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Specifications

Organism/cell
line/tissue

Vitis vinifera cv. PN40024

Sex Hermaphrodite
Sequencer or

array type
The scaffold sequences were obtained by whole
genome sequencing using the Sanger technology
on ABI3730xl sequencers (Applied BioSystems)
according to the supplementary information of
Jaillon et al., Nature, 2007, 449: 463–468, doi:
http://dx.doi.org/10.1038/nature06148.
Genotype data were obtained from the
GrapeReSeq 20K Vitis genotyping chip (https://
urgi.versailles.inra.fr/Species/Vitis/
GrapeReSeq_Illumina_20K) following the
Infinium HD Assay Ultra Protocol (Ilumina Inc.).
The V. vinifera cv. Kishmish vatkana mate pair
sequences were produced using an Illumina
HiSeq 2500 sequencer (Illumina Inc.).

Data format Analyzed

Experimental
factors

Three mapping populations were used:

• 120 individuals derived from two reciprocal
crosses between V. vinifera cv. Riesling cl.49
and V. vinifera cv. Gewürztraminer cl.643
(Ri × Gw)

• 358 individuals derived from a cross between
V. vinifera cv. Chardonnay and Vitis spp.
‘Bianca’ (Ch × Bi)

• 192 individuals derived from two reciprocal
crosses between V. vinifera cv. Syrah and V.
vinifera cv. Grenache (Sy × Gr)

Experimental
features

Grapevine reference genome assembly and
annotation
V. vinifera cv. Kishmish vatkana was used for the
generation of mate pair sequences.

Consent Creative commons non copy left (cc-by): the data
can be freely re-used at the condition to cite its
authors

Sample source
location

The Ri × Gw and the Sy × Gr populations were
maintained in experimental units of the Institut
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National de la Recherche Agronomique (INRA),
respectively the Service Experimentation
Agricole et Viticole (Colmar, France) and the
Domaine de Vassal (Marseillan-Plage, France).
The Ch × Bi population and the V. vinifera cv.
Kishmish vatkana variety (VIVC no. 6277) were
maintained in the germplasm collection of the
University of Udine at the Experimental Farm A.
Servadei (Udine, Italy).

1. Direct link to deposited data

http://doi.org/10.15454/1.4962347083032307E12.
http://doi.org/10.15454/1.5009072354498936E12.

2. Introduction

The grapevine reference genome was published by Jaillon et al. [1].
The sequence for the first version of the genome, called the 8X version,
was obtained using a whole genome shotgun strategy and the Sanger
sequencing technology and was assembled from reads representing 8X
coverage. Soon after, the assembly was improved through the addition
of 4X of additional coverage, including more Bacterial Artificial Chro-
mosome end sequences that greatly improved the scaffolding of the
sequence contigs [2,3]. The corresponding scaffolds and raw sequences
were deposited in European Molecular Biology Laboratory (EMBL) ar-
chives (FN594950-FN597014, 2065 entries, release 102). A new chro-
mosome assembly was also developed, based on an improved version of
the maps used for the 8X genome version [2–5] and was also archived
at EMBL (FN597015-FN597047, 33 entries, release 102): it is refer-
enced in the grapevine community as the 12X.v0 version of the
grapevine reference genome. The chromosome sequence scaffolding of
this version still necessitated improvements as around 9% of the se-
quence was not anchored to chromosomes (with the corresponding
scaffolds stacked in the “Unknown” chromosome) and 3.5% of the se-
quence could be assigned to a chromosome but without certain place-
ment and orientation within the chromosome (stacked in additional
“random” chromosomes). The chromosome assembly of the grapevine
reference genome was therefore further improved using two strategies.
First, six parental maps were saturated with SNP markers developed
with different strategies. Second, a collection of mate paired sequences
generated from 2 kb DNA fragments of V. vinifera cv. Kishmish vatkana
was used for further scaffolding. This allowed producing the 12X.v2
version of the grapevine genome assembly presented here.

