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Samenvatting

Vandaag is het gebruik van draadloze digitale communicatie niet meer weg te den-
ken uit onze maatschappij. Telefoneren, videogesprekken, sociale media en vi-
deostreaming zijn maar enkele van de toepassingen die dankbaar gebruik maken
van de talrijke mogelijkheden van draadloze communicatie. Door de flexibiliteit
en het gebruiksgemak dat draadloze communicatie biedt, stijgt het aantal toepas-
singen en toestellen dat hier gebruik van maakt zeer snel. Dit succes heeft echter
ook een belangrijke keerzijde: deze toepassingen maken alle gebruik van hetzelfde
eindige frequentiespectrum. Om al deze en toekomstige toepassingen een plaats
te kunnen blijven geven, is het van het grootste belang dat het draadloze spectrum
zo efficiënt mogelijk gebruikt wordt.

In dit doctoraatsonderzoek maken we gebruik van cognitieve radio om het
spectrum efficiënt te benutten. Cognitieve radio biedt een mogelijke oplossing
voor het feit dat bepaalde delen van het spectrum worden onderbenut. Het idee
van cognitieve radio bestaat eruit om slimme zenders te gebruiken, die zich bewust
zijn van hun omgeving. Deze slimme zenders zijn in staat om het frequentiespec-
trum te gebruiken van andere netwerken, zonder de werking van de oorspronke-
lijke, primaire netwerken te schaden. Cognitieve radio maakt het op deze manier
dus mogelijk om gebruikers toe te voegen in delen van het frequentiespectrum
die voor een conventionele zender al bezet geweest zouden zijn. Hierdoor wordt
het spectrum efficiënter gebruikt en kunnen er meer services ondersteund worden
in dezelfde bandbreedte. Het cognitieve netwerk wordt ook vaak het secundaire
netwerk genoemd.

Het grote gemak dat draadloze communicatie aan de gebruiker biedt, staat ech-
ter in schril contrast met de moeilijkheden waarmee een draadloos communicatie-
systeem wordt geconfronteerd. Er moeten immers vele hindernissen overwonnen
worden, indien men tot een betrouwbaar communicatiekanaal wil komen. Een van
de belangrijkste hindernissen is de fading van het kanaal: bewegende objecten in
de omgeving en het feit dat een signaal meerdere paden kan afleggen tussen zender
en ontvanger, leiden ertoe dat de signaalsterkte aan de ontvanger zal variëren in de
tijd. Doordat er ook steeds ruis aanwezig is in het ontvangen signaal, kan een sterk
geattenueerd signaal leiden tot detectiefouten aan de ontvangerzijde.

Een tweede belangrijke hindernis is interferentie. Indien meerdere zenders
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actief zijn in dezelfde frequentieband, kan het gebeuren dat een ontvanger niet
enkel het gewenste signaal ontvangt, maar ook ongewenste signalen afkomstig van
andere zenders. Interferentie kan de werking van een netwerk ernstig verstoren
indien er geen rekening mee gehouden wordt.

Om deze hindernissen te overwinnen, maken we gebruik van verschillende
technieken. Eerst en vooral maken we gebruik van zogenaamde coöperatieve net-
werken om de fading van het kanaal tegen te gaan. Deze netwerken bestaan uit
verschillende nodes, die samenwerken om de boodschap van de zender naar de
ontvanger te krijgen. Dikwijls zijn er meerdere paden tussen de zender en ontvan-
ger in het coöperatieve netwerk. Deze verschillende paden maken het mogelijk om
de ontvanger te voorzien van verschillende kopieën van hetzelfde signaal, hetgeen
de diversiteit van het netwerk verhoogt. Aangezien de kans dat alle paden naar de
ontvanger tegelijk sterk verzwakt worden klein is, heeft diversiteit een positieve
invloed op de prestaties van het netwerk.

Ten tweede gaan we ervan uit dat de zender een zekere kanaalkennis tot zijn
beschikking heeft. Hierdoor wordt het immers mogelijk voor de zender om di-
verse transmissieparameters aan te passen in functie van het kanaal om zo de wer-
king van het netwerk te optimaliseren en interferentie met bestaande netwerken te
vermijden. We houden er ook rekening mee dat de kanaalkennis aan de zender
eventueel verouderd is of estimatiefouten bevat.

In dit doctoraatsonderzoek maken we een onderscheid tussen de theoretische
en de meer praktische prestatiemetrieken. De meer theoretische prestatiemetrieken
zijn gebaseerd op informatietheoretische grenzen, en stellen ons in staat om de best
haalbare prestaties van een netwerk te onderzoeken. Het eerste scenario dat we
van naderbij bekijken, bestaat uit een coöperatief cognitief netwerk waar de relay
nodes, die de zender en ontvanger ondersteunen, meerdere zend- en ontvangstan-
tennes tot hun beschikking hebben. Volgens het principe van cognitieve radio, mag
dit secundaire netwerk de werking van het oorspronkelijke, primaire netwerk niet
verstoren. Om dit te garanderen zal het secundaire netwerk er steeds op toezien dat
de interferentie aan de primaire gebruiker beperkt blijft, terwijl de prestaties van
het eigen netwerk geoptimaliseerd worden. Dit is mogelijk doordat het secundaire
netwerk informatie heeft over de kanalen naar de nodes van zowel het secundaire
als het primaire netwerk. Verder kan het secundaire netwerk het zendvermogen
aanpassen aan de zender en de relay nodes en, door de aanwezigheid van meer-
dere antennes aan de relay nodes, kan het netwerk zelfs beamforming toepassen.
We onderzoeken verschillende algoritmes die afhankelijk zijn van de hoeveelheid
kanaalkennis die aanwezig is bij de nodes. Afhankelijk van de kwaliteit van de
kanaalkennis wordt het voor de relay nodes mogelijk om hun zendrichting weg te
sturen van de ontvangers van het primaire netwerk en te richten naar de ontvangers
van het secundaire netwerk.

Verder onderzoeken we ook de werking van het secundaire netwerk indien
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niet de piekinterferentie beperkt wordt aan de primaire ontvangers, maar wel de
gemiddelde interferentie. Aangezien een beperking op de gemiddelde interferen-
tie leidt tot meer flexibiliteit in de toekenning van de transmissieparameters, is er
een grote prestatiewinst mogelijk voor het secundaire netwerk. De optimalisatie
van deze netwerken kan echter voor eenvoudige netwerken al snel moeilijk wor-
den, waardoor we voor de meer geavanceerde netwerken enkel beperkingen op de
piekinterferentie beschouwen.

