where the matrices Â0, Â1 and Â2 neither depend on µ nor on ν, and where we as-
sume the states in the stationary vectorπ are ordered lexicographically. The matrix
Â0 contains transition rates corresponding to arrivals, and is an upper triangular
matrix. Further, A1 only contains transition rates corresponding to departures,
while A2 only contains transitions corresponding to abandonment.

We introduce the bivariate series expansion of the stationary probabilities π(x)

and of the corresponding stationary vector π,

π(x) =

∞∑
m=0

∞∑
n=0

πm,n(x)µmνn , π =

∞∑
m=0

∞∑
n=0

πm,nµ
mνn .

Plugging the expansion of the stationary vector above in (3.14) and isolating terms
in µmνn then yields,

πm,nÂ0 = −πm−1,nÂ1 − πm,n−1Â2 , (3.15)
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and,

πm,0Â0 = −πm−1,0Â1 ,

π0,nÂ0 = −πm,n−1Â2 ,

π0,0Â0 = 0 , (3.16)

for m,n ∈ N+. Moreover, by the normalisation condition πe′ = 1, we find,

π0,0e
′ = 1 , πm,ne′ = 0 ,

for (m,n) ∈ N2 \ {(0, 0)}. Recalling the triangularity of Â0, the recursive equa-
tions (3.15)–(3.16) can be readily solved. For convenience, we express the recur-
sion in terms of the system parameters below.

3.3.1 Numerical series expansion

First, as for the light-traffic case, π0,0 is trivial as all queues eventually become
full when there are no departures,

π0(x) =

{
1 for x1 = C1,. . . , xK = CK ,
0 otherwise.

We can again calculate the higher order terms recursively. Given the values for
m + n < k, we find the terms for m + n = k by evaluating the equations below
in lexicographical order. For x ∈ X \ {c} with c = [C1, C2, . . . , CK ], we have,

πm,n(x) =

(
K∑
k=1

λk 1{xk<Ck}

)−1

×

(
−πm,n−1(x)

K∑
k=1

βk (xk − E(x))− πm−1,n(x)E(x) + πm−1,n(x + e)

+

K∑
k=1

πm,n(x− ek)λk +

K∑
k=1

πm,n−1(x + ek)βk(xk + 1− E(x + ek))

)
,

(3.17)

whereas for x = c we have,

πm,n(c) = −
∑

x∈X\{c}

πm,n(x) .

Remark 6. In contrast to the light-traffic approach, the numerical complexity is
now O(CKKN2), as the calculation of every value in πn,m(x) is O(K). The
algorithm is therefore considerably slower than the light-traffic approximation for
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large N . In addition, more memory is required as well. In the light-traffic approx-
imation it is sufficient to keep track of the last term in the expansion only. Now,
calculating the (m,n) terms with m + n = k requires all (m,n) terms in the
expansion with m+ n = k − 1.

As for the light-traffic expansion, the number of non-zero terms in the vector
πm,n, is considerably smaller than the length of the vector. By the n-event rule,
πm,n(x) is only non-zero for states x that can be reached from state c by at mostm
departures by impatience and n departures upon service completion. Accounting
for this observation, the numerical complexity reduces to O(min(C,K)KKN2).

Likewise, if the abandonment and arrival rates are the same for all queues, one
can again exploit the symmetry: πm,n(x) = πm,n(y) for any permutation y of x.

Remark 7. The approach for light traffic can be adopted to study the system in
overload as well. To this end, one scales the abandonment rates with µ, αi = βiµ

and investigates the series expansion in µ = 0. Scaling the abandonment rates with
µ implies that there are no (lexicographically) downward transitions for µ = 0. In
other words, the generator matrix of the Markov chain for µ = 0 is triangular and
the light-traffic approach applies.

3.3.2 Closed form expressions for the symmetric coupled queue-
ing system

For the symmetric coupled queueing system we obtain closed-form expressions
for the 2nd order expansion of the first two moments of the queue content. As the
system is symmetric we have αk = α and λk = λ for k = 1, . . . ,K. In addition,
we assume that the queue capacities are equal Ck = C for all k = 1, . . . ,K and
that C > K > 2. By repeated application of (3.17), we then have the following
second order approximation for the first two moments of the queue content X:

E[X] ≈ C − C − 1

λ
α− 1

λ
µ− (C − 1)(C − 3)

λ2
α2 − 2

C − 2

λ2
αµ− 1

λ2
µ2 ,

E[X2] ≈ C2 − (2C − 1)(C − 1)

λ
α− 2C − 1

λ
µ− (2C − 7)(C − 1)2

λ2
α2

− (2C − 5)(C − 1)

λ2
αµ− 2C − 3

λ2
µ2 .

3.4 Fluid limit
In this section, we develop a fluid limit for the queueing model at hand. We hereby
make the following additional assumptions: the abandonment rates αk are non-
zero, the arrival rates λk in all queues exceed the service rate, i.e. λk > µ, and all
queue capacities Ck are infinite. We consider the scaling:

αk 7→ αk , λk 7→ Nλk , µ 7→ Nµ.
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The infinite capacity assumption is relaxed below. We will indicate how to adapt
the proof to the case of finite capacities, provided that they are scaled as follows
Ck 7→ NCk, and satisfy:

Ck >
λk − µ
αk

(3.18)

for k = 1, 2, . . . ,K.
Recalling that Xk(t) denotes the number of customers in the kth queue at time

t, let XN
k (t) be the number of customers in the kth queue at time t for the system

with arrival rates Nλk and service rate Nµ. In the spirit of the monograph of
Ethier and Kurtz [30], we express the evolution of the system in terms of Poisson
processes with random time changes:

XN
k (t) = XN

k (0) + Yk(Nλkt)

− Zk
(
αk

∫ t

0

XN
k (s)ds

)
− U

(
Nµ

∫ t

0

∏
k

1{XN
k (s)>0}ds

)
,

where Yk(·), Zk(·) and U(·) are independent Poisson processes with unit rate. We
further assume that the random variablesXN

k (0)N−1 converge to the deterministic
constants ρk(0) > 0 for N →∞.

We will show that the process has the following fluid limit:

ρk(t) =
λk − µ
αk

(1− e−αkt) + ρk(0)e−αkt , (3.19)

where we note that these functions can also be written as the unique solutions of
the following integral equations:

ρk(t) = ρk(0) + (λk − µ)t− αk
∫ t

0

ρk(s)ds.

In order to establish the fluid limit, we want to prove that the processes X̂N
k (t)

.
=

(N−1XN
k (t)− ρk(t)), converge to zero processes, that is, that

sup
t∈[0,T ]

∑
k

|X̂N
k (t)|

converges to 0 in probability as N → ∞. We prove this proposition by making
use of Grönwall’s lemma and of the functional law of large numbers for Poisson
processes. Let us rewrite the expression for X̂N

i (t) as follows:

X̂N
k (t) = X̂N

k (0) +MN
1,k(t)−MN

2 (t)−MN
3 (t)−MN

4,k(t)− αk
∫ t

0

X̂N
k (s)ds ,
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with,

MN
1,k(t) = N−1Yk(Nλkt)− λkt ,

MN
2,k(t) = N−1Zk

(
αk

∫ t

0

XN
k (s)ds

)
−N−1αk

∫ t

0

XN
k (s)ds ,

MN
3 (t) = N−1U

(
Nµ

∫ t

0

∏
k

1{XN
k (s)>0}ds

)
− µ

∫ t

0

∏
k

1{XN
k (s)>0}ds ,

MN
4 (t) = µ

∫ t

0

∏
k

1{XN
k (s)>0}ds− µt .

We immediately see that∑
k

|X̂N
k (t)| ≤

∑
k

|X̂N
k (0)|+

∑
k

sup
t∈[0,T ]

|MN
1,k(t)|+

∑
k

sup
t∈[0,T ]

|MN
2,k(t)|

+ sup
t∈[0,T ]

|MN
3 (t)|+ sup

t∈[0,T ]

|MN
4 (t)|+ α∗

∫ t

0

∑
k

|X̂N
k (s)|ds,

where α∗ is the largest αi. Using the integral form of Grönwall’s lemma, we get

∑
k

|X̂N
k (t)| ≤

(∑
k

|X̂N
k (0)|+

∑
k

sup
t∈[0,T ]

|MN
1,k(t)|+

∑
k

sup
t∈[0,T ]

|MN
2,k(t)|

+ sup
t∈[0,T ]

|MN
3 (t)|+ sup

t∈[0,T ]

|MN
4 (t)|

)
exp(α∗t) .

Hence, to establish the fluid limit, it suffices to show that the five terms between
parentheses converge to zero in probability.

The convergence of |X̂N
k (0)| is by assumption, while the convergence of

|MN
1,k(t)| is a standard application of the functional law of large numbers for Pois-

son processes.
Regarding |MN

2,k(t)|, observe that from the inequality XN
k (t) ≤ XN

k (0) +

Yk(Nλkt) we have

lim
N→∞

1

N

∫ t

0

XN
k (s)ds ≤ lim

N→∞

1

N

∫ t

0

XN
k (0)+Yk(Nλks)ds = ρk(0)t+

1

2
λkt

2 .

Hence, for any fixed ε > 0, we have the crude inequality

N−1

∫ T

0

XN
k (s)ds ≤ (ρk(0) +

1

2
λkT )T + ε

.
= T̂ ,

on a set of at least probability 1 − ε for N large enough. We apply the functional
limit of large numbers for Poisson processes on the processes Zk in the interval
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[0, T̂ ], and by force we also have convergence of the original term. The same
reasoning applies to the term |MN

3 (t)|. In this case, we use the deterministic upper
bound

µ

∫ t

0

∏
k

1{XN
k (s)>0}ds ≤ µt .

For the convergence of |MN
4 (t)| to hold, we must establish that for large

enough N , the queues stay non-empty in the entire interval [0, T ]. To do so, note
that we have XN

k (t) ≥ X̃N
k (t), where the process X̃N

k (t) is defined as

X̃N
k (t) = XN

k (0) + Yk(Nλkt)− Zk
(
αk

∫ t

0

XN
k (s)ds

)
− U (µt) .

Using the same arguments as above, we can show that this process converges to
the same fluid limit {ρk(t)}, the bound on the last term in X̃N

k (t) now being im-
mediate by the functional strong law of large numbers for Poisson processes. As
ρk(t) > 0 if ρk(0) > 0, it then follows that the larger process XN

k (t) must also
stay away from zero.

Remark 8. The reasoning for the last term can be repeated to establish the fluid
limit for the kitting process with finite capacity buffers. Indeed, the process with
infinite queue capacity is an upper bound for any system where one or more of the
queue capacities is finite. One then only needs to show that the fluid limit stays
away from the boundaries Ck. This is indeed the case by equation (3.18).

3.5 Numerical results and discussion

Having established 3 approximations for the coupled queueing system, we now
investigate the accuracy of the proposed approximations by some numerical ex-
amples.

We first focus on the coupled queueing system in light traffic. Figures 3.2 and
3.3 show the light traffic approximations of the mean and variance of the queue
content for a symmetric kitting process with 5 queues, each having capacity C =

10. The service rate is µ = 1 and the abandonment rate is the same in all queues
— αi = α for i = 1, . . . , 5 — with α = 0.1 or α = 0.2 as indicated. We compare
the 3rd, 10th and 50th order approximations, and additionally also simulate the
system for verifying the accuracy of the approximations.

For the symmetric system at hand, the 3rd order approximation equals the
first order approximation for the mean and the second order approximation for the
variance; the explicit expressions (3.7) and (3.8) show that the coefficients of order
2,3 and 4 for the mean and of order 3 and 4 for the variance are equal to zero (as
we have 5 queues). The 10th order approximation of the mean queue content is
already quite good, while this is not the case for the 10th order approximation of



COUPLED QUEUES WITH CUSTOMER IMPATIENCE 3-17

0.00 0.04 0.08 0.12
arrival rate

0.0

0.2

0.4

0.6

0.8

1.0
m

e
a
n
 q

u
e
u
e
 c

o
n
te

n
t

= .

= .

N=3

0.00 0.04 0.08 0.12
arrival rate

0.0

0.2

0.4

0.6

0.8

1.0

= .

= .

N=10

0.00 0.04 0.08 0.12
arrival rate

0.0

0.2

0.4

0.6

0.8

1.0

= .

= .

N=50

expansion
simulation

Figure 3.2: Order 3, 10 and 50 light traffic approximation for the mean queue content of
the kitting system with service rate µ = 1, and with K = 5 queues, each having capacity

C = 10 and abandonment rates α = 0.1 or α = 0.2 as indicated.
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Figure 3.3: Order 3, 10 and 50 light traffic approximation for the variance of the queue
content of the kitting system with service rate µ = 1, and with K = 5 queues, each having

capacity C = 10 and abandonment rates α = 0.1 or α = 0.2 as indicated.

the variance for abandonment rate α = 0.1. Higher order approximations improve
on the accuracy for sufficiently small λ. For high N , we obtain very accurate
results, up to a certain λmax where the series expansion no longer converges to
the correct result. Moreover, we have the same λmax for the mean and variance
approximations. The sudden deviation of the correct value is an indicator that this
λmax corresponds to the radius of convergence of the series expansion.

Assuming the same parameters as in Figures 3.2 and 3.3, Figures 3.4 and 3.5
depict the mean and variance of the queue content for the symmetric kitting process
for higher values of α: for α = 1 and α = 2. We again compare the 3rd, 10th
and 50th order approximations, and simulate the system for verifying the accuracy
of the approximations. For these high values of α, it is hard to discern the mean
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Figure 3.4: Order 3, 10 and 50 light traffic approximation for the mean queue content of
the kitting system with service rate µ = 1, and with K = 5 queues, each having capacity

C = 10 and abandonment rates α = 1 or α = 2 as indicated.
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Figure 3.5: Order 3, 10 and 50 light traffic approximation for the variance of the queue
content of the kitting system with service rate µ = 1, and with K = 5 queues, each having

capacity C = 10 and abandonment rates α = 1 or α = 2 as indicated.

value and the variance plots. This can be explained as follows. For high α, the
abandonment process dominates the service process and the kitting process can be
approximated by a system of parallel M/M/∞ queues (the abandonment process
being the service process of the M/M/∞ queues). It is well known that the queue
content distribution of an M/M/∞ process is a Poisson distribution, the Poisson
distribution having equal mean and variance.