All these versions of the genome assembly have been accompanied
by an automatic gene annotation. The annotation for the original 8X
genome release included 30,434 genes predicted with the GAZE soft-
ware [6]. For the 12X genome assembly, two versions of the annotation
were distributed with the 12X.v0 release: the v0 version of the anno-
tation was obtained with the GAZE software and the v1 version
(CRIBIv1, 29,971 genes) was the result of the union of v0 and a gene
prediction performed with the JIGSAW software [7]. Later, an update of
the CRIBIv1, focused on the discovery of the splicing variants, was
published by the same group [8]. Finally, National Center for Bio-
technology Information (NCBI) Refseq released its own version of the
gene prediction (27,043 putative genes) as for most of the species with
published genomes. The NCBI Refseq was produced with the Gnomon-
NCBI eukaryotic gene prediction tool [9]. For the 12X.v2 version of the
genome assembly, an annotation was performed in the frame of the
European Cooperation in Science and Technology project FA1106
(VCost) using the EUGENE software [10] and generating 33,568 genes.
The design of this latter version was under the supervision of the Super-
Nomenclature Committee for Grape Gene Annotation of the Interna-
tional Grapevine Genome Program (IGGP, www.vitaceae.org) fitting its
recommendation for the gene nomenclature. The annotation initiatives

by families that fitted these recommendations were integrated dyna-
mically to the VCost annotation by curating their respective gene
models when needed. So far, the following gene families were in-
tegrated to this annotation: the terpenoid synthase gene family [11],
the stilbene synthases [12], the MADS box [13], the GRAS [14] and the
MYB [15] transcription factors families. Here we describe the genera-
tion of the VCost.v3 version of the 12X.v2 version of the grapevine
genome assembly, based on a comparison and merging of the NCBI-
Refseq, VCost and CRIBIv1 annotations and a semi-manual curation and
following the recommendations of the IGGP.

3. Materials and methods

3.1. Plant material

Three mapping populations were used to develop high density ge-
netic maps: (i) a population of 120 individuals derived from two re-
ciprocal crosses between V. vinifera cv. Riesling cl.49 and V. vinifera cv.
Gewürztraminer cl.643 (Ri × Gw) and maintained at the experimental
unit Service Experimentation Agricole et Viticole of the Institut
National de la Recherche Agronomique (INRA, Colmar, France), (ii) a
population of 358 individuals derived from a cross between V. vinifera
cv. Chardonnay and Vitis spp. ‘Bianca’ (Ch × Bi) and obtained at
Experimental Farm A. Servadei of the University of Udine but no longer
maintained, (iii) a population of 192 individuals derived from two re-
ciprocal crosses between V. vinifera cv. Syrah and V. vinifera cv.
Grenache (Sy × Gr) maintained at the experimental unit Domaine de
Vassal (INRA, Marseillan-Plage, France).

3.2. Genotyping the Ch × Bi, Sy × Gr and Gw × Ri populations

The development of a first version of the Ch × Bi and Sy × Gr
parental maps is described in Cipriani et al. [4] and Canaguier et al. [5].
Possible errors in segregation data were carefully manually reviewed in
these maps and their subsequent revised versions [dataset] [16] were
used to generate the chromosome assembly presented in this data
paper.

For the Gw × Ri maps, total DNA was extracted with Qiagen
DNeasy Plant Maxi Kit (Qiagen, Hilden, Germany), according to the
manufacturer's instructions except that 1% of polyvinylpyrrolidone
(PVP 40,000) and 1% of β-mercaptoethanol were added to the AP1
buffer. DNA was quantified with Quant-it Picogreen dsDNA Assay Kits
(InVitrogen, Life Technologies). The samples were normalized at 50 ng/
μl in 96-well plates. Genotype data were obtained from the GrapeReSeq
20K Vitis genotyping chip (https://urgi.versailles.inra.fr/Species/Vitis/
GrapeReSeq_Illumina_20K) following the Infinium HD Assay Ultra
Protocol (Ilumina Inc., San Diego, CA, USA). Data were analyzed using
the Genotyping Module V1.9.4 of Illumina's Genome Studio® software
(Illumina Inc., San Diego, CA, USA). After genotyping quality check and
automatic clustering the SNP allele callings were manually inspected
and edited and the parental maps were generated from the data using
the R/qtl software [17].