Naast systemen met één draaggolf, wordt ook de adaptatie van transmissie-
parameters bij systemen met meerdere draaggolven onderzocht. Het bekendste
voorbeeld van modulatie met meerdere draaggolven is “orthogonal frequency di-
vision multiplexing (OFDM)”. Bij deze modulatie worden de data op verschil-
lende draaggolven geplaatst. Hierdoor wordt het nu ook mogelijk om de energie
per draaggolf te optimaliseren. Voor deze systemen beschouwen we ook een meer
praktische prestatiemetriek: de goodput. Aangezien de goodput de verhouding
uitdrukt van het verwachte aantal correct ontvangen informatiebits ten opzichte
van de werkelijke transmissietijd, geeft deze metriek ons een goed beeld van de
werkelijke prestaties van het systeem. Verder stelt deze prestatiemetriek ons in
staat om naast de optimalisatie van de energie per draaggolf, ook het aantal bits
per draaggolf en het codedebiet te optimaliseren.

Voor de scenario’s waar de zender enkel toegang heeft tot onvolmaakte kanaal-
kennis, stellen we de verwachte goodput als prestatiemetriek voor. Deze metriek
drukt de verwachtingswaarde van de goodput uit, geconditioneerd op de beschik-
bare kanaalkennis. We tonen immers aan dat dit overeenkomt met de optimale
prestatiemetriek die de gemiddelde goodput maximaliseert. Voor deze metriek
stellen we een accurate benadering voor, die gebruikt wordt om de bijhorende
adaptatie-algoritmes af te leiden.

We sluiten dit proefschrift af met een korte samenvatting van de belangrijkste
resultaten, en formuleren enkele mogelijkheden om dit werk verder uit te brei-
den. Zo bespreken we onder andere de mogelijkheid om een offset in de draag-
golffrequentie te modelleren, alsook de mogelijke uitbreiding naar een iteratieve
ontvanger of het gebruik van turbocodes.





Summary

In today’s society, wireless digital communication systems are omnipresent. Mo-
bile telephony, video calls, social media or video streaming are just a few of the
many applications that make use of the numerous possibilities of wireless com-
munication. Because of the flexibility and ease of use, the number of wireless
applications and devices grows incredibly fast. However, this success comes at
a price: all these applications share the same finite frequency spectrum. In order
to support all current and future applications, it becomes paramount to use the
wireless spectrum as efficiently as possible.

In this dissertation, we have investigated the use of cognitive radio, as it offers
a possible solution to the underutilization of the frequency spectrum. The idea of
cognitive radio consists of the use of intelligent transmitters, that have a certain
awareness about their environment. These intelligent transmitters are able to ac-
cess the frequency spectrum of existing, primary networks, without harming their
performance. Cognitive radio is thus able to add additional users to parts of the
frequency spectrum that would have been inaccessible to a conventional transmit-
ter. This increases the spectral efficiency, which means that more services can be
supported in the same amount of bandwidth. The cognitive network is also called
the secondary network.

Although wireless communication systems offer great ease of use, a large num-
ber of phenomena have to be overcome in order to allow reliable communication
over a wireless channel. A most important phenomenon is fading: moving objects
in the environment and the presence of multiple signal paths between the trans-
mitter and the receiver cause time-varying fluctuations in the signal strength at the
receiver. Because of the presence of background noise, a strongly attenuated signal
will lead to detection errors at the receiver.

A second important phenomenon is interference. When multiple transmitters
are active in the same frequency band, it is possible that the destination does not
only receive the desired signal, but also the unwanted signals from the other trans-
mitters. When the problem of interference is neglected, it can have a severe impact
on the network performance.

To overcome these obstacles, several techniques are applied. First, we intro-
duce a cooperative network to counteract the fading of the wireless channel. A



xviii SUMMARY

cooperative network consists of several nodes, which assist the transmitter in de-
livering its message to the receiver. In most cooperative networks, different paths
between the transmitter and the receiver are created. These paths allow the re-
ceiver to get multiple copies of the same signal, which increases the diversity of
the network. As it is highly unlikely that all the paths are simultaneously in a deep
fade, diversity can vastly improve the performance of a network.

Secondly, we assume that the transmitter has a certain amount of channel infor-
mation at its disposal. This information allows the transmitter to adapt its transmis-
sion parameters so it can optimize the performance metric of the network, while
avoiding interference to existing networks. We take into account that the avail-
able channel information at the transmitter can be outdated or imperfect due to
feedback delays or estimation errors, respectively.

In this dissertation we will consider both theoretical and practical performance
metrics. The theoretical performance metrics are based on information-theoretical
bounds, as these allow us to investigate the best possible performance of a net-
work. The first scenario that we consider, consists of a cooperative cognitive net-
work where the relay nodes, that aid the transmitter and receiver, are equipped with
multiple transmit and receive antennas. According to the principle of cognitive ra-
dio, the secondary network should not degrade the performance of the existing,
primary network. For this reason, the secondary network has to constrain the in-
terference it causes to the primary user receiver, while optimizing the performance
of its own network. When the secondary network has some information about the
channel gains of the secondary network and about the channel gains towards the
primary network, it can adapt the transmission power at the transmitter and relay
nodes, and, because of the presence of multiple antennas at the relay nodes, it can
also apply beamforming at these nodes. Several algorithms are investigated that
depend upon the level of channel information that is available at the nodes. De-
pending upon the quality of the channel information, the relay nodes can point
their transmit beam away from the receivers of the primary network and towards
the receivers of the secondary network.

Further, we investigate the scenario where the secondary network limits the
average interference at the primary receivers, rather than the peak interference. As
these average interference constraints allow for more flexibility in the allocation of
the transmission parameters, they can significantly improve the performance of the
secondary network. However, it appears that the optimization under these average
interference constraints can become quite difficult even for simple networks, which
is why we only consider the peak interference constraints for the more advanced
networks.

Next to single-carrier systems, the adaptation of transmission parameters in
multicarrier systems is also investigated. The most famous example of multicar-
rier modulation is “orthogonal frequency division multiplexing (OFDM)”. Multi-
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carrier modulation transmits its data on different subcarriers, which allows us to
optimize the allocated energy per subcarrier. For these systems, we also consider
a more practical performance metric called the goodput. As the goodput expresses
the ratio of the expected number of correctly received information bits to the actual
transmission time, it describes the actual performance of the network under con-
sideration. In addition to the energy per subcarrier, this performance metric allows
us to optimize the number of bits per subcarrier and the code rate.

For the scenarios where only imperfect channel information is available at the
transmitter, we propose the expected goodput as the performance metric. This
metric is defined as the expectation of the goodput, conditioned on the available
channel information. We show that this metric corresponds to the optimal perfor-
mance metric that achieves the highest average goodput. Finally, we propose an
accurate approximation for this metric, which allows the transmitter to adapt its
transmission parameters.