The accuracy of the overload approximations is illustrated by Figures 3.6 and
3.7 that depict the mean and variance of the queue content, vs. the service rate
µ. As for light traffic, we show the 3rd, 10th and 50th order approximations and
include simulation results to assess the accuracy of the approximations. We again
consider a system with 5 queues. The arrival rate λk is 1 for all queues, whereas the
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Figure 3.6: Order 3, 10 and 50 heavy-traffic approximation for the mean queue content of
the kitting system with arrival rate λ = 1, and with K = 5 queues, each having capacity

C = 10 and abandonment rates α = 0, α = 0.05 or α = 0.1 as indicated.
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Figure 3.7: Order 3, 10 and 50 heavy traffic approximation for the variance of the queue
content of the kitting system with arrival rate λ = 1, and with K = 5 queues, each having

capacity C = 10 and abandonment rates α = 0, α = 0.05 or α = 0.1 as indicated.

abandonment rate is α for every queue, different values of α being considered as
depicted. As for the light traffic approximation, we find a reasonable accuracy of
lower order approximations and accurate results for higher-order approximations
for µ up to a specific value µmax, while the series expansion no longer converges
to the correct result for larger µ. This again is an indicator that µmax corresponds
to the radius of convergence of the series expansion.

Note that the overload approximation is a bivariate expansion. While the ap-
proximation for λ = 0 is exact for the light traffic approximation, this is not the
case for µ = 0 in the overload expansion. Indeed, the approximation is only exact
for µ = α = 0 and we evaluate for non-zero α. This is readily observed for the 3rd

order approximations of mean and variance in Figures 3.6 and 3.7, respectively.
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Figure 3.8: Mean queue content versus the abandonment rate for a kitting process with
K = 5 queues with λ = 1. The queue capacity is C = 40, C = 60 and C = 80 as

indicated whereas the service rate is µ = 0.1 or µ = 0.25 as indicated.

Finally Figure 3.8 depicts the mean queue content versus the abandonment rate
α. There are 5 queues, the arrival rate is λ = 1 for all queues, and the abandonment
rate α and queue capacity C are equal for all queues. We consider different sizes
of the queue capacity C and service rates µ = 0.1 and µ = 0.25. As the system
is in overload, both the overload approximation and the fluid approximation can
be used. Figure 3.8 depicts both approximations, as well as simulation results
to verify the accuracy of the approximations. For large α, one observes that the
fluid approximation is accurate while this is not the case for small α. Indeed, the
constraint on the queue capacity (3.18) for the fluid approximation implies that α
should be at least (λ− µ)/C. In contrast to the fluid approximation, the overload
approximation is most accurate for small α. As illustrated by Figure 3.8, both
approximations are complementary. Indeed, the simulation results reveal that the
combined approximation is accurate for all α.

3.6 Conclusions

We considered a numerical technique based on Maclaurin series expansions to
study a coupled queueing system with customer impatience. For the light-traffic
approximation, we noted that the series expansion technique resembles the Gauss-
Seidel method, while it delivers an approximation in a range of the parameter
space. The overload approximation introduces a bivariate series expansion, ex-
pressing the performance measures of interest as a bivariate polynomial of the ser-
vice rate and the scaling factor of the abandonment rates. While the bivariate series
expansion is computationally more expensive, we found accurate approximations
in reasonable time. Although the prime aim of the series approximations was the
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development of a fast approximation algorithm, we also included expressions for
the Kth order light traffic approximation for the symmetric coupled queueing sys-
tem with K queues, as well as the 2nd order approximation for the symmetric
system in overload. Finally, we also studied and formally proved the fluid limit of
the coupled queueing system when the system is in overload. Numerical experi-
ments particularly revealed that a combination of the overload approximation and
the fluid limit allows for approximating the system in the complete range of the
abandonment rate α when the arrival rate exceeds the service rate.
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Queueing Analysis of Opportunistic

Scheduling with Spatially Correlated
Channels

Ekaterina Evdokimova, Koen De Turck,
Sabine Wittevrongel and Dieter Fiems

Abstract. Exploiting differences in supported transmission rates between mo-
bile users, opportunistic scheduling promises a substantial increase of the aggre-
gate throughput of wireless networks. In this paper, we present a Markov model
to study the trade-off between fairness and wireless efficiency of opportunistic
scheduling at an access point serving multiple mobile users. The Markovian model
description includes both the state of the queues and the state of the wireless chan-
nel of the different mobile users. The size of the state space of the Markov model
at hand preventing a direct solution, we develop a numerical analysis technique
based on Maclaurin series expansions to solve the system in light traffic and in
overload. We illustrate the accuracy of our approach by numerical examples.
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4.1 Introduction

Efficiently allocating networking resources is key for the performance of many
multi-user (MU) wireless communication systems. Such allocations aim at op-
timizing performance metrics like network throughput, delay and jitter, while at
the same time retaining fairness between the users [1]. In contrast to wireline
networks, the transmission rates supported by individual mobile users vary over
time and per user. For example, the channel capacity of an individual user de-
pends on its distance to the base station. In addition, users undergo short-term
location-dependent fading, the statistics of such short-term variations differing
across users [2]. Therefore, scheduling to the users with the best rates at any
given time may allow for substantially increasing the aggregate throughput of the
wireless network.

Opportunistic scheduling is a promising cross-layer method that holds the po-
tential of significantly improving wireless networks’ efficiency in the near future.
The technique however immediately brings into focus the trade-off between wire-
less efficiency (i.e., a preference to schedule to the best channel) and fair schedul-
ing (i.e., each user is entitled to a certain amount of network resources) [3]. Since
the introduction of opportunistic scheduling in [4], numerous schedulers have been
proposed for different instances of wireless networks, such as mobile cellular net-
works, cognitive radio, WiMAX, MIMO systems; see [5–12] and the references
therein.

While holding the promise to increase the throughput, opportunistic schedul-
ing also faces some limitations. In order to select where to send to, the scheduler
requires accurate channel state information (CSI). Such CSI is reported at the low
rate of the feedback channel, and may therefore be outdated at the time the sched-
uler decides where to send to. In other words, the opportunistic scheduler always
has to rely on partially known channel state information, the timeliness depending
on the feedback delay. The discussion how much feedback is sufficient in order to
benefit from the MU diversity is actively investigated [13, 14]. Furthermore, the
gain of opportunistic scheduling may suffer from cross-channel correlations be-
tween users [15]. Typically the wireless networks exploiting MU diversity achieve
the maximum performance in case of independent channels while under dependent
channels the overall transmission capacity drops [16, 17]. Finally, the scheduling
policy itself cannot require excessive computational complexity. While literature
often focuses on designing optimal schedulers for particular fairness and quality-
of-service (QoS) requirements, such schedulers may require too much computa-
tions to be practically implementable. Therefore, heuristic approaches are often
preferred in order to simplify the implementation [18, 19]. Although many sched-
ulers have been proposed, for the next generation of wireless systems there is a de-
mand for new policies that rely on less feedback information, account for the spa-
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tial correlations between users and require low computational complexity, while
providing nearly optimal scheduling decisions. See for example [5, 8, 19–22] for
recent advances in opportunistic scheduling policies.

Along with developments in scheduling strategies, there is also an increasing
demand for performance evaluation tools (i.e., instruments for testing, comparing
and designing schedulers) for opportunistic schedulers. The presentation of an an-
alytic framework for studying opportunistic schedulers is the main contribution of
this paper. Specifically, we propose a method for the fast performance evaluation
of wireless networks equipped with one access point (AP) serving multiple mobile
users under varying transmission conditions.

Only few authors assess the performance of opportunistic schedulers by an-
alytic means, most assessments of schedulers relying on simulations, see e.g.
[22–24]. This is not surprising as stochastic models of opportunistic schedulers
involve multiple queues. This results in a Markov model with a multidimensional
state space. Even for a limited number of buffers (or mobile nodes) and limited
buffer capacities, the state space of the Markov chain is huge which makes di-
rect solution techniques numerically unfeasible. In [25], the authors propose a
decomposition method to avoid the state space explosion problem. The approach
relies on representing the MU system with K mobile users as a deterministic and
stochastic Petri net (DSPN), decomposed into K subnets. Since the subnets are
analyzed separately, the MU system is represented with far fewer states than the
original Markov model, thereby achieving a low computational complexity. This
approach rules out most interactions between the mobile users which is essential
for a complete performance study. Indeed, the interaction is key for the sched-
uler as each allocation decision impacts all mobile users. A similar decomposi-
tion approach is presented in [26] for cognitive radio spectrum allocation. Here,
a queueing model is analysed by matrix-analytical methods. However, the study
mainly focuses on the single-queue case with an extrapolation to multiple queues.
Finally, [19] studies the formation of time-space batches of packets assigned for
simultaneous transmission. The authors do not track the number of packets for the
different destinations, thereby again avoiding the inherent multidimensionality.

Our approach neither relies on decomposition nor on an extrapolation of the
single-queue case, which enables us to accurately study the interactions among the
queues. We consider a continuous-time Markovian model with a separate queue-
ing state variable for each mobile node and with Rayleigh fading channels. Our
channel model not only accounts for temporal correlation, but also for spatial cor-
relation between the channels. The effects of fading are introduced in the queueing
model by a transmission environment variable. The transmission environment is
an exogenous continuous-time Markov process with a finite number of states in
accordance with [27]. The overall queueing model at hand is a continuous-time
Markov process. This means that opportunistic scheduling is modelled as an as-
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signment of transmission rates to queues, thereby (possibly) accounting for both
the current number of packets in the queue as well as the channel conditions. The
transmission rate being proportional to the chance of a service time completion in
an infinitely small interval, such a model still allows for some uncertainty in hav-
ing a successful transmission or in the estimation of the channel conditions, but
largely makes abstraction of the details of scheduling the packets.

The size of the state space of the Markov process at hand makes a direct
solution technique computationally infeasible. For example, considering a sys-
tem with 10 mobile nodes, and a buffer capacity of 10 per mobile node yields a
state space with size exceeding 1010. To cope with such state spaces, we rely on
Maclaurin series expansions of the solution of the Markov process [28–31] to as-
sess the performance both fast and accurately. Depending on the context in which
they are introduced, series expansion techniques for Markov chains are referred
to as perturbation techniques, the power series method or light-traffic analysis.
While the naming is not absolute, perturbation methods are mainly motivated by
the assessment of the sensitivity of the performance measures with respect to a
system parameter. The case where the perturbation does not preserve the class
structure of the non-perturbed chain — the so-called singular perturbations — has
received much attention in literature [28, 32]. The power series method transforms
a Markov chain of interest in a set of Markov chains parametrised by a possibly ar-
tificial parameter. When the parameter is zero, the chain is not only easily solved,
but one can also obtain the series expansion in the parameter. When the parameter
is one, one gets the original Markov chain such that the series expansion can be
used to approximate the solution of the original Markov chain, provided the ra-
dius of convergence of the series expansion exceeds one [33]. Finally, light-traffic
analysis often corresponds to the series expansion in the arrival rate at a queue.
For an overview on the technique of series expansions in stochastic systems, we
further refer the reader to the surveys in [34] and [35] and the recent book [36].
The present study most closely relates to the numerical series expansion approach
of [30] and [31]. In contrast to this work, the present unperturbed chain is not
upper-diagonal, but block upper-diagonal. It is shown below, that calculating the
terms in the series expansion — in overload as well as under light traffic — is
much easier than solving the queueing model for any particular load. The present
paper extends our preliminary findings presented in [37, 38].

The remainder of the paper is organised as follows. The next section introduces
the modelling assumptions and settles the notational conventions. The proposed
analysis technique is then outlined in Section 4.3. Section 4.4 discusses the Marko-
vian channel model assuming Rayleigh fading. In order to validate the proposed
performance evaluation method we validate the accuracy of our results by simu-
lation in section 4.5. For the sake of demonstration, we implement several simple
schedulers [4, 31, 39, 40] and apply the proposed methodology for systems with
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Figure 4.1: Queueing model for the opportunistic scheduler

spatially independent and correlated channels. Finally, conclusions are drawn in
Section 4.6.

4.2 Queueing model

We consider a wireless AP opportunistically sending packets to multiple mobile
nodes. The AP is modelled as a Markovian queueing model withK finite-capacity
queues that share a common transmission channel, as depicted in Figure 4.1. Each
queue corresponds to the AP buffer of a particular mobile node. Let Nk(t) be
the number of packets in the buffer of the kth mobile node at time t, let Ck be
the capacity of this buffer and let N(t) = [N1(t), . . . , NK(t)] be the vector with
elements Nk(t). Arrivals at the different buffers are modelled by independent
Poisson processes; λk denotes the arrival rate at queue k. We further assume that
the packet sizes in the kth queue are exponentially distributed with rate θk.

The mobile nodes experience different time-varying channel conditions. To
model variations of the channel conditions in both space and time, we introduce
an exogenous continuous-time Markov process M(t) that modulates the states of
the different wireless transmission channels. We refer to M(t) as the background
process. Let the finite set M be the state space of this Markovian background
process, let M denote the cardinality ofM, and let αij denote the transition rate
from state i to state j, i 6= j, i, j ∈ M. For every background state m ∈ M,
let gm = [gm1, . . . , gmK ] be a vector whose kth element quantifies the channel
conditions as experienced by the kth mobile node. Hence, the channel condition
vector at time t is G(t) := gM(t). Without loss of generality, we assume that
gmk ∈ [0 . . . 1], where gmk = 1 corresponds to the best expected channel quality
that allows transmission at the highest rate and gmk = 0 represents the case of
poor channel quality when transmission is not feasible.

Given the channel conditions G(t) and the number of packets in the queues
N(t), the opportunistic scheduler assigns service rates to the different queues. Let
Ψk(g,n) be the rate assigned to the kth mobile node, assuming channel conditions
G(t) = g and queueing state N(t) = n. We do not make any additional assump-
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tions on the scheduling rule. Various specific schedulers are studied in section 4.5
including MaxRate, MaxWeight, Longest Connected Queue, and the Generalized
and Differentiated processor sharing schedulers.

In view of the assumptions above, the stochastic process [N(t),M(t)] is a
Markov process. Accounting for the packet size distribution, for queueing state
N(t) = n and background state M(t) = m, packets depart from queue k with
rate,

µk(n,m) = θkΨk(gm,n) ,

such that the total departure rate in state (N(t),M(t)) = (n,m) equals,

µ(n,m) =

K∑
k=1

µk(n,m) .