3.3. Mate pair sequencing and alignment on the scaffolds of the grapevine
genome assembly

Illumina mate-pair reads were produced using circularization by
Cre-Lox recombination. The LoxP circularization linker was removed
and used to classify reads with DeLoxer [18]. Illumina adapter was
removed using Cutadapt [19]. Quality trimming and contaminant re-
moval was performed with erne-filter [20]. Reads with highly dupli-
cated kmers were removed using Kmercounter (http://sourceforge.net/
projects/kmercounter/). Reads were aligned to the repeat masked re-
ference genome using the software bowtie2 [21]. Reads not aligning at
scaffold ends (max 5000 bp from the ends), with mapping quality lower
than 20, or XM, XO and XG flags above, respectively 2, 1 and 4 were
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discarded with internally developed Perl scripts. Finally, alignments on
scaffolds connected by multiple mate-pairs were visually inspected to
discard further false positive alignments. Mate pairs were deposited in
the NCBI Short Read Archive under the accession number SRR5712111.

3.4. Assembly of the chromosomes

Chromosome assembly was achieved in three steps. First, all mar-
kers were aligned on the scaffolds of the 12X genome assembly
(FN594950-FN597014, EMBL release 102) by Blat [22] and ePCR [23]
according to Jaillon et al. [1]. A first ordering was generated based on
these results and taking into account only the parental maps. Then,
junctions between adjacent scaffolds were confirmed using mate pair
information. Only the scaffolds with multiple evidence of correct or-
dering (anchoring by at least two maps or at least one map and a mate
pair junction) were retained in the assembly. Mate pair information was
also used for orienting scaffolds. Finally, all the scaffolds tentatively
placed at the extremities of the chromosomes were manually inspected
for the presence of telomere repeats. This allowed also confirming the
anchoring of these scaffold and sometimes to correct or confirm their
orientation.

3.5. Development of the VCost.v3 version of the Vitis genome annotation

3.5.1. Dataset collection
The CRIBIv1, the NCBI Refseq (NCBI Vitis vinifera Annotation

Release 101: https://www.ncbi.nlm.nih.gov/genome/annotation_euk/
Vitis_vinifera/101/) and the VCost annotation were collected. CRIBI v1
and Refseq were developed on the grapevine genome 12X.v0 while the
VCost version was developed already on the 12X.v2 using the EUGENE
software. In addition, the gene models predicted by GAZE software in
the 8X assembly and by ESTs, used by Grimplet et al. [24], but absent

from the CRIBI v1 annotation were used for validation of the models
but were not considered in the final VCost.v3 annotation because they
correspond to truncated, non-functional genes. The CRIBIv1 gene track
includes 29,971 gene models, the Refseq one 27,043 gene models and
the VCost one 33,568 models. Algorithm and method for annotations
were described in Thibaud-Nissen [25] for Refseq, Foissac et al. [10] for
the VCost and in Vitulo et al. [8] for the CRIBIv1.

Manually expert-based curated gene families were also mapped on
the 12X.v2 genome version: the terpenoid synthases [11], the stilbene
synthases and chalcone synthase [12], the MADS box [13], the GRAS
[14] and the MYB [15] transcription factors.

3.5.2. Remapping of genes on the grapevine genome V2
CRIBIv1 and Refseq automatic annotations and the expert-based

curated gene models were all transposed from genome sequence V0 to
V2 using a homemade python script (free source code available at
https://github.com/timflutre/VitisOmics/blob/master/src/
transferAnnot_from_Vitis_12X_V0_to_V2.pl): since the 12X.v2 assembly
was an improvement of the ordering of the scaffolds already used in the
12X.v0 assembly [5], the positions of the features could be deduced
from the new position of the scaffolds on the V2 chromosomes (Fig. 1).
A JBrowse (http://jbrowse.org/, version 1.11.5) was set up to visualize
and give access to these results (https://urgi.versailles.inra.fr/jbrowse/
gmod_jbrowse/?data=myData/Vitis/data_gff).

3.5.3. Comparison of annotations and definition of a unique set of gene
models

The position of the gene models from the three annotations was
compared with a homemade Perl script and overlapping models were
grouped together for further analysis.