We conclude this dissertation with a short summary of our main results and
present some ideas for future work. For example, we discuss the possibility to
incorporate a carrier frequency offset into the analysis, or the possible extension to
an iterative receiver or the use of turbo codes.





1
Introduction

In this doctoral thesis, we investigate dynamic resource allocation algorithms for
cognitive radio networks. These algorithms allow the transmitter to optimize the
network performance by means of a dynamic adaptation of its transmission pa-
rameters (power, constellation size, code rate). The proposed algorithms take into
account the quality and type of channel information that is available at the trans-
mitter. This thesis consists of three parts.

In the first part of this dissertation, we provide the reader with the necessary
background for the subsequent chapters. The second and third part discuss al-
gorithms that optimize information-theoretical and practical performance metrics,
respectively.

In section 1.1, we give some background and motivation for this work, while
we present the outline of this dissertation in section 1.2.

1.1 Background and Motivation

Today, digital communication is more important than ever. Online streaming ser-
vices, social media or mobile telephony are just a few of today’s applications which
rely heavily on the use of digital communications.

In digital communications, the information is represented by sequences of bi-
nary values 0 and 1. The node that sends the information is called the transmitter,
while the node that requests the information is called the receiver. The medium
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Transmitter Channel Receiver 
Message 

Received 
Message 

Figure 1.1: A general communication system.

over which this information is transmitted is called the channel. The corresponding
scheme is shown in Fig. 1.1. For wired communications, the channel is a physical
connection such as a twisted-pair cable or optical fiber. However, an increasing
amount of devices uses the wireless channel. The latter channel is extremely prac-
tical for the user, as it is always present and allows for communication between
devices without any physical connection.

However, the convenience of this wireless channel comes at a price: it is ex-
tremely challenging to achieve reliable communication over this channel, as there
are a large number of phenomena that can adversely affect the communication.

• The path loss reduces the received signal power with increasing distance.
In addition, the presence of obstacles can further lower the received signal
strength. In the presence of noise (e.g., from electronic circuits), small sig-
nals can cause the message to be incorrectly received.

• The fact that all wireless transmitters share the same channel gives rise to
interference. In order to cope with this interference, strict regulations about
which service may transmit in which frequency band have been put forward.
In Fig. 1.2 we show how the frequency allocation in the United States is reg-
ulated. This figure depicts the licensed services that are located in each fre-
quency band, and clearly shows that the wireless spectrum has become very
crowded. However, it has been demonstrated that many of these frequency
bands are severely underutilized [1]. From this observation, it became clear
that the spectral efficiency could be improved by using so-called cognitive
radio networks. These networks aim to increase the spectral efficiency by
adding additional users to the already crowded spectrum, while protecting
the quality of service of the existing users.

• The wireless channel introduces multipath fading: the transmitted signal
often gets reflected by several objects, which can cause destructive interfer-
ence of the reflected signals at the receiving antenna. This phenomenon is
called a deep fade, and can be detrimental to the performance of a wireless
network. Because of moving obstacles in the environment, the fading be-
comes time-varying. The impact of this time-varying fading can be reduced
by creating diversity: if the receiver gets multiple copies of the same signal
through separate channels, it is highly unlikely that the signal experiences a
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Figure 1.2: The frequency allocation in the United States (January 2016, [2]).
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deep fade in each channel simultaneously. The diversity of a network can
be increased by using cooperative networks. In these networks, additional
transmitters relay the original transmitted signal. By selecting the transmit-
ter with the best channel to the receiver, or by allowing all transmitters to be
active in non-overlapping time slots, we can increase the reliability of the
communication.
Further, the multipath fading can also cause problems if there is a large time
difference between the arrival of the first signal and the last signal. This ef-
fect is known as the delay spread and can cause the signal to interfere with
itself.

In order to detect the transmitted message, the receiver needs the channel gain
experienced by the transmitted signal. However, as the wireless channel is time-
varying, the receiver periodically needs a reliable estimate of the current channel
gain. It was shown in [3] that the spectral efficiency can be improved by resource
allocation algorithms which dynamically adapt the constellation size, code rate and
power at the transmitter as a function of the channel gain. However, the drawback
is that the channel state information now also has to be available at the transmitter.

Already many resource allocation algorithms have been proposed in literature.
Yet, many of these algorithms assume that perfect channel state information is
available at the transmitter. However, in a time-varying environment where back-
ground noise is always present, the channel information in a real system will often
be a noisy and delayed estimate. In this dissertation, several algorithms will be
investigated that optimize the performance of a cognitive radio network when only
imperfect channel state information is available.

We will consider both information-theoretical and practical performance met-
rics. The information-theoretical metrics allow us to investigate the best perfor-
mance that the network can achieve, while the practical metrics describe the actual
performance of the network under consideration. In addition, a practical metric
allows us to optimize the code rate and the constellation size, which cannot be
achieved by most information-theoretical metrics.

1.2 Outline

This dissertation is organized as follows:

Part I

Chapter 2 provides an overview of some important concepts of optimization the-
ory. The concepts introduced in this chapter will be used to optimize the perfor-
mance of a wireless network.
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Chapter 3 presents the system model that will be used in this dissertation. It dis-
cusses the basic principles of digital communications and the wireless channel.
This chapter also introduces the minimum mean square error estimator, which will
be used at the transmitter for the estimation of the channel. Further, we discuss sev-
eral performance metrics, which will be optimized by means of a suitable resource
allocation algorithm. Finally, we conclude this chapter by presenting several co-
operative network protocols and the three main paradigms of cognitive radio: the
underlay, overlay and interweave paradigm. As we focus our attention on the un-
derlay paradigm, we explain the different possible formulations of the interference
constraints in more detail.
Chapter 4 introduces the necessary background for packet-based transmission
systems. Further, we introduce a suitable practical metric, referred to as good-
put, that describes the performance of such a system, and discuss the concept of
effective signal-to-noise ratio in the context of multicarrier transmission.

Part II

Chapter 5 considers a cognitive radio network that uses relay nodes with multiple
transmit antennas, under a peak interference constraint. Further, we show how the
cognitive radio network can minimize its outage probability for different types of
channel state information by dynamically selecting its transmission parameters.
Chapter 6 investigates the performance of a cognitive radio network when the
network limits the average interference inflicted on the licensed users instead of
the peak interference. An average constraint on the interference is less restrictive
than the peak interference constraint that was investigated in the previous chapter,
and thus allows for a more flexible allocation of the transmission parameters.
Chapter 7 extends the previous chapter by combining the average interference
constraints with a relay selection algorithm. This makes the resource allocation
more complicated, as the relay selection alters the distribution of the interference
at the licensed users.
Chapter 8 investigates multicarrier networks. A resource allocation algorithm
is presented that optimizes the maximal rate of the cognitive radio network by
optimizing the subcarrier pairing and transmit energy per subcarrier.