For further use, we introduce some additional notation. Let Ck = {0, 1, . . . , Ck}
be the set of possible queue contents of the kth queue and let C = C1 × . . .× CK .
The state space of our Markovian queueing model is then C ×M; S denotes the
size of the state space C ×M. Also, c = [C1, . . . , CK ] corresponds to the case
where all buffers are full;Mc = {[c, j], j ∈ M} denotes the corresponding sub-
set of the state space. We define ek as the row vector of length K with its kth
element set to 1 and all other elements equal to zero and define e as the row vector
of ones. Finally, we introduce the global arrival rate λ and global service rate µ
which allow to simultaneously scale all the arrival rates or all service rates.

Remark 9. At the level of abstraction of the queueing model at hand, we did not
specify any technological assumptions on the AP under consideration. The model
at hand allows to assess the performance of the buffer behaviour at the AP for
wireless systems with opportunistic scheduling like cognitive radio, micro-cell net-
works, Wi-Fi or WiMAX networks, and for different configurations of MU MIMO
with a single AP. In particular, the present study allows for simultaneous transmis-
sions to multiple users, while the modelling assumptions are sufficiently versatile
to capture a variety of channel- and buffer-aware policies that base their scheduling
decisions on the current state of the system and transmission environment.

4.3 Performance analysis

Having specified the modelling assumptions, we now present the numerical analy-
sis technique. We first introduce the balance equations of the Markov chain under
consideration. Expanding the stationary distribution of the Markov chain around
µ = 0 and λ = 0, with µ the global service rate and λ the global arrival rate, we
then derive approximations for the stationary distribution and various performance
measures in the light-traffic and overload regime, respectively.
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4.3.1 Balance equations

In view of the modelling assumptions introduced above, the state of the sys-
tem is described by the vector (n, j) where the vector n = [n1, . . . , nK ] col-
lects the states of the queues — nk denotes the number of packets in the kth
queue — and with j ∈ M the state of the background process. Moreover, let
π(n, j) = limt→∞ P[N(t) = n,M(t) = j] be the steady-state probability to be
in state (n, j). As there are neither simultaneous arrivals nor departures, we find
the following set of balance equations,

π(n, j)

 K∑
k=1

(
λk 1{nk<Ck} + µk(n, j) 1{nk>0}

)
+
∑

i∈M\{j}

αji


=

K∑
k=1

π(n + ek, j)µk(n + ek, j) 1{nk<Ck}

+

K∑
k=1

π(n− ek, j)λk 1{nk>0} +
∑

i∈M\{j}

π(n, i)αij , (4.1)

for n ∈ C and j ∈ M. Here 1{·} is the indicator which evaluates to one if its
argument is true and to zero if this is not the case. State transitions correspond
to arrivals at and departures from the different queues, or to state transitions of
the channel. For ease of notation, we group the stationary probabilities for a given
queueing state into vectors π(n) = [π(n, j)]j∈M. We can then rewrite the balance
equations as follows,

π(n)

(
K∑
k=1

(
λk 1{nk<Ck}IM +Mk(n) 1{nk>0}

)
−A

)

=

K∑
k=1

π(n + ek)Mk(n + ek) 1{nk<Ck} +

K∑
k=1

π(n− ek)λk 1{nk>0} , (4.2)

with Mk(n) the M ×M diagonal matrix with diagonal elements µk(n, j), with
IM the M ×M identity matrix and with A the generator matrix of M(t).

4.3.2 Regular perturbation

In the following subsections it is shown that a series expansion approach allows
for evaluating the performance of the system under either light-traffic or overload
conditions. In particular, it is shown that the series expansion of the stationary
solution of the Markov process is regular (i.e., we have a regular perturbation)
[29, 31, 41] and that the computational complexity of calculating the consecutive
terms in the series expansion is far better than the computational complexity of
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calculating the stationary distribution directly. Prior to introducing the equations
for the system at hand, we outline the main ideas of the methodology.

The system of equations (4.1) takes the generic form

πQ = 0 , (4.3)

where π is a vector which collects all stationary probabilities π(n, j) and whereQ
is a known generator matrix whose off-diagonal elements are the transition rates
between states. The row sums of the generator matrix are zero, and the matrix has
negative diagonal elements and non-negative off-diagonal elements. Assume now
that the entries of the generator matrix are affine functions of a system parameter
ε. In the following sections, this parameter will be the global arrival rate λ for the
light-traffic approximation and the global service rate µ for the overload approxi-
mation. As the entries of the generator matrix are affine functions of ε, the generic
equation (4.3) can be written as

π(ε)Q = π(ε)
(
Q(0) + εQ(1)

)
= 0 . (4.4)

Here we have made the dependence of the stationary solution π on ε explicit.
Moreover, note that Q(0) is a proper generator matrix: this is the generator matrix
of the system for ε = 0. Now, assume that this Markov process is a uni-chain (the
Markov process has at most one ergodic class). In this case, π(0)Q(0) = 0 has a
unique normalised solution. Moreover, by Cramer’s rule, one easily finds that π(ε)

is an analytic function of ε in an open interval around ε = 0. Therefore, let πi be
the ith term in the series expansion of π(ε),

π(ε) =

∞∑
i=0

πi ε
i . (4.5)

Plugging the series expansion (4.5) into (4.4) and identifying equal powers of ε,
we get

π0Q
(0) = 0 , πi+1Q

(0) = −πiQ(1) . (4.6)

Complementing the former set of equations with the normalisation condition,

π0e
′ = 1 , πie

′ = 0 , (4.7)

for i > 0, allows for recursively calculating the terms of the series expansion.
For a generic matrix Q(0), there is no gain in computational complexity as one

still needs to invert this matrix while solving for the next term in the series ex-
pansion. However, for the queueing system at hand, Q(0) has additional structure.
Indeed, for the light-traffic approximation, non-λ transitions are either departures
or changes of the channel state. Assuming a proper ordering of the states of the
Markov process, the generator matrix Q(0) is block upper-diagonal, the blocks
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having the size of the state space of the channel. For the overload approximation,
non-µ transitions are either arrivals or changes of the channel state and — with
a proper ordering of the state space — a similar block upper-diagonal structure
is obtained. In either case, recursively solving the systems of equations (4.7) is
considerably less involved. The equation

π0Q
(0) = 0

reduces to a system of M equations of M unknowns, while for each i the un-
knowns in the system

πi+1Q
(0) = −πiQ(1)

can be solved in blocks of M unknowns at a time due to the block upper-diagonal
structure of Q(0).

4.3.3 Overload-traffic analysis

We first consider the balance equation for µ → 0. In particular we express the
service rates as

µk(n, j) = µµ̃k(n, j) ,

and consider the Maclaurin series expansion in µ of the steady-state probabilities:

π(n) =

∞∑
i=0

πi(n)µi . (4.8)

For ease of notation, let M̃k(n) = µ−1Mk(n). Note that M̃k(n) does not depend
on µ. Plugging the former expression into equation (4.2) and comparing terms in
µi, we can express the ith order terms in terms of (i− 1)st and ith order terms as
follows,

πi(n)

K∑
k=1

λk 1{nk<Ck} − πi(n)A =

1{i>0}

K∑
k=1

πi−1(n + ek)M̃k(n + ek) 1{nk<Ck}

− 1{i>0}πi−1(n)

K∑
k=1

M̃k(n) 1{nk>0}

+

K∑
k=1

πi(n− ek)λk 1{nk>0} . (4.9)

Plugging n = 0 = [0, 0, . . . , 0] and i = 0 into the former equation and post-
multiplying with e′ leads to

π0(0)e′ = 0 , (4.10)
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which implies π0(0) = 0 as the elements of π0(0) are non-negative. Using
the same arguments, one then shows by iteration that for all n ∈ C \ {c}, we
have π0(n) = 0 and π0(c)A = 0. Together with the normalisation condition∑

n∈C π0(n)e′ = 1, this shows that π0(c) = a, the steady-state solution of the
Markov process M(t) (i.e., the normalised solution of aA = 0).

For the higher-order terms (i > 0), we have

πi(n)

(
K∑
k=1

λk 1{nk<Ck}IM −A

)
=

K∑
k=1

πi−1(n+ek)M̃k(n+ek) 1{nk<Ck}

+

K∑
k=1

(
πi(n− ek)λk − πi−1(n)M̃k(n)

)
1{nk>0} . (4.11)

For n 6= c, the matrix on the left-hand side is invertible. Hence, we can calculate
the probabilities πi(n) in lexicographical order. For n = c, we get

πi(c)A =

K∑
k=1

(
−πi(c− ek)λk + πi−1(c)M̃k(c)

)
, (4.12)

and the matrix on the left-hand side is not invertible. A solution of this equation
takes the form

πi(c) =

K∑
k=1

(
−πi(c− ek)λk + πi−1(c)M̃k(c)

)
A# + κia , (4.13)

for any κi. Here, A# = (A+ e′a)−1 − e′a is the group inverse of A. Finally, the
remaining unknown κi follows from the normalisation condition∑

n∈C
πi(n)e′ = 0 . (4.14)

In view of the calculations above, one easily verifies that the numerical complex-
ity of the algorithm for the Lth order expansion is O(LM2S) as there are S/M
blocks, L terms in the recursion and the operations with blocks have complexity
O(M3).

4.3.4 Light-traffic analysis

Similar arguments can be developed for the case of light-traffic conditions, that is,
we set λk = λλ̃k and consider an expansion of the form

π(n) =

∞∑
i=0

πi(n)λi .
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In view of the balance equations, the terms of this series expansion adhere

πi(n)

(
K∑
k=1

Mk(n) 1{nk>0} −A

)
=

K∑
k=1

πi(n + ek)Mk(n + ek) 1{nk<Ck}

− 1{i>0}πi−1(n)

K∑
k=1

λ̃k 1{nk<Ck} + 1{i>0}

K∑
k=1

πi−1(n− ek)λ̃k 1{nk>0} .

(4.15)

For i = 0, we can show that π0(n) = 0 for n 6= 0 and π0(0) = a. For i > 0 and
n 6= 0, we can recursively calculate all πi(n) in reverse lexicographical order as
the matrix on the left-hand side is invertible. For n = 0, we get

πi(0) = −
K∑
k=1

πi(ek)Mk(ek) + πi−1(0)

K∑
k=1

λ̃k)A# + κ̃ia , (4.16)

where κ̃i can be determined from the normalisation condition (4.14).

4.3.5 Performance metrics

In order to quantify the performance of the system at hand we consider the fol-
lowing metrics for the kth queue: the mean queue content E[Qk], the variance of
the queue content var[Qk] and the blocking probability bk. As Poisson arrivals see
time averages, the blocking probability for the kth queue is the probability that the
number of packets in this queue is equal to the queue capacity, bk = P[nk = Ck].
Additionally, we calculate the mean of the total system content E

[
Qtotal

]
. These

characteristics can be expressed in terms of the stationary distribution π(n). We
then find approximations of these metrics by replacing the stationary distribution
by its Lth order expansion,

E
[
Qtotal

]
=
∑
n∈C

π(ε)(n)e′ne′ ≈
L∑
i=0

∑
n∈C

π
(ε)
i (n)e′ne′εi ,

E[Qk] =
∑
n∈C

π(ε)(n)e′ne′k ≈
L∑
i=0

∑
n∈C

π
(ε)
i (n)e′ne′kε

i ,

bk =
∑
n∈C

π(ε)(n)e′ 1{ne′k=Ck} ≈
L∑
i=0

∑
n∈C

π
(ε)
i (n)e′εi 1{ne′k=Ck} ,

var[Qk] =
∑
n∈C

π(ε)(n)e′(ne′k)2 − E[Qk]2

≈
L∑
i=0

∑
n∈C

π
(ε)
i (n)e′(ne′k)2εi − E[Qk]2 , (4.17)
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(4.18)

where the dependence on ε has again been made explicit, ε being the service rate
µ in the overload expansion or the arrival rate λ for the light-traffic case.

4.4 Modelling the wireless environment

In this section, we introduce a particular channel model for the multi-channel wire-
less communication scenario at hand. For a wide range of applications, fluctua-
tions in a wireless communication link can be efficiently modelled by means of
Markov chains. For a single channel, multiple authors have proposed Marko-
vian models before, see e.g. [27, 42–44]. We here adapt the discrete-time channel
model of [27] to the continuous-time Markov chain setting. As we also investigate
the influence of cross-channel correlation, we extend the single-channel approach
of [27] to multiple correlated channels. The proposed approach for both single-
and multi-channel models also extends to other channel models including Rician
fading channels and Nakagami-m fading channels [18].

4.4.1 Single-channel model

To model the behaviour of a single Rayleigh fading channel by a Markov chain
with state space J = {1, 2, . . . , J}, we construct a Markov chain such that the
stationary distribution of the Markov model closely matches the distribution of
the Signal-to-Noise ratio (SNR), as well as the rates in which certain levels are
crossed.

For a Rayleigh fading channel, the stationary distribution of the SNR is expo-
nentially distributed,

P[SNR ≤ η] = F (η) = 1− exp

(
− η

ν

)
,

where ν denotes the mean SNR. To closely match this distribution, we first discre-
tise the distribution. That is, we choose levels η0 < η1 < η2 < . . . < ηJ , and
define,

yj = P[ηj−1 < SNR ≤ ηj ] = F (ηj)−F (ηj−1) = exp

(
−ηj−1

ν

)
−exp

(
−ηj
ν

)
.

That is, yj is the probability that the SNR lies in the interval (ηj−1, ηj ].
The time variations of the SNR are characterised by the Doppler frequency

effect, which is caused by the motion of the mobile nodes. In particular, let Nj
denote the mean number of times per time unit the SNR crosses the threshold ηj
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downward. Obviously, Nj is also the mean number of times per time unit the SNR
crosses the threshold ηj upward. Nj is given by [45],

Nj =

√
2πηj
ν

f exp

(
−ηj
ν

)
, (4.19)

where f denotes the Doppler frequency and where ν is the mean SNR as before.
We now construct a Markov chain Y (t) with stationary distribution {yj , j ∈

J } such that the mean number of transitions per time unit from state j to state
j + 1 equals Nj . Indeed, a transition from state j to state j + 1 corresponds to
crossing threshold ηj . Downward crossings are defined likewise. This leads to the
following transition rates for j, k ∈ J ,

aj,k =


Nj

yj
for k = j + 1 ;

Nj−1

yj
for k = j − 1 ;

0 otherwise.

