Continuous thetaburst stimulation for the treatment of refractory neocortical epilepsy

Sofie Carrette1,2, Debby Klooster3,4, Willeke Staljanssens5, Pieter Van Mierlo5, Annelies Van Dycke6, Evelien Carrette1,2, Robrecht Raedt2, Alfred Meurs1,2, Chris Baeken7, Kristl Vonck1,2, Paul Boon1,2

1Department of Neurology, Ghent University Hospital, Ghent, Belgium
2Laboratory for Clinical Neurophysiology, Neurobiology and Neuropsychology (LCEN3), Ghent University, Ghent, Belgium
3Kempenhaeghe Academic Center for Epileptology, Heeze, the Netherlands
4Eindhoven University of Technology, Eindhoven, the Netherlands
5MEDISIP, Ghent University, Ghent, Belgium
6Department of Neurology, Sint-Jan General Hospital, Bruges, Belgium
7Department of Psychiatry, Ghent University Hospital, Ghent, Belgium

Sofie Carrette – phone 0032 (0)9 332 53 08 – e-mail sofie.carrette@ugent.be

Abstract:
Aim
Repetitive transcranial magnetic stimulation may have anti-epileptic effects, especially in neocortical epilepsy. Continuous thetaburst stimulation (cTBS) seems to be a potent protocol that could optimize safety, tolerability and applicability based on lower stimulation intensity and shorter duration.

Methods
Patients with refractory neocortical epilepsy are treated with a 4-day cTBS protocol (figure 1) targeted over the epileptogenic focus. Seizure frequency and adverse events are assessed over a 4-week baseline period and 8 weeks of follow-up. Cognitive and psychological testing is performed at baseline and end of follow-up.

Results
Subject 1 and subject 2 suffer from epilepsy due to a low-grade tumor in the motor cortex causing focal clonic seizures. Subject 1 also experiences myoclonia of the left leg. Subject 3 has epilepsy with auditory seizures following intracranial hemorrhage in the left temporal lobe.

cTBS was well-tolerated and did not induce serious adverse events or seizures. Mild headache occurred in subject 3. No negative cognitive or psychological side effects were noticed.

Anti-epileptic effects of cTBS varied (figure 2). Subject 1 experienced a transient reduction in severity of clonic seizures, with complete resolution of myoclonia for 6 weeks. Subject 2 experienced an overall 50% seizure frequency reduction, with most pronounced effect during treatment and initial 4 weeks of follow-up (70% reduction, 3 seizure-free weeks). No marked effect on seizures was identified in subject 3.

Conclusions
cTBS appears safe and well-tolerated, even in seizure-prone subjects. Anti-epileptic effects of variable extent were identified. Extensive parenchymal damage at the target site may have interfered with effective stimulation in subject 3.