Part III

Chapter 9 provides and investigates an accurate approximation of the goodput,
that will be used to describe the performance of a packet-based transmission sys-
tem when only imperfect channel state information is available.
Chapter 10 derives and analyzes several resource allocation algorithms for a packet-
based cognitive radio network. These algorithms use the goodput approximation
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proposed in the previous chapter and optimize the transmit energy per subcarrier,
the code rate and the bit allocation per subcarrier.
Chapter 11 concludes this dissertation and gives some ideas for future work.



Part I

Basic Concepts





2
Optimization Theory

In this chapter, we give the reader an overview of some important concepts about
optimization theory. This chapter should give the reader a basic understanding of
many of the concepts that we will rely on in the following chapters.

In section 2.1, we introduce a general notation for a constrained optimization
problem and some important definitions. In section 2.2, we restrict our focus to
the so called convex optimization problems. Then, a very useful tool, called La-
grangian duality, is introduced in section 2.3. Sections 2.4, 2.5 and 2.6 discuss
several numerical methods to solve constrained optimization problems. Finally,
we delve into some details about optimization problems with complex-valued vari-
ables in section 2.7.

The references [4–10] have been used as the basis for this overview.

2.1 A general Optimization Problem
First, we define a general optimization problem. The following notation

min
x
f(x)

s.t. hi(x) = 0, i = 1, . . . ,m

gj(x) ≤ 0, j = 1, . . . , n,

(2.1)

describes an optimization problem where a vector x ∈ RN×1 has to be found that
minimizes the objective function f(x). However, this vector x also has to satisfy
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the equality constraints hi(x) = 0, i = 1, . . . ,m, and inequalities constraints
gj(x) ≤ 0, j = 1, . . . , n. The problem in (2.1) is called a constrained optimization
problem. When there are no equality and inequality constraints, the optimization
problem is called unconstrained. The domain D of (2.1) is given by

D = dom f

m⋂
i=1

domhi

n⋂
j=1

dom gj . (2.2)

A feasible point is a point x ∈ D which satisfies the constraints. Further, a
point xG ∈ D is called a globally optimal point when it is feasible and f(xG) = c,
where c is the optimal value of optimization problem (2.1). The optimal value c is
defined as

c , inf {f(x)|hi(x) = 0, i = 1, . . . ,m, gj(x) ≤ 0, j = 1, . . . , n} . (2.3)

A point xL ∈ D which satisfies the constraints and for which there exists a value
of R > 0 such that

f(xL) = inf
{
f(y)|hi(y) = 0, i = 1, . . . ,m,

gj(y) ≤ 0, j = 1, . . . , n, ‖y − xL‖ ≤ R)
}
, (2.4)

is called a locally optimal point.

2.2 Convex Optimization

As a general optimization problem (2.1) can have multiple locally optimal points,
it can become extremely difficult to solve such a problem. A class of optimiza-
tion problems, which are easier to solve, are the convex optimization problems.
These optimization problems have the nice property that any locally optimal point
is also a globally optimal point. Before we introduce the definition of a convex op-
timization problem, we will first introduce the concept of a convex set and convex
function.

A set C is convex, when for any x and y in C and any θ ∈ [0, 1], we have

θx+ (1− θ)y ∈ C. (2.5)

An example of a convex and non-convex set in R2 is shown in Fig. 2.1.
A function is said to be convex, if its domain is a convex set and if ∀x,y ∈

domf
f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y), (2.6)

where θ ∈ [0, 1]. Similarly, a function f(x) is concave when−f(x) is convex. An
example of a convex and non-convex function is shown in Fig. 2.2.
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Figure 2.1: An example of a convex (left) and non-convex set (right).

Figure 2.2: An example of a convex (left) and non-convex function (right).

Finally, we also need the following definition:
A function f is affine, if its domain is a convex set and if the function can be

written as
f(x) = aTx + c, (2.7)

where a ∈ RN×1 and c ∈ R.
A general convex optimization problem can be formulated as follows

min
x
f(x)

s.t. hi(x) = 0, i = 1, . . . ,m

gj(x) ≤ 0, j = 1, . . . , n,

(2.8)

where f(x) and gj(x), j = 1, . . . , n, are convex functions and hi(x), i = 1, . . . ,m,
are affine functions. We note that the maximization of a concave function f(x)

with convex constraints can always be rewritten as a convex optimization problem.
This follows from the fact that maximizing a concave function f(x) is completely
equivalent with minimizing −f(x), which is convex.

A special class of convex optimization problems is called the semidefinite pro-
gram. These problems are defined as

min
x

cTx

s.t. x1D1 + . . .+ xNDN + DN+1 � 0

Ax = b,

(2.9)

where Dn ∈ RM×M , n = 1, . . . , N,N + 1, is a symmetric matrix, A ∈ RP×N ,
b ∈ RP×1 and c ∈ RN×1. The operator X � 0 denotes that a matrix X is negative
semi-definite.
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2.3 Lagrangian Duality
In this section, we will introduce the concept of Lagrangian duality, which is a
tool that is often used to solve an optimization problem. In the following, we do
not assume the optimization problem to be convex. Taking the constraints in (2.1)
into account by augmenting the objective function f(x) with a weighted sum of
the equality and inequality constraints, we get

L(x,λ,µ) , f(x) +

m∑
i=1

λihi(x) +

n∑
j=1

µjgj(x). (2.10)

This expression is called the Lagrangian of (2.1). The quantities
λ = [λ1, . . . , λm]T ∈ Rm×1 and µ = [µ1, . . . , µn]T ∈ Rn×1 are the Lagrange
multiplier vectors, and they correspond to the equality and inequality constraints,
respectively. The dual function s(λ,µ) is then defined as

s(λ,µ) , inf
x∈D

L(x,λ,µ). (2.11)

When the Lagrangian is unbounded from below in x, the dual function is equal to
−∞. We can now prove the following:

Theorem 2.1. The dual function s(λ,µ) is always concave.

Proof. ∀θ ∈ [0, 1], we can write the following

s(θλ1 + (1− θ)λ2, θµ1 + (1− θ)µ2)

= inf
x∈D

L(x, θλ1 + (1− θ)λ2, θµ1 + (1− θ)µ2)

= inf
x∈D

{
θf(x) + θ

m∑
i=1

λ1,ihi(x) + θ

n∑
j=1

µ1,jgj(x)

+ (1− θ)f(x) + (1− θ)
m∑
i=1

λ2,ihi(x) + (1− θ)
n∑
j=1

µ2,jgj(x)
}

≥θ inf
x∈D

L(x,λ1,µ1) + (1− θ) inf
x∈D

L(x,λ2,µ2)

=θs(λ1,µ1) + (1− θ)s(λ2,µ2),

(2.12)

which proves that the dual function s(λ,µ) is concave.