It is now easily verified by checking the local balance equations that {yj , j ∈ J }
is the stationary distribution of the Markov chain with transition rates {aj,k, j, k ∈
J }. Hence we have found a Markov process which agrees with the (discretised)
stationary distribution, as well as with the level crossings specified by the Doppler
effect.

Once the generator matrix Ã with transition rates aj,k is obtained for a single
channel as above, we can easily expand the model for the case of multiple inde-
pendent channels. We can do so by merging K single-channel models, the kth
model having state space Jk = {1, . . . , Jk} into a multidimensional Markov pro-
cess. The state space of the joint model is thenM = J1× . . .JK . In other words,
the state of the channels is described by a vector, the kth element in this vector
denoting the state of the kth channel. The generator matrix of this Markov chain
is,

A =

K⊕
k=1

Ak , (4.20)

where Ak is the Jk × Jk generator matrix of the kth channel and where ⊕ denotes
the Kronecker sum.

4.4.2 Multiple channels

In order to assess the effects of channel correlations, we now construct a channel
model where (i) the characteristics of the single-channel models are given and
(ii) some form of correlation between the channels is introduced. Moreover, our
channel model with cross-correlation will have the same state space as a similar
model without correlation.
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Copulas We consider a model with K Rayleigh fading channels. Let νk de-
note the mean SNR of the kth channel and let fk denote the Doppler frequency
of the kth channel. Given the distribution Fk of the SNR of the kth channel for
k = 1, . . . ,K, we construct a joint distribution of the channel SNRs by means of
a copula. A K-dimensional copula C(x), x ∈ [0, 1]K , is a multivariate probabil-
ity distribution for which the marginal probability distribution of each variable is
uniform, see [46]. Hence, for a copula one has,

C(1, . . . , 1, u, 1, . . . , 1) = u ,

for 0 ≤ u ≤ 1. Given a copula Cθ with parameter θ, the K-dimensional distribu-
tion

F (x, θ) = Cθ(F1(x1), . . . , FK(xK))

then has the required marginal distributions. The parameter θ can then be used
to introduce the required amount of cross-channel correlation. For the numerical
examples, we adopt the Clayton and Vine copulas.

The Clayton copula is an Archimedean copula with generator φ(x) = max((1+

θx)−1/θ, 0), yielding the copula,

Cθ(x) = max

(
K∑
k=1

x−θk − (K − 1), 0

)−1/θ

for x = [x1, . . . , xK ] ∈ (R+)K and θ ∈ [−1/(d− 1),∞) \ {0}. For the Rayleigh
fading channels we therefore get,

F (x, θ) = max

(
K∑
k=1

(1− exp(−xk/νk))−θ − (K − 1), 0

)−1/θ

.

By construct, the Clayton copula is symmetric. To allow for a richer correla-
tion structure, one can construct a Vine copula. Vine copulas combine multiple
bivariate copulas into a single multivariate copula. Such a pair-copula decomposi-
tion allows for a flexible and intuitive way of extending bivariate copulas to higher
dimensions [46–48]. For the general theory on Vine copulas, we refer to [48]. We
will apply a 3-dimensional regular D-Vine in the remainder. The density of the
multivariate distribution is then given by,

f(x1, x2, x3) = f1(x1) f2(x2) f3(x3) c12 (F1(x1), F2(x2))

× c23 (F2(x2), F3(x3)) c13|2
(
F1|3(x1|x2), F3|2(x3|x2)

)
or, additionally assuming conditional independence, by,

f(x1, x2, x3) = f1(x1) f2(x2) f3(x3) c12 (F1(x1), F2(x2))
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× c23 (F2(x2), F3(x3)) c13|2 (F1(x1), F3(x3)) . (4.21)

Here each c∗(·, ·) is a bivariate copula, Fk(·) is the univariate distribution of the
SNR of the kth channel as above, and fk(·) is the corresponding density function.

Discretisation We now again discretise the SNRs. Assuming we discretise the
SNR of the kth channel in Jk levels, let ηk,0 < ηk,1 < ηk,2 < . . . < ηk,Jk denote
the thresholds of these SNR levels. We then introduce the multivariate discrete
distribution,

yj = P[η1,j1−1 < SNR1 ≤ η1,j1 , . . . , ηK,jK−1 < SNRK ≤ ηK,jK ]

with j = [j1, . . . , jK ] ∈ M = J1 × . . .× JK , with Jk = {1, . . . , Jk} as before,
and where SNRk denotes the SNR of the kth channel. We can of course express
yj in terms of F (x) as follows,

yj =
∑

i∈{0,1}K
(−1)‖i‖F (η1,j1−i1 , . . . , ηK,jK−iK ) ,

with i = [i1, . . . , iK ] and where ‖i‖ =
∑K
k=1 ik is the `1 norm. For example, for

K = 3 we have,

yj1,j2,j3 = F (η1,j1 , η2,j2 , η3,j3)− F (η1,j1−1, η2,j2 , η3,j3)

− F (η1,j1 , η2,j2−1, η3,j3) + F (η1,j1−1, η2,j2−1, η3,j3)

− F (η1,j1 , η2,j2 , η3,j3−1) + F (η1,j1−1, η2,j2 , η3,j3−1)

+ F (η1,j1 , η2,j2−1, η3,j3−2)− F (η1,j1−1, η2,j2−1, η3,j3−1) .

Construction of the Markov process As for the single-channel case, the time
variations of the SNR are characterised by the Doppler frequency effect, which is
caused by the motion of the mobile nodes. We now construct a Markov chain such
that the mean number of upcrossings of the thresholds for the kth channel is in
accordance with the Doppler effect. That is, the mean number of upcrossings of
level ηk,j by the kth channel equals,

Nk,j =

√
2πηk,j
ν

fk exp

(
−ηk,j

ν

)
.

Additionally assuming that channels do not cross at the same time, we find for
i, j ∈M,

αj,i =


Nk,jk

yj
for i = j + ek ;

Nk,jk−1

yj
for i = j− ek ;

0 otherwise.
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As for the single-channel case, it is now easily verified by checking the local bal-
ance equations that {yj, j ∈M} is the stationary distribution of the Markov chain
with transition rates {αj,i, j, i ∈ M}. Hence we have found a Markov process
which agrees with the (discretised) stationary (multivariate) distribution, as well
as with the level crossings specified by the Doppler effect.

4.4.3 Channel State Information

The Markov chains for the single and multiple channels above describe the evolu-
tion of the SNR of the channels. It now remains to map the states of these Markov
chains on the transmission rates that can be achieved. We describe the mapping
for the multivariate case, the single-channel model being a particular example.

The maximal achievable channel capacity γ for a given SNR η and bandwidth
B, is given by the Shannon-Hartley theorem [45],

γ = B log2(1 + η) .

As the transmission rate is proportional to the channel capacity, we introduce the
following mapping j = [j1, . . . , jK ]→ gj fromM to [0, 1]K ,

gj =

[
log2(1 + ξ1,j1)

log2 (1 + η best)
, . . . ,

log2(1 + ξK,jK )

log2 (1 + η best)

]
,

where η best is the best SNR that is achievable (for all channels) and where ξk,j is
the average SNR of the kth channel in state j,

ξk,j =

∫ ηk,j

ηk,j−1

ηdFk(η) .

The kth element gjk of the vector gj denotes the fraction of the maximal trans-
mission rate that is available for the kth channel when the channel state is j. The
mapping from SNR to rate depends on the system specifications and can vary from
one transmitter to another. The value gjk is referred to as the channel state infor-
mation and is made available to the opportunistic scheduler.

4.4.4 Examples of schedulers

For the sake of illustration, we have implemented several schedulers including
purely opportunistic, purely non-opportunistic and weighted schedulers. We de-
scribe the different schedulers in detail below.

MaxRate A first example of a greedy opportunistic scheduler is the MaxRate
scheduler. This scheduler one serves the mobile nodes with the best channel con-
ditions. Let κMR(j) be the set

κMR(j) = arg max
k∈{1,...,K}

gjk ,



QUEUEING ANALYSIS OF OPPORTUNISTIC SCHEDULING 4-17

where gjk is the channel state information for user k, which depends on the state
of the channel j. For MaxRate, we have the following service rate,

µk(n, j) =

{
µgjk

1
|κMR(j)| for k ∈ κMR(j)

0 otherwise.

Here |κMR(j)| is the cardinality of κMR(j). This scheduler was first considered
in [4] for single-cell MU communication.

MaxWeight In contrast to MaxRate, the MaxWeight scheduler selects the user
with the maximum weight, which is calculated as the product of queue length and
channel quality, see [40]. For N(t) = n and M(t) = j, MaxWeight selects users
at time t from the set,

κMW (n, j) = arg max
k∈{1,...,K}

gjknk .

Hence this results in the following service rate for MaxWeight,

µk(n, j) =

{
µgjk

1
|κMW (j)| for k ∈ κMW (j)

0 otherwise.

Longest connected queue Schedulers may also not account for the channel state
at all. An example of a non-opportunistic scheduler is one that chooses the longest
queue. The scheduler is shown to be stable for dynamic server allocation to par-
allel queues with randomly varying connectivity in [39] and called the Longest
Connected Queue (LCQ). For N(t) = n and M(t) = j, the scheduler serves
mobile nodes from the set

κLCQ = arg max
k∈{1,...,K}

nk .

Notice that also in this case the actual service rate µk(n)(n, j) for node k(n) does
depend on the channel condition. Indeed, we have,

µk(n, j) =

{
µgjk

1
|κLCQ(j)| for k ∈ κLCQ(j)

0 otherwise.

Processor sharing Finally, we mention two schedulers which are inspired by
discriminatory (DPS) and generalised processor sharing (GPS) [31], but with weights
set to reflect the channel conditions. The share of transmission resources assigned
for each user takes one of the following forms:

DPS: sk(n, j) =
gjknk∑K
`=1 gj`n`

,
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GPS: sk(n, j) =
gjk 1{nk>0}∑K
`=1 gj` 1{n`>0}

,

where gjk is the channel quality for user k when the channel state is j. Eventually,
the transmission rate of the kth mobile user µk(n, ) depends on the overall system
transmission rate µ, the share of transmission resources sk(n, j) assigned to user
k and the quality of the radio link gjk:

µk(n, j) = µgjksk(n, j) .

4.5 Results
In this section we compare various schedulers by some numerical examples. We
consecutively consider systems with independent channels and systems with cross-
channel correlation. The following performance metrics are calculated by means
of (4.17): the mean queue content E[Qk], the variance of the queue content var[Qk]

and the blocking probability bk of the kth queue. Assuming identical queues and
channels, we provide results for a single queue, and therefore drop the index k
in the figures. As our analysis is an approximation, we validate our results by
simulations. The simulation results are obtained by means of the standard Gillespie
algorithm, see for example [49].

4.5.1 Independent channels

We first assume that all channels are independent and identical with Doppler fre-
quency fk = 100 Hz and mean SNR level νk = 30dB for k = 1, . . . ,K. To
construct the channel model, we partition the SNR into 3 ranges, the thresholds
being chosen as follows: η0 = 0dB, η1 = 20dB, η2 = 30dB, η3 = 40dB. Note
that various strategies of SNR partitioning can be applied in order to establish SNR
thresholds [50], the choice made here mainly being for illustration purposes. With
these parameters, the method of channel modelling described in subsection 4.4.1
results in the following transition rate matrix:

Ak =

−75.369 75.369 0
13.357 −30.530 17.173

0 25.069 −25.069

 .

In the figures below, we consider systems with K = 4 mobile users experi-
encing independent and stochastically identical channel conditions. Up to C = 10

packets can be stored at the buffer of the AP for each mobile user; packets arriving
at a full buffer are rejected. We assume a maximum achievable downlink transmis-
sion rate of 10 Mbit/s and an average packet size of 1.125 MB. Note that with the
above assumptions, the channel process with transition rate matrix A = ⊕4

k=1Ak
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has 34 states, whereas the number of queueing states amounts to 114 states. Hence,
the Markov process at hand has 1.185.921 states.

In a first set of figures, we compare the MaxRate, MaxWeight and LCQ sched-
ulers. Figures 4.2 and 4.3 show the mean and variance of the queue content as
well as the blocking probabilities for these schedulers, in the light-traffic and in
the overloaded regime, respectively. For each of these performance measures, we
plot the 5th, 15th and 50th order expansions, as well as simulation results for
comparison. Both simulation and numerical results indicate that the purely oppor-
tunistic MaxRate scheduler performs better than MaxWeight and LCQ in both the
light-traffic regime and the overloaded regime. The reason for this advantage can
be explained as follows: MaxRate always serves a customer with the maximum
available transmission rate, and therefore, maximises the throughput of the sys-
tem. In contrast, the MaxWeight policy selects the user with the highest product of
queue length and transmission rate. Under this strategy the system benefits from
the multi-channel diversity while preventing service starvation in the queues with
constantly poor channel quality. Fairness of the MaxWeight scheduler, however,
comes at the cost of a decrease of the system throughput as compared to the purely
opportunistic MaxRate. In comparison with LCQ, MaxWeight performs slightly
better than the LCQ scheduler, due to the utilisation of the channel information.
Recall that LCQ does not benefit from the channel information and always serves
the node with the longest queue, even if the channel conditions are unfavourable
for transmission. This approach guarantees fairness, however, impairs the system
performance in a transmission environment with a high MU diversity. Numerical
results show that although MaxWeight performs better than LCQ, the performance
metrics are rather close to each other.