For each gene, a Blast search was performed against plant protein
sequences of the UniProt database except sequences from the Vitis

Fig. 1. Circular diagram of the transposition of the scaffolds from
the unknown chromosome of the 12X.v0 genome assembly
(black) to the chromosomes in the 12X.v2 assembly.
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genus to avoid self-matching. The 30 best hits with an e-value lower
that 1e-20 were kept for further analysis. Two indicators of quality were
collected for each gene model: (i) the number of alignments showing an
overlapping region of the subject (hit) sequence> 90% (hit overlap
value: HO) and (ii) the number of alignments where the overlapping
region of the query was> 90% (Query Overlap value: QO). High values
of both HO and QO means that the exact structure of the grapevine gene
model is frequently found in other species and is likely valid. If the HO
number is low and the QO is high, a part of the correct sequence is
probably missing in the annotation. If the QO is low and the HO is high,
the gene models or known genes from the other plants do not fully
cover the grapevine gene model, which may indicate a chimera in the
annotation. When both values are low, or in case that there is no hit, the

homology only occurs at best on portions of the gene models (subject
and query) and keeping the grapevine gene model in the final anno-
tation is questionable. It is important to note that the grapevine coding
sequences might not have the same size than in other species but if high
HO and high QO were observed for a grapevine gene model from an
annotation, this model was preferred over alternative models with
lower HO/QO value for inclusion in the final annotation.

If a gene model was only predicted in a single annotation, the locus
was added to the final gene set with no further discriminative analysis.

If a gene model was predicted by two of the three annotations, the one
with the highest HO and QO (> 90%) was chosen in the final set. When
a gene model showed equivalent HO and QO scores in more than one
annotation, the CRIBI V1 was favored over the VCost that was favored
over the Refseq annotation. The main reason to do so, was that the
CRIBI V1 was the most widely used version of annotation by the
grapevine community, in particular in many published transcriptomic
studies. The expert-based manually curated gene models were kept in
preference to all the automatic annotations.

3.5.4. Specific case of split or merged gene models
Gene prediction methods can produce inaccurate models resulting

in wrong split or merged versions of the actual genes. When such an
error occurs in one annotation and not in the others, several genes from
each annotation will belong to the same group. These groups were
carefully visually inspected with the support of the IGV program [26] to
visualize the gene structures from all the annotations. The sequence
likely to be correct was conserved. If interpretation was still conflictive,
shorter, possibly incomplete structures were favored over longer, pos-
sible chimeric, structures.

3.5.5. Construction of the final set of gene models of the Vcost.v3
annotation

Features from conserved gene models for each of the three anno-
tation sets were extracted from their respective initial GFF file and
merged into one single GFF file. Feature structure from the three au-
tomatic annotations and the six manually curated gene families were
standardized and a Locus ID was allocated to each gene following the
recommendations of Grimplet et al. [27]. Finally, a file containing both
the new sequence and the V3 annotation was prepared at the GenBank
sequence format [dataset] [28].

4. Results

4.1. Development of six parental genetic maps

Six parental maps were developed using three segregating popula-
tions, Ri × Gw, Sy × Gr and Ch × Bi, and 2664 non redundant loci.
The markers used were SSR markers [4], SNP markers developed from

Fig. 3. Percentage of the genome sequence (i) ordered on the 19 grapevine chromosomes
in the current version of the assembly (12X.v0, in green) and in the new version (12X.v2,
in blue), (ii) assigned to a chromosome but with uncertain order or (iii) not assigned to
any chromosome.

Fig. 2. Number of non-redundant loci mapped on each
grapevine chromosome using the three segregating po-
pulations.

Table 1
Number of loci from the different categories of markers in the six parental maps.

Map Gw Ri Sy Gr Ch Bi

SSR 117 128 288 283 450 466
SNP 750 831 152 94 40 59
Total 867 959 440 377 490 525

Table 2
Number of common loci in each pair of parental maps.

Gr Ch Bi Ri Gw

Sy 245 154 154 60 55
Gr 150 148 73 56
Ch 318 83 76
Bi 70 64
Ri 84
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Sanger re-sequencing [5] and for the Ri × Gw progeny, 1580 SNP
markers from the 20K grapevine chip. The distribution of the different
type of markers in the different maps is described in Table 1.

The mapped loci were quite well distributed across the chromo-
somes: from a 100 loci for the less covered (chromosome 2) to 242 loci
for the most covered (chromosome 18; Fig. 2).

The common markers between the maps mainly corresponded to
SSR markers (Table 2). These common markers were particularly im-
portant to obtain the relative order the contigs anchored in each in-
dividual parental maps.

The maps and description of the markers are available at [dataset]
[16].