This dual function is important, because of the following theorem.

Theorem 2.2. The dual function s(λ,µ) is always a lower bound on the optimal
value c of the optimization problem (2.1). We have

s(λ,µ) ≤ c, (2.13)

for µj ≥ 0, j = 1, . . . , N , and any λ.
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Proof. We assume that x̂ is a feasible point of optimization problem (2.1). Con-
sidering the constraints, this implies that

m∑
i=1

λihi(x̂) +

n∑
j=1

µjgj(x̂) ≤ 0, (2.14)

for any λ and µj ≥ 0, j = 1, . . . , N . The latter constraint can also be expressed
using the following shorthand notation µ ≥ 0. The equation shown in (2.14) leads
to

L(x̂,λ,µ) ≤ f(x̂). (2.15)

If we combine (2.15) with the definition of the dual function (2.11), it follows that
s(λ,µ) ≤ f(x̂). Because the latter holds for all feasible points, it also holds for
the optimal point x and thus proves (2.13).

Now we know that the dual function s(λ,µ) (for any µ ≥ 0 and any λ)
provides a lower bound on the optimal value c of the optimization problem (2.1),
we are interested in the value of λ and µ yielding the best (i.e., the largest) lower
bound. This leads us to the following optimization problem, which is called the
Lagrange dual problem

max
λ,µ

s(λ,µ)

s.t.µ ≥ 0.
(2.16)

Because the objective function in (2.16) is concave and the constraint is convex,
the Lagrange dual problem in (2.16) will always be a convex optimization problem
regardless of the properties of the original optimization problem (2.1). The optimal
value of the dual problem (2.16) is denoted by d, and the point (λ,µ) which attains
this value is called dual optimal. In a similar fashion, the original optimization
problem (2.1) and its solution x are referred to as the primal problem and primal
optimal point, respectively. The value d is the best lower bound which can be
found from the dual function s(λ,µ), and thus satisfies the following inequality

d ≤ c. (2.17)

This inequality is also called weak duality. An important concept that results from
this is the duality gap, which is always positive and defined as the difference c−d.

When d = c, the duality gap is zero, as the best lower bound provided by the
dual function s(λ,µ) coincides with the optimal value c. In this case we say that
strong duality holds. Strong duality does not hold in general, but if the original op-
timization problem is convex (2.8) there is a good chance that strong duality holds.
An important result which implies strong duality is Slater’s condition. Before we
define Slater’s condition, we first define the relative interior of a set as [4]

relintD = {x ∈ D|B(x, r) ∩ affD ⊆ D for some r > 0}, (2.18)
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whereB(x, r) = {y|‖y−x‖ ≤ r} and affD is the affine hull ofD, which is given
by

affD = {θ1x1 + . . . θNxN |x1, . . . ,xN ∈ D, θ1 + . . .+ θN = 1}. (2.19)

Theorem 2.3. Slater’s condition. When the optimization problem is convex and
∃x ∈ relintD such that

hi(x) = 0, i = 1, . . . ,m

and
gj(x) < 0, j = 1, . . . , n,

it follows that strong duality holds.

From now on, we will assume that strong duality holds. This means that
f(xopt) = s(λopt,µopt), where xopt and (λopt,µopt) are a primal and dual opti-
mal point, respectively. The following can then be shown

f(xopt) = s(λopt,µopt)

≤ f(xopt) +

m∑
i=1

λopt
i hi(x

opt) +

n∑
j=1

µopt
j gj(x

opt)

≤ f(xopt). (2.20)

The inequality in the second line follows from the definition of the dual function
s(λ,µ): the infimum of the Lagrangian will be less or equal to its value at x =

xopt. Finally, because µopt ≥ 0, gj(x
opt) ≤ 0, j = 1, . . . , n, and hi(xopt) = 0,

i = 1, . . . ,m, the last inequality follows. As the inequalities in (2.20) are actual
equalities, if follows that xopt is a minimizer of the Lagrangian L(x,λopt,µopt)

and that
n∑
j=1

µopt
j gj(x

opt) = 0. (2.21)

The equality in (2.21) is called complementary slackness. From (2.21) we can
immediately conclude that

µopt
j > 0 =⇒ gj(x

opt) = 0, (2.22)

and
gj(x

opt) < 0 =⇒ µopt
j = 0. (2.23)

We will now derive the conditions which hold for any primal and dual optimal
point when strong duality holds, assuming that the objective and constraint func-
tions are differentiable. Because we already know that xopt is a minimizer of the
Lagrangian L(x,λopt,µopt), it follows that

∇xL(xopt,λopt,µopt) = 0. (2.24)
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Collecting the above results, we get that xopt must satisfy the following equations
(i = 1, . . . ,m; j = 1, . . . , n):

hi(x
opt) = 0, (2.25)

gj(x
opt) ≤ 0, (2.26)

µopt ≥ 0, (2.27)

µopt
j gj(x

opt) = 0, (2.28)

∇xf(xopt) +

m∑
i=1

λopt
i ∇xhi(x

opt) +

n∑
j=1

µopt
j ∇xgj(x

opt) = 0. (2.29)

The necessary conditions (2.25)-(2.29) are called the Karush-Kuhn-Tucker (KKT)
conditions.

When the primal problem is assumed to be convex, it is now easy to show that
the KKT conditions are also sufficient, i.e., if the points x and (λ,µ) satisfy the
KKT conditions, the points are primal and dual optimal and the duality gap is zero.
From these results we can conclude the following:

Theorem 2.4. When a convex optimization problem, with differentiable objective
and constraint functions, satisfies Slater’s condition, the value of x is primal op-
timal if and only if there exists a point (λ,µ) which together with x satisfies the
KKT conditions.

From these results, we can conclude that it is possible to solve the primal op-
timization problem by solving the dual optimization problem. This can be ad-
vantageous when the dual problem is easier to solve. For example, suppose that
the dual problem is solved and that we found the optimal dual point (λopt,µopt).
When strong duality holds and there exists a solution to the primal optimization
problem, the primal optimal point is given by the value of x which minimizes
L(x,λopt,µopt).