We now assess the accuracy of the series expansions. Obviously, by increasing
the order of the expansion, the approximations improve, as they are known to be
converging to an exact match within the region of convergence of the expansion.
While the 5th order expansion is only accurate in a small region around λ = 0 or
µ = 0, the 15th order approximation is already accurate in a much wider region,
while the 50th order expansion is accurate in an even wider region. Note that the
series expansions of all performance measures (for a particular scheduler) have the
same region of convergence, as they are derived from the same expansion of the
steady-state distribution. In fact, the higher order expansions allow for heuristi-
cally determining the region of convergence as we get a very accurate match in
the region of convergence, followed by an almost immediate and extensive devia-
tion of the true value. This is the case for the 50th order expansion, higher order
expansions (not shown here) further confirming that the position of this sudden de-
viation is fixed. This then indeed strongly suggests that this position corresponds
with the boundary of the region of convergence. On the figures, the limits of the
regions of convergence of the light traffic approximation are λ ∈ [0, 10.1] Mbit/s
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Figure 4.2: Mean queue content, variance and blocking probability in light traffic regime
for systems with K = 4 mobile users and M = 3 channel states, working under

MaxRate(MR), MaxWeight(MW) and LCQ scheduling disciplines
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Figure 4.3: Mean queue content, variance and blocking probability in overload traffic
regime for systems with K = 4 mobile users and M = 3 channel states, working under

MaxRate(MR), MaxWeight(MW) and LCQ scheduling disciplines.
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for MaxRate, λ ∈ [0, 6.3] Mbit/s for MaxWeight, and λ ∈ [0, 6.8] Mbit/s for LCQ.
For the overload expansions in Figure 4.3, we observe the convergence regions
µ ∈ [0, 8.6] Mbit/s, µ ∈ [0, 7.9] Mbit/s and µ ∈ [0, 4.7] Mbit/s for the MaxRate,
MaxWeight and LCQ schedulers respectively.

As the blocking probability decreases almost linearly for increasing µ, the 5th
order expansion seems rather accurate in a wide region. The match beyond the
region of convergence for low order expansions is coincidence and does not fur-
ther improve by increasing the order of the expansion. Indeed, the higher order
expansions reveal the limits of the region of convergence. For the light-traffic ap-
proximations, the blocking probability is very small in the region of convergence
for the MaxWeight and LCQ schedulers; the values for which the blocking prob-
ability starts increasing lie outside the region of convergence. In contrast, for the
MaxRate scheduler, we do find a good match in the region where the blocking
probabilities start increasing (the interval λ ∈ [7, 9.5] Mbit).

The next set of figures compare the DPS and GPS schedulers. Figures 4.4 and
4.5 depict the mean and variance of the queue content and the blocking probability
vs. the global arrival rate and vs. the global service rate, respectively. DPS and
GPS are opportunistic schedulers that allocate resources among the mobile users
for simultaneous transmission. All users with nonempty queues receive a share of
the service proportional to their channel qualities. GPS always allocates resources
primarily to the users with favourable channel conditions, while DPS also takes
into account the queue content of the customers. The comparison of these two
schedulers is similar to the MaxRate and MaxWeight comparison. GPS is purely
opportunistic and provides better throughput, while DPS guarantees fairness and
prevents service starvation for users experiencing poor channel conditions. The
numerical results in Figures 4.4 and 4.5 indeed confirm these findings, though the
difference between GPS and DPS is not as outspoken as the difference between
MaxWeight and MaxRate. Moreover, in the light-traffic regime, GPS and DPS
hardly differ. This is not unexpected as DPS and GPS only differ once the queue
size grows beyond 1, which does not occur frequently in light traffic.

Regarding the accuracy of the approximations, we again observe that increas-
ing the order of the approximations improves the accuracy, in the region of con-
vergence of the series expansions. Compared to the previous plots (figures 4.2
and 4.3), the region of convergence is considerably wider. For DPS we have λ ∈
[0, 8.3] Mbit/s and µ ∈ [0, 10.9] Mbit/s, while for GPS, we have λ ∈ [0, 8.4] Mbit/s
and µ ∈ [0, 9.7] Mbit/s.

4.5.2 Correlated channels

We now study opportunistic scheduling with correlated channels. We retain the
single channel assumptions of the preceding section: the mean SNR for every
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Figure 4.4: Mean queue content, variance and blocking probability in light traffic regime
for systems with K = 4 mobile users and M = 3 channel states, working under DPS and

GPS scheduling disciplines
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Figure 4.5: Mean queue content, variance and blocking probability in overload traffic
regime for systems with K = 4 mobile users and M = 3 channel states, working under

DPS and GPS scheduling disciplines
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channel is ν = 30 dB, while the Doppler frequency is fk = 100 Hz. We use the
same threshold values as well: η0 = 0dB, η1 = 20, η2 = 30dB, η3 = 40dB.
The AP serves 3 mobile users, where each user can store up to C = 30 packets.
Having defined the characteristics of a single channel, we study the following three
different correlated channel scenarios.

1. Using a Clayton copula with parameter θ = 1, we obtain the following
channel correlation matrix,

R1 =

 1 0.36948717 0.36948717
0.36948717 1 0.36948717
0.36948717 0.36948717 1

 . (4.22)

where the kjth element of R denotes Pearson’s correlation coefficient of the
SNR of the kth and jth channel,

rk` =
σ2
k`√

σ2
kkσ

2
``

,

with

σ2
k` =

∑
j∈M

yjξk,jkξ`,j` −

∑
j∈M

yjξk,jk

∑
j∈M

yjξ`,j`

 ,

where we used the notation of subsection 4.4.2. For any two channels, we
obtain the same correlation. This is not unexpected due to the symmetry of
Archimedean copulas.

2. A Vine copula allows for non-symmetric channel correlations. We consider
two vine copulas that are build using bivariate Gaussian copulas. We use ex-
pression (4.21), where the copulas C12, C23 and C13|2 are Gaussian copulas
with correlation coefficients ρ12 = 0.2, ρ23 = 0.1 and ρ13|2 = 0.3. This
parameter setting results in the following correlation matrix,

R2 =

 1 0.07591856 0.23769156
0.07591856 1 0.15236588
0.23769156 0.15236588 1

 . (4.23)

3. The third correlated channel is again based on a Vine copula with Gaussian
bivariate copulas, but now with correlation parameters ρ12 = 0.8, ρ23 = 0.7,
ρ13|2 = 0.6. For this set of parameters, we get the following correlation
matrix,

R3 =

 1 0.5654257 0.65043827
0.5654257 1 0.66211557
0.65043827 0.66211557 1

 .
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Figure 4.6: Total buffer content in light and overload traffic for systems with K = 3
mobile users with correlated channels (Clayton copula) and M = 3 states per channel,

working under MaxRate(MR), MaxWeight(MW), LCQ, DSP and GPS scheduling
disciplines number of expansion terms N = 50.

Figure 4.6 again compares the MaxRate, MaxWeight and LCQ schedulers as
well as the DPS and GPS schedulers. We show the 50th order light-traffic and
overload expansions of the total mean queue content, as well as simulation results
to verify the accuracy of the approximations. We here use the first correlated
channel model with correlation matrix R1. We again obtain a perfect match in
a first region, followed by a sharp deviation from the correct value. This again
suggests that the region of convergence of the series expansion ends at the position
of this fast deviation. Figure 4.7 depicts the same values for the Vine copula with
rate matrix R2.

Positive spatial correlations reduce MU diversity and therefore also reduce
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Figure 4.7: Total buffer content in light and overload traffic for systems with K = 3
mobile users with correlated channels (Vine copula) and M = 3 states per channel,

working under MaxRate(MR), MaxWeight(MW), LCQ, DSP and GPS scheduling
disciplines; number of expansion terms N = 50.
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the gain of opportunistic scheduling. Nevertheless, if correlations are not strong,
the opportunistic approach can still be beneficial. Figure 4.8 demonstrates the
diminished efficiency of opportunistic scheduling by comparing the MaxRate,
MaxWeight and LCQ schedulers for independent and correlated channels in the
overloaded regime. In particular, Figure 4.8 compares the differences in total
queue content between MaxRate and LCQ, MaxWeight and LCQ, and GPS and
DPS,

MaxRate and LCQ : ∆LCQ
MR = E

[
QLCQ]− E

[
QMR] ,

MaxWeight and LCQ : ∆LCQ
MW = E

[
QLCQ]− E

[
QMR] ,

GPS and DPS : ∆DSP
GSP = E

[
QDPS]− E

[
QGPS] .

Note that a positive difference corresponds to a performance gain of the more op-
portunistic scheduler (MR, MW, DPS). For each comparison, we plot these differ-
ences for uncorrelated channels, for the Vine copula channel with rate matrix R2

(weak correlation), and for the Vine copula channel with rate matrix R3 (strong
correlation). As previously noted, both MaxWeight and MaxRate outperform the
LCQ scheduler, while GPS performs better than DPS, the performance gain be-
ing higher for less heavily loaded systems. The performance gain however clearly
diminishes by the introduction of channel correlations, more correlation meaning
less gain.

4.6 Conclusions

We considered a queueing model for assessing the performance of a downlink
wireless MU transmission scenario, under varying channel conditions. The buffer
behaviour of the wireless access point was modelled by a queueing system with
multiple queues and a shared server. Accounting for time-correlation of the chan-
nel quality, the channels were modelled by an exogenous Markov process, each
state of this Markov process corresponding to fixed (but not necessarily equal)
channel qualities of the different channels.

As the state space of this system is very large and does not have additional
structure which can be exploited (like product form, G/M/1-type or M/G/1-type),
we focused on a numerical approximation approach which relies on series expan-
sion techniques. We showed that this approach can calculate various performance
measures fast in the light-traffic and the overload-traffic regimes.

We then adapted a discrete-time Markov model from literature for a single
Rayleigh fading channel, first to an equivalent continuous-time Markov channel
model, and then to a multi-channel Markov model. In the latter case, we relied
on copulas (Clayton and Vine copulas) of the stationary distribution of the SNR of
the different channels for the introduction of cross-channel correlation.
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Figure 4.8: Difference in total mean buffer content in overload traffic for a system with
K = 3 mobile users under independent, weakly correlated and strongly correlated

channels for MaxRate(MR), MaxWeight(MW), LCQ, DPS and GPS scheduling disciplines;
the order of the expansion is N = 50.

For the purpose of demonstration, several well-known scheduling disciplines
were analysed numerically and compared with each other. The results for both
independent and correlated channels were validated by simulation. It was shown
that the approximation of the performance measures was not only computationally
efficient, but also very accurate in the light-traffic and the overload-traffic regimes.
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Abstract. Drive-thru-Internet is a scenario in Cooperative Intelligent Transporta-
tion systems (C-ITS) where a road-side unit (RSU) provides multimedia services
to vehicles that pass by. The performance of drive-thru-Internet depends on vari-
ous factors, like data traffic intensity, vehicle traffic density, and radio-link quality
within the coverage of RSU, and must be evaluated at the stage of system design
in order to fulfil Quality of Service requirements of the customers in C-ITS. In
this paper, we present an analytical framework that models downlink traffic in a
drive-thru-Internet scenario by means of a multidimensional Markov process: the
packet arrivals in the RSU buffer constitute Poisson processes and the transmission
times are exponentially distributed. Taking into account the state space explosion
problem associated with multidimensional Markov processes, we use iterative per-
turbation techniques to calculate the stationary distribution of the Markov chain.
Our numerical results reveal that the proposed approach yields accurate estimates
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of various performance metrics like the mean queue content and the mean packet
delay for a wide range of system workloads.

5.1 Introduction

The emerging concept of Cooperative Intelligent Transportation Systems (C-ITS)
suggests a widespread adoption of information and communication technologies
in diverse vehicular applications aimed to increase transport safety, efficiency and
comfort. C-ITS vehicles exchange information with each other as well as with
roadside infrastructure in a heterogeneous wireless networking environment.

There are number of communication technologies currently under develop-
ment, that could support connectivity in a vehicular environment [1]. To enable ve-
hicular communications in the Dedicated Short Range Communications (DSRC)
5.9 GHz band, IEEE 802.11p, which is currently integrated into the recent IEEE
802.11-2012 standard, was introduced by Institute of Electrical and Electronics
Engineers (IEEE) [2]. The IEEE 802.11p defines two lower layers of the commu-
nication stack: the Physical layer and the Medium Access Control layer. IEEE also
introduced WAVE (wireless access in vehicular environment), which defines the
overall protocol stack for vehicular communications, including management and
security planes [3]. At the same time, in Europe, under the European Commis-
sion mandate M/453, European Telecommunications Standards Institute (ETSI)
developed a C-ITS protocol stack specified in ETSI EN 302 665 [4]. The ETSI
C-ITS stack consists of three layers: the access, the networking and transport, and
the facilities layer, with a number of management and security protocols specified
for all three layers [5]. Apart from DSRC, cellular technologies, like LTE (Long
Term Evolution) or the currently being developed 5G could become a comple-
menting technology choice [1, 6]. The upcoming 5G communications promises
both operation in extremely mobile environments (up to 500 km/h relative speeds)
and highly reliable connectivity with low-latency for vehicle to everything (V2X)
scenarios [7].

Infotainment services provided to the drivers and passengers are heavily de-
pendent on the connectivity of the vehicles to the Internet. Broadband cellular
networks which provide stable vehicle-to-infrastructure communication links are
assumed to be available in urban areas. Rural roads, in contrast, might have only
intermittent cellular connectivity, which motivates the consideration of a drive-
thru scenario where a moving vehicle spends at most a couple of minutes in the
coverage area of a roadside unit, an access point or a base station.

In this study we consider downlink communications for data downloading by
the vehicles from the RSU. There are variety of ITS applications under current
consideration, that require such downlink communications in a drive-thru scenario.
Some examples include media downloading, map downloading and updating, and
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vehicle software/data provisioning and updating [8]. All of these scenarios, as-
sume infrastructure-to-vehicle (I2V) communications: when in the RSU coverage
area, a vehicle should be able to download certain data, e.g. web-page content,
map segment update, software update, etc. To provide a certain level of Quality-of-
Service (QoS) to users, models to estimate communication performance in drive-
thru scenario are required.

In [6], the authors highlight the importance of resource allocation and QoS
support in DSRC and LTE vehicular communications. In our study we make an
attempt to address this issue by proposing a model that captures the resource allo-
cation process in LTE and DSRC and allows for estimating its performance for a
downlink drive-thru scenario. Below we summarise similar efforts done in [9–11]
and highlight the main limitations of the state-of-the-art models.

In [10], a TDMA-based (Time-division multiple access) scheduling algorithm
for drive-thru scenario was proposed. The main idea of the algorithm is to max-
imise the total achieved utility by all vehicles under the assumption that each
TDMA slot is assigned to only one vehicle. However, the authors make the as-
sumption of the vehicles’ constant speed for all the vehicles in the road-side unit
(RSU) range. In our study we do not fix the speed of the vehicles assuming the
vehicle residence time is exponentially distributed.