4.2. Development of the 12X.v2 chromosome assembly

The 2664 non redundant markers were aligned on the scaffolds of
the V. vinifera reference genome sequence, resulting in a first draft as-
sembly of the chromosomes. A total of 103,463,614 Illumina 100-bp
reads were generated from 51,731,807 inserts of average 2 kb size from
a single library of V. vinifera cv. Kishmish vatkana. These reads were
aligned on the scaffolds sequence extremities of the V. vinifera reference
genome sequence in order to generate links between scaffolds. The
alignments were manually inspected, taking into account the data ob-
tained from the genetic maps and resulting in the selection of 2031
mate pairs that joined adjacent scaffolds.

The combination of these two layers of information together with a
manual check of the presence of telomeric repeats at the extremity of
the chromosomes allowed developing the 12X.V2 chromosome as-
sembly [dataset] [16]. It consists of 19 grapevine chromosomes con-
taining 366 scaffolds totaling 458,641,822 bp. An additional
2,654,308 bp pseudomolecule, named chr00, consists of the remaining
1692 unanchored scaffolds. Compared to the previous version, 8% of
unassigned genome sequence is ordered along grapevine chromosomes
in the resulting V2 assembly (Fig. 3), although there is still a small
portion of the scaffolds which is ordered with some degree of un-
certainty, especially on chromosomes 7, 10 and 16 (Fig. 4).

The International Grapevine Genome Program consortium decided
to insert these scaffolds at their most likely intra-chromosomal location

Table 3
Correspondence between gene models within the 3 annotations. In brackets possible
occurrence in CRIBI V1, VCost and Refseq respectively.

Before manual analysis After curation

In only one annotation (1/0/0) 17,325 16,444
In 2 annotations (1/1/0) 6535 7555
In 3 annotations (1/1/1) 13,233 15,288
Group with multiple genes (ex:2/3/1) 5761 3127
Total 42,854 42,414

Fig. 6. Example of alignment between the gene models from the
3 annotations showing chimeric genes for pectinesterases genes.
In brackets HO/QO scores.

Fig. 5. Total size of the scaffolds which are ordered and oriented
for each of the 19 chromosomes in the 12X.v0 version of the
grapevine genome assembly (green bars) compared to the 12X.v2
version (blue bars).

Fig. 4. Total size of the sequence scaffolds which order
is uncertain for the 19 chromosomes in the 12X.v0
(green bars) compared to the 12X.v2 (blue bars) ver-
sions of the grapevine reference genome sequence.
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instead of generating a chrX random pseudomolecule, as we did in the
v0 version of the chromosomes assembly. The v2 chromosome assembly
therefore consists of 19 chromosome sequences (chr01 to chr19) and
one chromosome random pseudo-molecule (chr00). The AGP
(Assembly Golden Path) of the chromosomes and the level of un-
certainties are described in details in [dataset] [16].

The 12X.v2 assembly contains more oriented sequence than the
12X.v0 (+14%) and nearly all chromosome sequences benefit from this
improvement (Fig. 5). The pair-mate approach contributed importantly
to the improvement of the orientation of the scaffolds in the new as-
sembly, confirming the orientation of 75 scaffolds (156.8 Mb) and al-
lowing the orientation of 90 scaffolds (5.3 Mb). This improvement was
especially important in regions covered by many small scaffolds.

4.3. Development of the VCost.v3 version of the grapevine reference genome
annotation

An initial blast comparison between the three sets of gene models
proposed by the three gene annotations generated 5761 groups con-
taining multiple genes from each of the annotations. The structure of
each group was very specific and it was not possible to define an au-
tomatic procedure to properly identify the correct gene models within
each group. In order to standardize the selection criterion, we defined
indicators for each gene taking into account the occurrence of similar
gene model in public database based on alignment with proteins from

other plant species: the HO and QO described in the material and
methods. As an example, Fig. 6 represent a group of adjacent pecti-
nesterase that has been concatenated into chimeras in some annota-
tions.

We observed that the 3 gene models from Refseq (LOC100244276
(30/30), LOC104881362 (30/25), LOC104881361 (24/29)) and one
gene model from the CRIBIv1 (VIT14s0060g01960 (23/30)) showing
high HO/QO scores whereas the VIT14s0060g01950 (2/25) and
Vitvi14g00154 (4/29) models from the VCost did not, for both there are
few genes in other species that fully overlap the Vitis sequence. These
two gene models were likely chimeras from 2 artificially assembled
coding sequences corresponding to the Refseq gene models. Besides,
predicted proteins for LOC104881362 VIT14s0060g01960 were iden-
tical but LOC104881362 was retained in the final set over
VIT14s0060g01960 because it contained a longer UTR on both sides.