2.4 Subgradient Method
First, we will introduce the definition of a subgradient. A vector q ∈ RN×1 is a
subgradient of a convex function f at a point x ∈ RN×1 if

f(y)− f(x) ≥ qT (y − x) ∀y ∈ RN×1. (2.30)

When the function f is differentiable at x, it follows that q = ∇f(x).
Let us assume that we want to minimize a function f(x) which is convex. If

there are no constraints, we solve this optimization problem by using the following
iteration

x(k + 1) = x(k)− αkq(k), (2.31)
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where x(k) is the estimate of our solution at the kth iteration, αk > 0 is the step
size at the kth iteration and q(k) is a subgradient of f at x(k). As it very well may
happen that f(x(k + 1)) > f(x(k)), the algorithm will return at the kth iteration
the value of x which reached

fopt = min {f(x(1)), . . . , f(x(k))} . (2.32)

The subgradient method can also be used to find the primal optimal point by
solving the dual problem. Let us assume we want to solve optimization problem
(2.8) and the duality gap is zero. If x(λ,µ) represents the value of x for which
the Lagrangian (2.10) reaches its minimum for a given value of λ and µ, the dual
function can be written as

s(λ,µ) = f(x(λ,µ)) +

m∑
i=1

λihi(x(λ,µ)) +

n∑
j=1

µjgj(x(λ,µ)). (2.33)

Note that x(λ,µ) can be found by an unconstrained minimization of L(x,λ,µ).

Now, if the optimal value (λopt,µopt) of (λ,µ) has been found, the primal opti-
mal point is given by x(λopt,µopt). To solve the dual problem, we have to find a
subgradient of −s(λ,µ). If s(λ,µ) is differentiable, the subgradient with respect
to λi, i = 1, . . . ,m, is

−∂s(λ,µ)

∂λi
= − (∇xL(x(λ,µ),λ,µ))

T ∂x

∂λi
− hi(x(λ,µ))

= −hi(x(λ,µ)), (2.34)

where the last line follows from ∇xL(x(λ,µ),λ,µ) = 0 because x(λ,µ) is a
minimizer of the Lagrangian. The same derivation can be done for µ. Thus the
Lagrange multiplier vectors and x are updated according to the following equa-
tions

λ(k + 1) = λ(k) + αkh(x(k))

µ(k + 1) = max(0,µ(k) + αkg(x(k)))

x(k + 1) = x(λ(k + 1),µ(k + 1)),

(2.35)

where max(·, ·) denotes a componentwise maximum, h(x) = [h1(x), . . . , hm(x)]T

and g(x) = [g1(x), . . . , gn(x))]T . The update equations of λ and µ in (2.35)
have an intuitive interpretation. For example, let us consider µj(k) which corre-
sponds to the constraint gj(x). If the constraint gj(x) is violated, which means
gj(x) > 0, the value of µj will increase according to (2.35). As we can see in
(2.10), a higher value of µj will increase the relative weight of gj(x) in the La-
grangian. As x(λ,µ) minimizes the Lagrangian, it follows that an increase of the
parameter µj will lead to a decrease of the value gj(x). Eventually, this algo-
rithm will continue until gj(x) = 0, which leads to µj(k + 1) = µj(k) or until
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µj(k + 1) = 0 which means that the constraint gj(x) is inactive. For complete-
ness, we mention that the equations in (2.35) can also be used if s(λ,µ) is not
differentiable.

2.5 Stochastic Subgradient Method

It can happen that the optimization problem is defined in terms of expectations
of random variables. To illustrate this, we consider the following optimization
problem

min
x

Ez [f(x, z)] , (2.36)

where z is a random variable. If f(x, z) is convex in x for each value of z in the
domain of f(x, z), the problem is a convex optimization problem. We now take a
closer look at the objective function of (2.36). This function can be written as

Ez [f(x, z)] =

ˆ
f(x, z)p(z) dz, (2.37)

where p(z) denotes the probability density of the random variable z. As it can be
very difficult to calculate (2.37) exactly, we will approximate the objective func-
tion (2.37) by generating L samples zi according to the distribution p(z). The
approximation of the objective function (2.37) is given by

Ez [f(x, z)] ≈ 1

L

L∑
i=1

f(x, zi). (2.38)

The update equation related to (2.36) is very similar to (2.31). However, we will
use a noisy unbiased subgradient as an approximation of the actual subgradient. A
noisy unbiased subgradient q̃ can be written as q̃ = q+n, where q is a subgradient
and E [n] = 0. In order to show how we can find the noisy unbiased subgradi-
ent for the update equations related to (2.36), we will first introduce the function
k(x, z) as a subgradient of f(x, z) with respect to x for ∀x, z ∈ RN×1. It is easy
to show that Ez [k(x, z)] is a subgradient of the objective function Ez [f(x, z)].
This means that the following expression

1

L

L∑
i=1

k(x, zi), (2.39)

is a noisy unbiased subgradient of Ez [f(x, z)] at x. This result is valid for every
value of L. It is even possible to take L = 1, as the iterations of the subgradient
method will help to ’average out’ the statistical fluctuations.
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2.6 CVX
A useful tool we would like to mention is CVX. CVX is a modeling system for
convex optimization which is available for free on the web. It is implemented
in Matlab and allows to formulate and solve convex optimization problems. For
example, consider the following optimization problem where x is constrained by
a componentwise inequality:

min
x
‖Ax− b‖

s.t. l ≤ x ≤ u,
(2.40)

where A ∈ RN×N and l,u,x,b ∈ RN×1. This problem can be specified in CVX
as

cvx_begin
variable x(N)
minimize (norm(A*x-b))
subject to

l<=x<=u
cvx_end

When Matlab has run these commands, the variable x will contain the optimal
solution to the optimization problem. This tool makes it very easy to describe and
solve convex problems in Matlab. For completeness, we also mention that this
tool can be used to find the optimal dual variables of the optimization problem.
For more information about CVX, we refer to [5].

2.7 Optimization Problems with Complex Variables
Until now, we have assumed that the variables in the optimization problem are
real-valued. However, this restriction is not necessary as there are several ways to
solve optimization problems with complex variables. This section gives the reader
a short overview of these methods. The first and most straightforward method,
is to rewrite a complex optimization problem as a real optimization problem by
decomposing the complex variables in their real and imaginary parts. For example,
if we take the following objective function

zHAz + 2<(bHz) + c, (2.41)

where A ∈ CN×N is a Hermitian matrix (i.e., AH = A), b ∈ CN×1 and c ∈ R.
By decomposing the complex vector z as z = x + jy, we can rewrite (2.41) as

vTBv + 2dTv + c, (2.42)
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where

v =

(
x

y

)
, (2.43)

B =

( < (A) −= (A)

=(A) < (A)

)
, (2.44)

d =

( < (b)

= (b)

)
. (2.45)

However, it will not always be necessary to rewrite the complex optimization prob-
lems as a real optimization problem. As most optimization problems are solved
by calculating derivatives, we will show how we can calculate a derivative of a
general complex-valued function with complex variables. If

f(z) = u(x, y) + jv(x, y), (2.46)

represents a general complex-valued function with z = x+ jy, where u(x, y) and
v(x, y) are real-valued functions, the complex derivative is defined as

f ′(z) = lim
∆z→0

f(z + ∆z)− f(z)

∆z
. (2.47)

This derivative is well-defined only if it is independent of the direction in which
∆z approaches zero in the complex plane; this is only the case when the functions
u(x, y) and v(x, y) satisfy the Cauchy-Riemann equations. These equations are
given by

∂u

∂x
=
∂v

∂y
,

∂v

∂x
= −∂u

∂y
. (2.48)

If these equations are met we say that the function f(z) is holomorphic, in which
case the complex derivative is well-defined.