In [11] authors present an analytical approach to estimate the mean packet ser-
vice time, queue length and mean throughput per vehicle. However, the presented
model is derived under the assumptions of an infinite capacity buffer at the RSU
and fixed length data packets. In [9], an approach on spatially coordinated ac-
cess to the channel in a drive-thru scenario is presented. Following the approach
that the coverage area is divided in zones by achievable throughput, the authors
propose an algorithm that optimises the assignment of zones to vehicles such that
overall system throughput is maximised. These authors demonstrate that spatial
optimisation outperforms standard IEEE 802.11 CSMA/CA (Carrier-sense mul-
tiple access with collision avoidance) in terms of throughput. In contrast to the
aforementioned models, the present model allows us to additionally retrieve the
influence of the limitations implied by the limited RSU buffer capacity and to es-
timate the probabilities that a vehicle will not be served or that a packet will be
rejected. In addition, our approach is independent from the underlying communi-
cation technology.

To assess the achievable QoS level in drive-thru scenario for different appli-
cations, the models should capture various scenario attributes and practical lim-
itations. Since realistic modelling of the drive-thru scenario requires to consider
diverse vehicle density and changing speeds, varying channel quality, and realistic
RSU configuration (buffer capacities, number of queues, etc.), the problem be-
comes multi-dimensional. Simulation experiments could become quite extensive,
which makes it highly relevant to design an analytical model that could capture
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the realistic system behaviour and give a detailed estimation of the communica-
tion performance of the system. To draw conclusions on the QoS levels required
to support different applications, apart from expected throughput, it could also be
necessary to retrieve the probability that a vehicle will not be serviced by the RSU
due to its limited resources (packet losses due to the RSU buffer overflow) or due
to the fact that the vehicle leaves the RSU coverage zone prior to delivery as well
as estimates of queueing specific performance measures like the packet delays and
the RSU queue size.

To study scheduling of packets for the drive-thru scenario, we propose a Markov
chain model with a multidimensional state space and rely on numerical evaluation
techniques for calculating the invariant distribution of the chain. The size of the
state space of a multi-dimensional Markov chain being equal to the product of
the sizes of the individual dimensions, multi-dimensionality often leads to the so
called state-space explosion problem, sometimes also referred to as the curse of
dimensionality. As a consequence, already for chains with but a few dimensions,
a direct numerical solution of the balance equations is not computationally feasi-
ble. For the Markov chain at hand, we combine series expansion techniques and
iterative solution methods for matrix equations to find various performance mea-
sures like the mean packet delay and the mean buffer content at the RSU. Series
expansion techniques for Markov chains are referred to as perturbation techniques,
the power series algorithm and light-traffic approximations. While the naming is
not absolute, perturbation methods mainly relate to sensitivity analysis of perfor-
mance measures with respect to various system parameters. In particular singular
perturbations have received considerable attention in literature, see [14–16] and the
references therein. For such perturbations, the class-structure of the non-perturbed
chain is not retained, which poses mathematical complications. The power se-
ries algorithm transforms a Markov chain of interest in a set of Markov chains
parametrised by an auxiliary variable ρ. For ρ = 0, the chain cannot only be
solved efficiently, but one can also calculate the series expansion of the solution
of the chain in ρ. For ρ = 1 the original Markov chain is retrieved such that the
series expansion can be used to approximate the solution of the original Markov
chain, provided the convergence region of this expansion includes ρ = 1, see
e.g. [17–20]. Finally, light-traffic approximations often corresponds to a series
expansion in the arrival rate at a queue. For an overview on series expansion tech-
niques in stochastic systems, see the surveys in [21] and [22]. In the present study
we combine expansion techniques and iterative methods, a combination which was
previously explored in [23] in the context of stochastic modelling of assembly sys-
tems. In addition, we study the model in overload. Overload analysis, the opposite
of light-traffic analysis, studies the performance in the limit of the service times
growing to infinity, see e.g. [24, 25].

The contributions of this paper could be summarised as follows.
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1. We introduce a Markovian queueing model of an infrastructure vehicular
network where an RSU transmits data to vehicles in its coverage area which
consists of zones with different channel conditions under realistic assump-
tions of limited buffer length and limited number of customers in service.

2. We tackle the model numerically despite the large-scale of the queueing
system at hand. The solution relies on the Taylor series approximation tech-
nique and benefits from the sparsity of the transition rate matrix.

3. We conduct performance evaluation of a drive-thru-Internet scenario and
quantitatively characterise the mean queue content, the mean packet delay
and two types of packet loss: discarded packets and rejected packets.

The remainder of this paper is organised as follows. The next section intro-
duces the Markov process model for studying the drive-thru scenario. Numerical
solution techniques for this process are presented in section 5.3. Finally, we eval-
uate various drive-thru scenarios in section 5.4 and conclude in section 5.5.

5.2 Markov model

We propose a Markov model for the drive-through scenario. Following the mod-
els presented in [9, 10], we assume drive-thru scenario. A common modelling
approach to capture the receiving signal strength increase as long as the vehicle
approaches the roadside transmitter in the drive-thru scenario is to split the cell
into the production zone where the network throughput is high as well as the entry
and exit zones [9, 10] where the channel quality is poor, Figure 5.1. Such a simple
assumption enables the analysis independently of the underlying communication
technology e.g. DSRC or LTE. Multiple cars move from left to right through dif-
ferent zones. We focus on RSU to vehicle station communication. In this work
we do not consider the service discovery process and assume it established suc-
cessfully for each vehicle when entering the zone (for service discovery studies
interested users may refer to [12, 13]). A single RSU communicates with all the
vehicles in the different zones, the channel conditions differing from zone to zone.
We make the following assumptions.

5.2.1 Modelling assumptions

LetM = {1, . . . ,M} be the set of zones, M > 0 denoting the number of zones.
Vehicles move from zone 1 to zone M , thereby traversing all the zones in numeri-
cal order. The number of vehicles in zone m ∈ M at time t is denoted by Vm(t).
Following the model presented in [10] we assume a new vehicle arrives at zone
1 in accordance with a Poisson process with rate α. Each vehicle remains for an
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position

zone 1 zone 2 zone 3

Figure 5.1: Drive-thru scenario. Multiple cars move from left to right through different
zones, each zone representing different channel conditions.

exponentially distributed time in each zone. The mean residence time in zone m
is denoted by 1/βm and the vehicle moves to zone m + 1 upon departing zone
m, for m ∈ M \ {M}. When the vehicle leaves zone M it leaves the range of
the RSU. We further impose an upper bound K on the number of cars that can be
simultaneously served by the RSU,

M∑
m=1

Vm(t) ≤ K .

New vehicles arriving in zone 1 will not be able to connect to the RSU when there
are already K vehicles connected to the RSU. These units will also not connect
if other vehicles leave the transmission range of the RSU while they are still in
range.

For each vehicle in range, packets arrive in accordance with a Poisson process
with rate λ and are stored in a dedicated buffer at the RSU with finite capacity C.
Let X(n,m)(t) denote the number of vehicles in zone m that have n packets in the
buffer at the RSU at time t, for (n,m) ∈ C,

C = {0, 1, . . . , C} ×M .

Furthermore, let X(t) = [X(n,m)(t)](n,m)∈C . Note that Vm(t) can be expressed in
terms of X(n,m)(t),

Vm(t) =

C∑
n=0

X(n,m)(t) ,

as Vm(t) includes all vehicles in zone m, regardless of the number of waiting
packets at the RSU.

The packet length is exponentially distributed. However, as the communica-
tion channel is shared by all vehicles in range, the rate at which packets leave
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the RSU buffers depends on the complete system state: the number of vehicles in
the different zones, and the number of outstanding packets for each vehicle. For
X(t) = x = [x(n,m)](n,m)∈C , a packet is transmitted successfully in the time
interval (t, t + dt] to a particular vehicle in zone m with n packets waiting at
the RSU with probability µ(n,m)(x)dt + o(dt). In other words, there is a packet
transmitted to an vehicle in zone m with n packets waiting at the RSU with rate
x(n,m)µ(n,m)(x) when the system is in state x. Of course there are no packet de-
partures to vehicles in zone m with n packets in the buffer, if there are no such
vehicles (x(n,m) = 0).

In view of the assumptions on the vehicle arrivals and residence times in the
different zones, and in view of the assumptions on packet arrivals and departures,
the process {X(t), t ∈ R} constitutes a Markov process. The state space of this
process is,

K = {x ∈ N(C+1)M , |x|1 ≤ K}

where |x|1 =
∑

(n,m)∈C x(n,m) denotes the Manhattan norm of the vector x.

5.2.2 Balance equations

We now focus on the balance equations of the Markov chain {X(t), t ∈ R}. For
ease of notation, let e(n,m) be a vector with all elements equal to zero apart from
the element with index (n,m) which is one. We have the following possible state
transitions.

• Arrivals of new vehicles: for any state x ∈ K such that |x|1 < K, new
vehicles arrive in zone 1 with constant rate α. The new state is x + e(0,1).
That is, the number of vehicles with an empty buffer in zone 1 increases by
1. For states x with |x|1 = K, no new vehicles can connect with the RSU,
hence there are no new arrivals of vehicles .

• Arrivals of new packets: for any state x ∈ K and any (n,m) ∈ {0, . . . , C −
1} ×M, the total arrival rate for all vehicles with n outstanding packets in
zone m is x(n,m)λ as there are x(n,m) vehicles , each receiving packets with
constant rate λ. The arrival invokes a state transition to state x+e(n+1,m)−
e(n,m). Note that the first index only runs till C − 1 as the buffer of the
vehicles with C outstanding packets is full and new packet arrivals are not
accepted.

• vehicles moving zones: for any state x and for any (n,m) ∈ C, an vehicle
with n packets moves from zone m to zone m + 1 with rate x(n,m)βm (as
there are x(n,m) such vehicles, each of these moving to zone m + 1 with
rate βm). This invokes a state transition to state x + e(n,m+1) − e(n,m) for
m < M and a state transition to x− e(n,m) for m = M . In the latter case,
the vehicle leaves the transmission range of the RSU.
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• Departure of a packet: for a given x, there is a packet transmisison to an
vehicle with n outstanding packets in zone m with rate µ(n,m)(x). Hence
the total transmission rate to all vehicles n outstanding packets in zone m
with is x(n,m)µ(n,m)(x). When there is such a transmission, the new state
is x + e(n−1,m) − e(n,m) (one vehicle with n outstanding packets less, and
one vehicle with n− 1 outstanding packets more in zone m).

Let π(x) = limt→∞ P[X(t) = x] be the stationary probability to be in state
x ∈ K. In view of the possible transitions discussed above, the balance equations
read,

π(x)γ1(x) = απ(x− e(0,1))

+ λ

C∑
n=1

M∑
m=1

(x(n−,m) + 1)π(x + e(n−,m) − e(n,m))

+

C∑
n=0

M∑
m=2

βm−(x(n,m−) + 1)π(x + e(n,m−) − e(n,m))

+ βM

C∑
n=0

(x(n,M) + 1)π(x + e(n,M))

+

C−1∑
n=0

M∑
m=1

(x(n+,m) + 1)µn,m(x + e(n+,m))

× π(x + e(n+,m) − e(n,m)) , (5.1)

for x ∈ K, with n+ = n + 1, n− = n − 1, m+ = m + 1, and m− = m − 1 to
simplify the notation and with,

γ1(x) = α 1{|x|1<K}

+

C∑
n=0

M∑
m=1

x(n,m)(λ 1{n<C} + µ(n,m)(x) + βm) .

The set of balance equations allows for determining all unknown probabilities
π(x), x ∈ K up to a factor. The remaining unknown factor follows from the
normalisation condition, ∑

x∈K
π(x) = 1 .

The solution of the set of equations is unique as it is easily verified that the Markov
process is ergodic provided that α > 0, λ > 0 and βm > 0 for m ∈M.

5.2.3 Discussion

Each vehicle within range can be in M(C + 1) different states: the vehicle is in
1 out of M possible zones with 0 up to C waiting packets at the RSU. There are
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Figure 5.2: State space size versus maximum number of customers K in the system with
M = 3 zones and buffer capacity C = 1, 3 and 5.

K vehicles, which are either in range or not, so each vehicle can be in M(C +

1) + 1 states, the additional state corresponding to the case the vehicle is not in
range. Therefore, the total number of possible states is equal to the number of
K-combinations with repetition [26] (as we only track the number of vehicles in
the different states, and not the state of each MU),

Ns =

((
M(C + 1) + 1

K

))
=

(
K +M(C + 1)

K

)
=

(K + 1)(K + 2) · · · (K +M(C + 1))

(M(C + 1))!
. (5.2)

To illustrate the impact of C and K on the size of the state space, figure 5.2 shows
the size of the state space vs. K for different values of C as indicated, and for
M = 3 zones. The figure 5.2 reveals that the state space quickly grows with the
parameters K and C. Only for very small K and C (and M ), it is computationally
feasible to solve the system of balance equations directly.

While a direct solution is not computationally feasible, the number of possible
transitions from any state is at most 3K (for each MU, there can be an arrival,
a departure or a change of zone) which is far smaller than the size of the state
space. For such sparse systems of equations, iterative solution methods like Jacobi
iteration, the Gauss-Seidel method or successive overrelaxation are effective, the
complexity of a single iteration being O(NsK). In the remainder, we rely on
these methods as well as on power-series expansion techniques. Series expansion
techniques are used to obtain performance measure in a parameter range, rather
than in a single point in the parameter space. Moreover, we identify a number of
cases in which series expansion techniques can be applied with the same numerical
complexity of the iterative solution methods.
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With the above mentioned methods, the effects of the state space explosion
problem on the solution speed are mitigated, but M , K and C still cannot be
chosen arbitrarily large. This is the case for any numerical solution method as such
methods are at least O(Ns) as one needs to calculate Ns stationary probabilities.
While the number of zones M and the number of vehicles K are typically limited,
the buffer capacity C typically is fairly large. The state-space explosion problem
being very present for large C, the following interpretation of the buffer size is
introduced to approximate systems with larger buffers.

Rather than precisely tracking the number of packets in the buffer for each
MU, we only approximately track the queue content, each queue content level in
the model representing a range of the queue content in reality. Equivalently, we
can interpret this as a merger of multiple packets into a single superpacket, which
obviously now requires more time to transmit. Let CMB denote the size of the
buffer in Megabyte. We then set the mean superpacket size to CMB/C, a larger
C corresponding to a more precise model (which is also harder to solve). The
transmission time of the superpacket being linear in the size of the packet, the
transmission rate of the superpacket equals,

µ̂(n,m)(x) = µ(n,m)(x)
CMB

CE[PMB]

where E[PMB] denotes the mean (original) packet size in Megabyte and where
µ(n,m)(x) denotes the rate corresponding to this packet size.