Nine hundred and seventy gene models out of the 5761 could be
chosen for the final set only based on the HO/QO scores. The other
groups were visually inspected with IGV. Many groups contained more
than one true gene model which were curated and split into smaller
groups, leading to in an increase of genes appearing in 2 or 3 annota-
tions (Table 3). The sequences from the versions older than Cribi v1
(8X, or EST) that did not overlap gene models, were removed because
they did not correspond to functional gene models or because there was
no proof of actual expression. The final set of putative genes contained
42,414 gene models. Nearly half of them however only appeared in one

Table 4
Correspondence of gene models between the three versions of automatic annotation. In bold, the gene models
specific of each of them. In blue: gene models appearing in two annotations. In brown, models that were split in
the V1. In purple, models that were split in the VCost. In green, models that were split in the Refseq. Yellow:
models for which not a single gene model from one annotation was conserved in the final set (0 or many genes
in each annotation).

VCost V1

Refseq

0 1 2 3 4 5 6 7 8 9 10

0 0 32 3948 3 0 1 0 0 0 0 0 0

0 1 2658 4265 129 10 3 2 0 0 0 0 0

0 2 11 86 2 2 0 1 0 0 0 0 0

0 3 1 4 0 0 1 0 0 0 1 0 0

1 0 9831 2153 82 8 2 0 1 0 0 0 0

1 1 1137 15,288 497 55 17 5 5 1 3 0 1

1 2 13 220 22 5 3 0 0 0 0 0 0

1 3 0 11 0 1 0 1 0 0 0 0 0

1 4 0 1 1 0 0 0 0 1 0 0 0

2 0 2 119 1 0 0 0 0 0 0 0 0

2 1 82 1116 119 19 8 0 1 0 0 0 0

2 2 2 45 3 0 0 0 0 0 0 0 0

2 3 1 2 0 0 0 0 0 0 0 0 0

3 0 0 16 0 0 0 0 0 0 0 0 0

3 1 13 191 35 7 0 1 0 0 0 0 0

3 2 0 16 2 0 0 0 0 0 0 0 0

3 3 0 3 0 0 0 0 0 0 0 0 0

4 1 2 39 9 2 0 0 0 0 0 0 0

4 2 0 0 2 0 0 0 0 0 0 0 0

4 3 0 1 0 0 0 0 0 0 0 0 0

5 0 0 1 0 0 0 0 0 0 0 0 0

5 1 0 11 0 0 1 0 0 0 0 0 0

5 2 0 1 0 0 0 0 0 0 0 0 0

5 3 0 0 1 0 0 0 0 0 0 0 0

6 0 0 1 0 0 0 0 0 0 0 0 0

6 1 0 1 1 1 0 0 0 1 0 0 0

7 1 0 1 0 0 0 0 0 0 0 1 0

7 2 0 0 0 0 1 0 0 0 0 0 0

8 1 0 0 1 0 1 0 0 0 0 0 0

17 1 0 1 0 0 0 0 0 0 0 0 0

39 1 1 0 0 0 0 0 0 0 0 0 0
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single annotation, while 15,288 were constantly predicted in all 3 an-
notations.

A detail of the distribution of the genes models within groups is
presented in Table 4. VCost was the version of annotation with the
highest number of unique gene models (9831), many of these genes
were very short and their existence needed to be confirmed. On the
opposite, there were only 2665 Refseq specific gene models. The
number of groups, for which not a single gene model from one anno-
tation was conserved in the final set (0 or many genes in each anno-
tation, in yellow in Table 4) was drastically reduced after curation.
Among the remaining groups, two distinct cases could be distinguished.
The most frequent case consisted of multiple gene models from the
Refseq annotation overlapping on each other (the two other annota-
tions algorithms did not allow overlapping). In that case, the largest
gene was conserved: we only observed small gene models included in
larger ones and never overlapping portions of different models. The
other case consisted in genes from the families that were manually
curated that were split in an annotation and not detected in the others.
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