However, we are often interested in the optimization of a real-valued function
f(z) with complex variables. As v(x, y) will be 0 for these functions, it follows
that any non-constant function f(z) will not satisfy the Cauchy-Riemann condition
(2.48). This means that a non-constant real-valued function f(z) is not holomor-
phic and thus will not be differentiable. So it seems that in order to minimize, for
example, the function f(z) = |z|2, we first have to rewrite f(z) as a function of x
and y as follows

f(z) = f(z(x, y)) = (x+ jy)(x− jy)

= x2 + y2. (2.49)

In the second step, we then solve the following equations

∂f(z)

∂x
= 2x = 0, (2.50)

∂f(z)

∂y
= 2y = 0. (2.51)



2-12 OPTIMIZATION THEORY

However, this approach can quickly become tedious. It would be much more con-
venient, if we could keep writing f(z) as a function of the complex variable z.

For this reason, we will introduce a ’trick’. For this trick, we view a possi-
bly non-holomorphic function as a function of both z and its conjugate z∗. The
Cauchy-Riemann condition (2.48) does not have to be satisfied, but it is required
that f(z) is a differentiable function of the real part x and imaginary part y of z.
This real-derivative can be seen as an extension of the complex derivative, and
will reduce to the complex derivative when applied to holomorphic functions. The
following pair of partial derivatives can now be formally defined as follows

real-derivative of f(z, z∗) =
∂f(z, z∗)

∂z

∣∣∣∣
z∗=const.

, (2.52)

conjugate real-derivative of f(z, z∗) =
∂f(z, z∗)
∂z∗

∣∣∣∣
z=const.

. (2.53)

These definitions can also be equivalently written as

∂f

∂z
=

1

2

(
∂f

∂x
− j ∂f

∂y

)
, (2.54)

∂f

∂z∗
=

1

2

(
∂f

∂x
+ j

∂f

∂y

)
. (2.55)

We verify these formulas by using the following example. According to (2.52) the
real-derivative of f(z, z∗) = |z|2 = zz∗ can be calculated as follows

∂f

∂z
=

1

2

(
∂f

∂x
− j ∂f

∂y

)
=

1

2

(
∂(x2 + y2)

∂x
− j ∂(x2 + y2)

∂y

)
= x− jy
= z∗. (2.56)

However, it is much easier to consider z and z∗ as two separate variables. In this
case, we can get the same result as follows

∂f

∂z
= z∗

∂z

∂z
= z∗. (2.57)

We can see that (2.50)-(2.51) are equivalent with putting (2.56) equal to 0. We
also note that the Cauchy-Riemann condition (2.48) is equivalent with ∂f

∂z∗ = 0.
Further, it follows that the real-derivative of a holomorphic function f(z) equals
the complex derivative f ′(z) in (2.47). In the following, we will assume that the
function f is a real-valued function.
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In some cases, the function f is dependent on a complex matrix S ∈ CM×N .
In this case we will use the following definition

∂f

∂S
=


∂f
∂s1,1

· · · ∂f
∂s1,N

...
. . .

...
∂f

∂sM,1
· · · ∂f

∂sM,N

 , (2.58)

where si,j represents the element on the ith row and the jth column of S. However,
in most cases we will deal with a square complex matrix S ∈ CN×N which is
Hermitian, thus SH = S. The matrix S can be written as

S =


z1,1+z∗1,1

2 · · · z1,N

...
. . .

...

z∗1,N · · · zN,N+z∗N,N
2

 . (2.59)

As some of the elements of S are related to each other, the derivative of a function
f(S) has to be calculated by using the following chain rule

∂f(S)

∂zi,j
= Tr

((
∂f(S)

∂S

)T
∂S

∂zi,j

)
, (2.60)

where ∂f(S)
∂S is given by (2.58) and

∂S

∂zi,j
=


Ji,j , if i < j
1
2Ji,i, if i = j

0, if i > j

, (2.61)

where Ji,j denotes the single-entry matrix: 1 at (i, j) and 0 elsewhere. The deriva-
tives with respect to z∗i,j can be calculated as

∂f(S)

∂z∗i,j
= Tr

((
∂f(S)

∂S

)T
∂S

∂z∗i,j

)
, (2.62)

where

∂S

∂z∗i,j
=


Jj,i, if i < j
1
2Ji,i, if i = j

0, if i > j

. (2.63)

The optimum of the function f(S) will satisfy

∂f(S)

∂zi,j
= 0 =

∂f(S)

∂z∗i,j
i = 1, . . . , N ; j = 1, . . . , N. (2.64)
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However, this is equivalent to setting equal to 0 the following Hermitian matrix
∂f(S)
∂z1,1

+ ∂f(S)
∂z∗1,1

· · · ∂f(S)
∂z1,N

...
. . .

...
∂f(S)
∂z∗1,N

· · · ∂f(S)
∂zN,N

+ ∂f(S)
∂z∗N,N

 . (2.65)

By using (2.60) and (2.62), it follows that (2.65) equals ∂f
∂S , which means that the

optimum of f(S) can also be found by the following equivalent equation

∂f

∂S
= 0. (2.66)

For completeness we show the relationships between the elements of ∂f
∂S and the

derivatives of f with respect to the real and imaginary parts of zi,j , i = 1, . . . , N ,
j = 1 . . . , N . The following equalities can be derived

(
∂f

∂S

)
i,j

=


∂f

∂<(zi,i)
, if i = j

1
2

(
∂f

∂<(zi,j)
− j ∂f

∂=(zi,j)

)
, if i < j

1
2

(
∂f

∂<(zj,i)
+ j ∂f

∂=(zj,i)

)
, if i > j

. (2.67)

In order to illustrate this result, we will calculate the derivative of

∂Tr (S)

∂S
= I. (2.68)

It is easily verified that this result satisfies equation (2.67).
A more involved example is the following

∂‖AS‖
∂S

=
∂
√

Tr (ASSHAH)

∂S

=
∂
√

Tr (ASSAH)

∂S

=
1

2‖AS‖
(
ATA∗S∗ +

(
ATA∗S∗

)H)
. (2.69)

Again, it can be verified that this result indeed satisfies the relations shown in
(2.67).