As the superpacket model is essentially the same as the original model, we
will not explicitly introduce superpackets in the remainder of the analysis. The
queue capacity C in the numerical examples will be limited though, and the packet
size will be larger than the typical IP packet. In other words, for the numerical
examples, we will indeed merge multiple IP packets to facilitate the performance
analysis.

5.3 Performance analysis

Before introducing the various series approximations, we introduce some addi-
tional notation. For scaling how vehicles move from zone to zone and for scaling
the transmission times, we express the rates to move zones and the transmission
rates as follows,

βm = ββ̂m , µ(n,m)(x) = µµ̂(n,m)(x) ,

where β̂m and µ̂(n,m)(x) denote the moving and transmission rates before scaling.
We assume that these unscaled rates are given and now study the effects of α, β, λ
and µ on the system dynamics.
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5.3.1 A few vehicles with high load

We first investigate performance when the arrival rate of new vehicles is low (α
close to zero) and the transmission rate of the vehicles is low (µ close to zero).
To this end, we set α .

= µ and calculate the series expansion of the stationary
distribution vector π for µ→ 0.

Plugging µ(n,m)(x) = µµ̂(n,m)(x) and α = µ and the series expansion,

π(x) =

∞∑
i=0

πi(x)µi

into the balance equations (5.1) and isolating the terms in µi leads to,

πi(x) =
1

γ2(x)

(
− πi−1(x) 1{|x|1<K}

− πi−1(x)

C∑
n=0

M∑
m=1

x(n,m)µ̂(n,m)(x)) + πi−1(x− e(0,1))

+ λ

C∑
n=1

M∑
m=1

(x(n−,m) + 1)πi(x + e(n−,m) − e(n,m))

+

C∑
n=0

M∑
m=2

βm−1(x(n,m−) + 1)πi(x + e(n,m−) − e(n,m))

+ βM

C∑
n=0

(x(n,M) + 1)πi(x + e(n,M))

+

C−1∑
n=0

M∑
m=1

(x(n+,m) + 1)µ̂n,m(x + e(n+,m))

× πi−1(x + e(n+,m) − e(n,m))

)
, (5.3)

for x ∈ K and i ∈ N+, and with

γ2(x) =

C∑
n=0

M∑
m=1

x(n,m)(λ 1{n<C} + βm) .

For i = 0, it is easily verified that,

π0(x) =

{
1 for x = 0

0 otherwise.

Indeed, for α = 0 there are no arrivals of new vehicles. As βm > 0, all vehicles in
range eventually leave, such that there are no vehicles in stationary regime.
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The system of equations (5.3), along with the normalisation condition,∑
x∈K

πi(x) = 1{i=0} ,

allows for solving for all πi(x) once the terms of order (i − 1) are determined.
Moreover, solving this system of equations is computationally less demanding,
compared to the original balance equations (5.1).

To show this, we first define the following order for the state space K. The di-
mensions of the state space have a double index. Let the index (n,m) correspond
to position nM + m in the state vector which corresponds to the lexicographical
order of the pairs (n,m). Given this order, we order the state vectors in lexi-
cographical order as well. Close inspection of equation (5.3) now shows that to
calculate πi(x), we only need the ith order terms for states which are larger than
x. This means that we can calculate the terms πi(x) one by one in reverse order.
This is possible for all states apart from state x = 0 as γ2(0) = 0. In this case, we
invoke the normalisation condition, which leads to,

πi(0) = −
∑

x∈K\{0}

πi(x) .

The numerical complexity for the calculation of single term in the expansion is
O(NsK), which corresponds to the complexity of calculating a single iteration us-
ing the Gauss-Seidel method. Whereas every iteration in the Gauss-Seidel method
improves the accuracy of the solution in a single point in parameter space, each
“iteration” of the perturbation improves the accuracy of the solution in a region in
the parameter space around the point µ = 0.

Remark 10. The existence of a series expansion in a region around µ = 0 is
guaranteed as we only have a finite number of equations, and the solution for
µ = 0 is well defined. Indeed, by Cramer’s rule, we know that the stationary
distribution is a rational function of µ. Such functions only have a finite number of
isolated singularities, µ = 0 not being one as there is a unique solution for µ = 0.
Hence, the stationary probabilities are analytic functions of µ in a region around
µ = 0.

5.3.2 Perturbation of the arrival rate: λ ≈ λ0

We study the stationary distribution π as a function of λ in a neighbourhood of a
fixed arrival rate λ0, while keeping all other rates constant. To this end, consider
the following Taylor series expansion of the stationary probabilities,

π(x) =

∞∑
i=0

πi(x) (λ− λ0)i , (5.4)
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for x ∈ K, and λ0 ≥ 0. As in the preceding subsection, one easily shows the exis-
tence and convergence of the series expansion in a region around λ0 by Cramer’s
rule and the uniqueness of the solution for λ = λ0.

Plugging the series expansion (5.4) into the balance equations (5.1) and isolat-
ing the terms in (λ− λ0)i yields,

πi(x) =
φi(x)

γ3(x)
(5.5)

for x ∈ K and i ∈ N+, and with,

φi(x) = −πi−1(x)

C−1∑
n=0

M∑
m=1

x(n,m) + απi(x− e(0,1))

+

C∑
n=1

M∑
m=1

(x(n−,m) + 1)πi−1(x + e(n−,m) − e(n,m))

+ λ0

C∑
n=1

M∑
m=1

(x(n−,m) + 1)πi(x + e(n−,m) − e(n,m))

+

C∑
n=0

M∑
m=2

(x(n,m−) + 1)βm−πi(x + e(n,m−) − e(n,m))

+ βM

C∑
n=0

(x(n,M) + 1)πi(x + e(n,M))

+

C−1∑
n=0

M∑
m=1

(x(n+,m) + 1)µ(m,n)(x + e(n+,m))

× πi(x + e(n+,m) − e(n,m)) ,

and,

γ3(x) = α 1{|x|1<K} +

C∑
n=0

M∑
m=1

x(n,m)

(
λ0 1{n<C} + βm + µ(m,n)(x)

)
.

In contrast to the preceding section, the system of equations (5.5) cannot be
easily solved. Therefore, we rely on the successive overrelaxation (SOR) method
[27]. SOR is an iterative method, which updates the values πi(x) in accordance
with,

πi(x)← (1− ω)πi(x) + ω
φi(x)

γ3(x)
. (5.6)

for all x ∈ K. Here ω > 0 is the relaxation factor, a sufficiently small value
allowing one to ensure convergence of the method, while a larger value can speed
up convergence. Note that φi(x) implicitly depends on the values πi(y), y ∈ K,
the most recently calculated value of πi(y) being used in the calculations above.
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Summarising, we first calculate π0(x). To this end, we initialise π0(0) =

1{x=0} and then update π0(x) by (5.6) with i = 0 for all x ∈ K, using the order of
the state space introduced in subsection 5.3.1. Note that (5.6) also holds for i = 0

if we set π−1(x) = 0 for all x ∈ K, see (5.1). We then repeat updating the values
π0(x) till convergence.

For the higher order terms, we can assume that πi−1(x), x ∈ K is already
known. We then proceed as for the 0th order term. Set π0(0) = 0 for all x ∈ K,
and repeat updating these values by (5.6) till we have convergence.

5.3.3 Perturbation of the transmission rate µ ≈ µ0

We can retrieve a similar perturbation in the transmission rate µ. To this end, we
consider the series expansion,

π(x) =
∑
x∈K

πi(x)(µ− µ0)i .

We follow the same approach as in the preceding section, again relying on the SOR
to iteratively solve the set of equations for the terms in the expansion. As for the
λ-perturbation, we choose the initial values for the ith order term as follows,

πi(x) = 1{x=0,i=0} .

We then update the values πi(x), in accordance with,

πi(x)← (1− ω)πi(x) + ω
1

γ4(x)

(
απi(x− e(0,1))

− πi−1(x)

C∑
n=1

M∑
m=1

x(n,m)µ̂(m,n)(x)

+ λ

C∑
n=1

M∑
m=1

(x(n−,m) + 1)πi(x + e(n−,m) − e(n,m))

+

C∑
n=0

M∑
m=2

(x(n,m−) + 1)βm−πi(x + e(n,m−) − e(n,m))

+ βM

C∑
n=0

(x(n,M) + 1)πi(x + e(n,M))

+

C−1∑
n=0

M∑
m=1

(x(n+,m) + 1)µ̂(m,n)(x + e(n+,m))

× πi−1(x + e(n+,m) − e(n,m))

+

C−1∑
n=0

M∑
m=1

(x(n+,m) + 1)µ0µ̂(m,n)(x + e(n+,m))
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× πi(x + e(n+,m) − e(n,m))

)
,

with

γ4(x) = α 1{|x|1<K} +

C∑
n=0

M∑
m=1

x(n,m)(λ 1{n<C} + βm + µ0µ̂(m,n)(x)) ,

for x ∈ K and i ∈ N. Here we define π−1(x) = 0 for all x ∈ K. The value
ω > 0 is again the relaxation factor of the SOR method, a sufficiently small value
allowing one to ensure convergence of the method, while a larger value can speed
up convergence.

5.3.4 Performance metrics

The former calculations allow for approximating the stationary distribution π in
a region of the parameter space. We now express various performance measures
in terms of this stationary distribution. Some relevant performance measures can
also be expressed in terms of the stationary distribution of a Markov chain with a
smaller state space. This Markov chain is also introduced below.

5.3.4.1 Moments of the number of vehicles, and the vehicle blocking proba-
bility

Vehicles move through the system, independently from the number of outstanding
packets at the RSU. Hence, any performance metric relating to the number of
vehicles in the system, can be expressed in terms of the stationary distribution of
a Markov chain that only tracks the position of the vehicles, but not the number of
packets for these vehicles.

Let Vm(t) =
∑C
n=0X(n,m)(t) again denote the number of vehicles in zone m

at time t, and let V(t) = [Vm(t)]m = 1M be the vector with entries Vm(t). The
process V(t) is a Markov process as the evolution of the position of the vehicles
does not depend on the queue content of these vehicles. For y = [y1, . . . , yM ] ∈
{z ∈ NM ; |z|1 ≤ K} .= N , let π̂(y) = limt→∞ P[V(t) = y] denote the station-
ary distribution of this Markov chain. We easily obtain the following set of balance
equations,

π̂(y)

(
α 1{|y|1<K} +

M∑
m=1

ymβm

)
= απ̂(y − e1)

+

M−1∑
m=1

βm(ym + 1)π̂(y + em − em+1)

+ βM (yM + 1)π̂(y + eM ) , (5.7)
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for y ∈ N , with normalisation condition,∑
y∈N

π̂(y) = 1 .

Here, em denotes a vector of all zeroes, except themth element which is equal to 1.
The state space of the Markov chain M(t) is far smaller than the state space of

the Markov chain Q(t). Using similar arguments as in section 5.2.3, we find that
the size of the state space equals,

Ns =

((
M + 1

K

))
=

(
K +M

K

)
.

As the size is limited, the system of equations (5.7) is easily solved.
Let V denote the number of vehicles connected to the RSU. Once the solution

is found, the mean number of vehicles E[V ] that are connected to the RSU, can be
expressed in terms of the stationary probabilities π̂(y) as,

E[V ] =
∑
y∈N

π̂(y)|y|1 .

As vehicles cannot connect if already K vehicles are connected, we have that the
blocking probability Pb equals the probability that there are K vehicles connected
P[G = K], or,

Pb = P[V = K] =
∑
y∈N

π̂(y) 1{|y|=K} .

5.3.4.2 Mean queue size at the RSU

Let Qtotal denote the number of packets waiting at the RSU for all vehicles. Its
mean can then be expressed in terms of the stationary distribution π as,

E[Qtotal] =
∑
x∈K

C∑
n=0

M∑
m=1

π(x)x(n,m)n .

The mean number of packets at the RSU for a single vehicle E[Q] then relates to
E[Qtotal] as,

E[Q] =
E[Qtotal]

E[V ]
,

as E[V ] equals the mean number of vehicles in the system.

5.3.4.3 Packet loss

There are two types of packet loss. Foremost, packets may not be able to enter
the buffer if the vehicle’s buffer is full upon arrival. In addition, packets are lost if
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the vehicle leaves the transmission range of the RSU, all packets at the RSU being
discarded if this occurs.

There are Poisson arrivals with rate λ for all vehicles in range with non-full
buffers. Hence the total effectively accepted packet arrival rate equals,

γacc,total = λ
∑
x∈K

C−1∑
n=0

M∑
m=1

π(x)x(n,m) ,

as in state x, there are
∑C−1
n=0

∑M
m=1 x(n,m) vehicles that have non-full buffers.

The effective arrival rate at an vehicles, then relates to the total effective arrival
rate as,

γacc =
γacc,total

E[V ]
.

Moreover, as packets are either accepted or rejected upon arrival, the rejection rate
γrej equals,

γrej = λ− γacc .

We now focus on the number of packets that are actually transmitted. Let
γtr,total denote the average departure rate from all vehicles in the system. For each
system state, summing the departure rates of all vehicles, we find,

γtr,total =
∑
x∈K

C∑
n=1

M∑
m=1

π(x)x(n,m)µ(m,n)(x) .

The transmission rate for a single vehicle γtr, then relates to the total transmission
rate as,

γtr =
γtr,total

E[V ]
.

Finally as packets that are accepted are either transmitted or discarded, packets
are discarded with rate,

γdis = γacc − γtr .

5.3.4.4 Packet delay

Another meaningful metric of the RSU is the mean packet delay E[D]. The latter
is directly related to the mean system content by Little’s theorem,

E[D] =
E[Qtotal]

γacc,total
, (5.8)

where γacc,total is the effective effective arrival rate at the RSU as introduced above.
Note however that the mean delay also includes the “delay” of packets that are
discarded when the vehicle leaves the coverage area of the RSU. Numerical re-
sults reveal that the mean delay calculations above approximate the mean delay of
packets that are effectively transmitted well, provided that the arrival rate λ is not
very high.
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5.4 Numerical results

We now illustrate our results by means of some numerical examples. We first focus
on the probability that vehicles that arrive in the coverage area of the RSU can also
connect. In view of the results of Section 5.3.4.1, the connection probability can
be investigated by studying the reduced Markov chain that only tracks the position
of the connected vehicles.

We assume that the coverage area of the RSU is 2 km and is divided into 3
regions, the first and last region being twice as long as the middle region. That is,
the first and last region are 800 m, while the middle region is 400 m. The zones
are referred to as entry, production and exit zone, respectively. In Figure 5.5 the
mean number of connected vehicles E[V ] and the mean blocking probability Pb
are depicted versus the arrival rate of new vehicles α. Different values for the
vehicle speed ν are assumed as depicted. As expected, both the mean number
of connected vehicles as well as the blocking probability increases for increasing
arrival rates α. In contrast, higher vehicle speeds lead to a reduction of the vehicles
(reduction of the mean and the blocking probability) as the vehicles only remain
for a shorter period in the coverage area of the RSU.
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Figure 5.5: Moments of the number of vehicles, and the vehicle blocking probability in a
system with maximum number of customers K = 10, number of ranges M = 3 and

average traffic velocities 30, 60, 90 and 120km/h.

We now fix the speed to 90 km h−1 and retain the assumptions on the coverage
area. Notice that at 90 km h−1 we have 1/β1 = 1/β3 = 32 s and 1/β2 = 16 s.
We consider various performance measures related to packet delivery, and there-
fore introduce the following assumptions on packet arrivals and packet transmis-
sions. The vehicle arrival rate is fixed to α = 0.1 s−1, meaning that there is a
new connection every 10 s on average. This value corresponds to a range of a
“reasonable free-flow” scenario, representing traffic flow of medium intensity (see
Figures 3 and 4, and Table II of [9]). This choice is motivated by the main ap-
plicability of the RSU: RSU’s in remote locations in conditions with insufficient
urban infrastructure and cellular connectivity where the typical road traffic load is
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Number of zones M = 3
Expected time spend

1/β1 = 1/β3 = 32 sin the entry and exit zones
Expected time spend

1/β2 = 16 sin the production zone
Transmission rate in

rtr = [1, 10, 1] Mbit/sin 1st, 2d and 3d zones
Car interarrival time 1/α = 10 s

Max customers in service K = 10
Buffer size C = 3 packets

Mean packet size θ = 125 kB

Table 5.1: Characteristics of the RSU and the traffic flow

low. Again following [9], we assume that the throughput in the production zone is
rtr(2) = 10 Mbps while it is only rtr(1) = rtr(3) = 1 Mbps in both entry and
exit zones. Finally, we assume that at most K = 10 vehicles can simultaneously
connect to the RSU, and that the RSU stores at most C = 3 packets for every
vehicle, the mean packet size being θ = 125 kB. For convenience, the parameters
of the RSU and the traffic flow characteristics are summarised in Table 5.1.

We assume that the bandwidth in each zone is shared by the vehicles within
that zone that have packets waiting at the RSU. Recalling that there are x(n,m)

packets in zone m with n packets, we can express the transmission rate for each
vehicle as follows,

µ(n,m)(x) =
rtr(m)/θ∑C
`=1 x(`,m)

,

the total available departure rate in zone m being rtr(m)/θ.
With the parameter values introduced above, Figures 5.6, 5.7, 5.8, and 5.9 de-

pict various performance metrics versus the data arrival rate λ. Namely, Figures
5.6 and 5.7 depict the mean queue content and the mean packets delay, while Fig-
ures 5.8 and 5.8 show discarding and rejection rates correspondingly. In all plots,
we express λ in terms of the amount of data, rather than in terms of the number
of packets. This rate is obtained by multiplying the rate in terms of the number of
packets with the mean packet size. Recall that a packet is rejected if there is no
room to store the packet upon arrival, while an accepted packet is discarded if it is
not transmitted while the vehicle is in the coverage area of the RSU. To establish
the accuracy of the perturbation approach, we depict the approximations around
the points λ0 = 0.1 Mbit/s, λ1 = 1 Mbit/s and λ2 = 5 Mbit/s, corresponding
to situations with low, medium and high load. In addition, we consider different
ordersN of the perturbation on separate plots and compare with simulation results
to verify the accuracy of the approximations.



5-20 CHAPTER 5

10
−2

10
−1

10
0

10
1

0

1

2

3

λ, Mbit/s

E
[Q

],
p
ac
ke
ts

N=5

 

 

sim

λ
0
 = 0.1

λ
1
 = 1

λ
2
 = 5

10
−2

10
−1

10
0

10
1

0

1

2

3

λ, Mbit/s

E
[Q

],
p
a
ck
et
s

N=15

10
−2

10
−1

10
0

10
1

0

1

2

3

λ, Mbit/s

E
[Q

],
p
ac
ke
ts

N=40

Figure 5.6: Mean queue content versus the traffic load of the RSU serving at most K = 10
vehicles in M = 3 zones with queue capacity C = 3 packets per vehicle.
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Figure 5.7: Mean delay time versus the traffic load of the RSU serving at most K = 10
vehicles in M = 3 zones with queue capacity C = 3 packets per vehicle.
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Figure 5.8: Rate of discarded packets versus traffic load for the RSU serving at most
K = 10 vehicles in M = 3 zones, with queue capacity C = 3 packets per vehicle.
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Figure 5.9: Rate of rejected packets versus traffic load for the RSU serving at most
K = 10 vehicles in M = 3 zones, with queue capacity C = 3 packets per vehicle.
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For increasing λ, we observe an increase of the mean queue content and the
packet rejection and discarding rates. If there are more arrivals, more arrivals can-
not be accommodated in the buffer and are dropped. In addition, there are more
packets in the buffer when the vehicle leaves the coverage area which explains the
increase of the discarding rate. The mean queue content converges to the queue
capacity C for λ → ∞, not entirely unexpected. The discarding rate also con-
verges to a fixed value for λ → ∞. This value can be calculated by noting that
for λ → ∞, C packets are dropped when the vehicle leaves. As each vehicle re-
mains for 80 s, the discarding rate converges to C/(80 s) = 0.0375 s−1. Finally,
the mean delay first increases and then again decreases again for increasing λ, the
maximum delay being found for λ ≈ 1 Mbit/s. This can be explained by the
observation that when λ initially increases, there is more buffering in all zones,
leading to an increase of the delay. When λ further increases, the delays in the
entry and exit zones do not further increase as the queue is mostly full already.
However, when λ increases, more packets are transmitted in the production zone,
each such transmission being 10 times as fast as transmissions in the entry and exit
zones, which explains the decrease of the mean packet delay.

We now discuss the accuracy of the approximations. Comparing the approxi-
mations with the simulation results reveals that the approximations are only accu-
rate in a region around the point where the perturbation is taken, a better approx-
imation being obtained if one increases the order N of the perturbation. While
taking more terms in the approximation initially improves the region where the
approximation is accurate, a further increase not extend the region. This is not
unexpected as the region of convergence of the Taylor series expansions is limited
by the complex poles of the stationary probabilities (as a function of the parame-
ter). While a single perturbation does not allow for accurately assessing the per-
formance in the complete depicted range of the λ-values, the plots clearly show
that a few perturbations with overlapping convergence regions are sufficient to get
accurate estimates for all λ up to 10 Mbit/s.

Finally, recall that the delay calculations also included the time discarded pack-
ets spend in the queue. To investigate the difference between the mean delay of
transmitted packets E[D̂] and the mean delay of all packets E[D] as calculated be-
fore, Figure 5.10 depicts both. It is observed that the results are equal for small λ,
while the difference between both is limited for larger λ.

5.5 Conclusions

We considered a Markovian model for assessing the performance of a down-
link drive-thru scenario. Unlike existing performance evaluation techniques that
mainly rely on simulation results, we tackled the problem by numerical solution
methods. The network model was represented by a multidimensional Markovian
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Figure 5.10: Average delay time of all packets accepted for transmission E[D] and
average delay successfully transmitted packets E[D̂]

process. Any simplifying assumptions (e.g. dividing the coverage in zones of
equal transmission rate, modelling arrival process of vehicles as a Poisson process)
are in line with recent analytical studies of C-ITS and drive-thru in particular. In
contrast to other models, ours accounts for natural system limitations as limited
buffer capacity and a limited number of customers in service. A numerical evalua-
tion technique based on Taylor series expansion was proposed to approximate the
stationary distribution of the model at hand, which combines solution speed and
accuracy. Simulation results showed that the obtained solution exhibits accurate
approximation for a wide range of traffic loads.
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denumerable Markov chains with application to queueing models. Advances
in Applied Probability 36(3):839–853, 2004.

[15] J.B. Lasserre. A formula for singular perturbations of Markov chains. Jour-
nal of Applied Probability 31(3):829–833, 1994.



PERFORMANCE MODELLING OF DRIVE-THRU SCENARIOS 5-27

[16] K.E. Avrachenkov, J.A. Filar, P.G. Howlett. Analytic perturbation theory and
its applications. SIAM, 2013.

[17] W.B. van den Hout. The power-series algorithm: a numerical approach to
Markov processes. PhD Thesis. Tilburg University, 1996.

[18] G. Koole. On the power series algorithm. CWI, 1994.

[19] J.P.C. Blanc. Performance analysis and optimization with the power-series
algorithm. In Performance Evaluation of Computer and Communication Sys-
tems, pages 53–80, 1993.

[20] J.P.C. Blanc, R.D. van der Mei. Optimization of polling systems with
Bernoulli schedules. Performance Evaluation 22(2):139–158, 1995.

[21] B. Błaszczyszyn, T. Rolski, V. Schmidt. Advances in Queueing: Theory,
Methods and Open Problems, chapter Light-traffic approximations in queues
and related stochastic models. CRC Press, Boca Raton, Florida, 1995.

[22] I. Kovalenko. Rare events in queueing theory. A survey. Queueing systems
16(1):1–49, 1994.

[23] E. Evdokimova, S. Wittevrongel and D. Fiems. A Taylor Series Approach for
Service-Coupled Queueing Systems with Intermediate Load. Mathematical
Problems in Engineering, Article ID 3298605, 2017.

[24] E. De Cuypere, K. De Turck, D. Fiems. A Maclaurin-series expansion ap-
proach to multiple paired queues. Operations Research Letters, 42(3):203–
207, 2014.

[25] E. Evdokimova, K. De Turck, S. Wittevrongel and D. Fiems. Efficient Perfor-
mance Evaluation of Wireless Networks with Varying Channel Conditions. In
Proceedings of the 22nd International Conference on Analytical and Stochas-
tic Modelling Techniques and Applications, pages 59–72, Springer LNCS
vol. 9081, 2015.

[26] A.T. Benjamin, J.J. Quinn. Proofs that really count: The art of combinatorial
proof. Mathematical Association of America, Washington, DC, 2003. ISBN
0-88385-333-7.

[27] D.M. Young, Jr. Iterative Solution of Large Linear Systems. Academic Press,
1971.





6
Conclusions

This dissertation addressed multidimensional queueing models, a particular type
of Markovian queueing systems joining several queues in a single model. Multi-
dimensionality of the queueing models rises from the applications where arrivals
are stored in several buffers with interdependent queueing dynamics. As queues
have impact on each other, they cannot any longer be considered as independent
stochastic processes and must be studied within a joint model. When analysing
such systems the typical problem is associated with state space size being an ex-
ponential function of the number of queues. It leads to the so-called state space
explosion problem, meaning rapid growth of the state space to the size where stan-
dard solutions are no longer applicable. For such systems this dissertation pro-
poses effective performance evaluation methods relying on numerical techniques.
In this chapter we summarise the scope of results and observations collected in this
dissertation and further discuss the possible future research work.

6.1 Overview of the main results

• We considered various multidimensional Markovian queueing models in ap-
plications to the following fields: industrial assembly systems and multi-user
downlink communication within a wireless network.

• We successfully applied Taylor and Maclaurin series expansion techniques
to approximate the invariant distribution of multidimensional Markovian
queueing systems. Maclaurin series approximation covers the analysis of
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the light system load and overload approximation, while Taylor series serves
to analyse the system behaviour under medium traffic. Terms of the expan-
sion were calculated successively. All numerical results were depicted in
terms of various performance measures and confirmed by simulations.

• Under extreme loads, both light and overload, in the framework of regular
perturbation the transition rate matrix can be decomposed such that the pre-
served terms possess a triangular structure. This helps in solving the systems
of linear equations for the terms of the Maclaurin expansion at linear com-
plexity, by calculating elements of the terms in lexicographical or reverse
lexicographical order for overload and light load respectively.

• Exploration of structural properties of the multidimensional queueing mod-
els showed that the main structural property that can be practically used to
provide the performance analysis is sparsity. Transition rate matrices at hand
were shown to be sparse under given model assumptions. Iterative methods,
in particular Jacobi, GaussSeidel and Successive Over-Relaxation, are em-
ployed to evaluate the terms of the power series.

6.2 Future work
In this dissertation, applications in assembly systems and wireless communications
motivated the study of multidimensional queueing models. The developed queue-
ing models and numerical techniques, however, exhibit the flexibility to model and
analyse various systems under a wide range of model assumptions. For example,
while the introduced models mainly focus on single-server scenarios, the methods
can easily be extended to multiserver queueing systems. Thus, the models for sin-
gle access point transmission in Chapters 4 and 5 can be extended to the case of a
mobile communication network served by several base stations.

The numerical analysis in this dissertation based on Maclaurin series approxi-
mates the stationary distribution of the model at hand in the region of some param-
eter of the system. Typically this parameter describes the system load. Results in
Chapters 2 and 4 confirm that the terms of the Maclaurin series can be calculated
at linear computational complexity O(N) for state space size N . The numerical
analysis yields a correct approximation. The region of accuracy is, however, lim-
ited to light traffic and overload. In order to extend the solution to intermediate
loads, we proposed a Taylor series expansion in the region of intermediate load.
In Chapters 3 and 5 we demonstrate fair accuracy of the approach. However, the
complexity of the calculation procedure considerably exceeds the complexity for
the Maclaurin series terms. Therefore, possible future work might aim to improve
the procedure for calculating the Taylor series terms. In order to further improve
the analysis of multidimensional queueing systems, an interesting future research
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problem is to develop an approach to approximate the steady-state distribution in
the entire parameter region at reasonable computational cost.
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