2.8 Chapter Summary
In this chapter, we have laid the foundation of some very important concepts in
optimization theory. Some basic numerical methods have also been introduced. In
this dissertation, we will often try to optimize the performance of a communication
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network as a function of its transmission parameters. However, the network will
have several limitations or restrictions, such as the maximal allowable energy that
can be transmitted. As these limitations can be translated into several constraints
for the transmit parameters, we try to formulate these problems as constrained
optimization problems. This means that the following chapters will rely heavily
on the theorems and results that we introduced here.





3
Digital Communications Basics

This chapter introduces the wireless channel and the system model of the commu-
nication networks that we will be investigating. Section 3.1 discusses the wireless
channel and introduces several channel models that will be used in the subsequent
chapters. Section 3.2 explains some of the major building blocks that are used in a
digital communication system. Section 3.3 introduces the minimum mean square
error (MMSE) estimator, which will be of use in subsequent chapters. In section
3.4, we introduce several metrics that can be used to assess the performance of a
network. We then show in section 3.5 how the transmitter can adapt its transmis-
sion parameters to optimize these performance metrics. Section 3.6 gives a brief
overview of several popular relaying protocols for cooperative networks. Finally,
section 3.7 presents the three main paradigms of cognitive radio: the underlay,
overlay and interweave paradigm.

3.1 The Wireless Channel

In wireless communications, a transmitter (TX) sends a signal to a receiver (RX)
through a wireless channel. Any motion of the TX, RX or surrounding obsta-
cles causes random fluctuations in the channel due to the changing reflections and
attenuation of the transmitted signal. The properties of the channel thus change
randomly with time, which makes the design of a reliable communication system
very hard. Because there are many factors which influence the channel properties,
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Figure 3.1: Multipath channel between TX (base station) and RX (mobile user).

we use a statistical model to characterize the varying channel. In the following, we
provide a description of this statistical model, which is mainly based on [11].

We consider the transmission of a bandpass signal sBP(t), which is represented
as sBP(t) =

√
2<
[
s(t)ej2πfct

]
, where s(t) and fc denote the complex baseband

signal and the carrier frequency, respectively. Denoting by Ss(f) the power spec-
tral density of s(t), we assume that Ss(f) = 0 for |f | > B, with B the bandwidth
of s(t). The corresponding bandpass signal at the output of the wireless channel
is denoted rBP(t), with rBP(t) =

√
2<
[
r(t)ej2πfct

]
. The complex baseband sig-

nals r(t) and s(t) are related by r(t) =
´
h(τ, t)s(t − τ)dτ where h(τ, t) is the

impulse response of the time-varying wireless channel. The impulse response is
modeled as

h(τ, t) =

L∑
l=1

cl(t)δ(τ − τl), (3.1)

which describes a multipath channel consisting of L paths: the lth path is char-
acterized by the time-varying complex-valued gain cl(t) (representing amplitude
|cl(t)| and phase ∠cl(t)) and a delay τl. The resulting r(t) is given by

r(t) =

L∑
l=1

cl(t)s(t− τl), (3.2)

which indicates that r(t) is a linear combination (with time-varying complex co-
efficients cl(t)) of delayed versions of s(t). The multipath channel is illustrated in
Fig. 3.1, which shows that due to reflections, the transmitted signal arrives at the
RX through different paths.
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Assuming wide-sense stationary uncorrelated scattering (WSSUS), the path
gains cl(t) are uncorrelated stationary Gaussian processes.

In the absence of a line-of-sight component, all cl(t) are considered zero-mean
circularly symmetric. The time variations of cl(t) are characterized by the auto-
correlation function Rl(τ) = E [cl(t+ τ)c∗l (t)]. The power spectrum of cl(t) is
denoted Sl(f), which equals the Fourier transform of Rl(τ); it can be shown that
Sl(f) = 0 for |f | > fd, where fd is the Doppler frequency of the channel. For a
RX moving at speed v, we have fd = (v/c)fc where c ≈ 3 · 108 m/s denotes the
speed of light.

3.1.1 Flat/Selective Fading

Assuming that in (3.1) the path delays are ordered such that τ1 < τ2 < ... < τL,
one defines the delay spread τmax as τmax = τL − τ1, which denotes the delay
difference between the last arriving and the first arriving path. The inverse of the
delay spread is referred to as the channel coherence bandwidth Bcoh: Bcoh =

1/τmax

The effect of the multipath channel on the received signal depends on the ratio
B/Bcoh of the signal bandwidth B to the coherence bandwidth.

• When B/Bcoh � 1, we have s(t − τl) ≈ s(t − τ1) for l 6= 1, so that (3.2)
reduces to r(t) = c(t)s(t − τ1), with c(t) =

∑L
l=1 cl(t). The channel is

characterized by a single delay τ1 and a single time-varying gain c(t). The
channel is referred to as frequency-flat, because all frequency components of
s(t) are affected by the channel in the same way: they all experience a gain
of magnitude |c(t)|. In the absence of a line-of-sight component, c(t) is sta-
tionary and zero-mean, with autocorrelation function R(τ) =

∑L
l=1Rl(τ).

One often uses Jakes’ model [12], which takes R(τ) = R(0)J0(2πfdτ),

where J0(.) is the zero-order Bessel function of the first kind; this correla-
tion function corresponds to the case of a sum of equal-strength paths with
angles of arrival uniformly distributed in the interval (0, 2π). For given t, the
magnitude z = |c(t)| has a Rayleigh distribution, with a probability density
function pz(x) given by

pz(x) =
2x

R(0)
e−

x2

R(0) , x ≥ 0. (3.3)

• When B/Bcoh is in the order of 1 or larger, the differences between path
delays can no longer be ignored. The channel is referred to as frequency-
selective: the channel gain magnitude varies over the signal bandwidth,
causing linear distortion to the signal; the gain corresponding to a frequency
f has a magnitude

∣∣∣∑L
l=1 cl(t)e

−j2πfτl
∣∣∣. The gain magnitudes correspond-
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ing to the frequencies f1 and f2 are essentially the same when |f1 − f2| �
Bcoh.

3.1.2 Block-Fading Channel

The channel coherence time Tcoh is a measure of the time interval over which the
channel can be considered as time-invariant: when |t1 − t2| � Tcoh, we have
h(τ, t1) ≈ h(τ, t2). Considering that the path gains cl(t) have a bandwidth not
exceeding the Doppler frequency fd, it is convenient to take Tcoh = 1/fd.

Digital information is typically transmitted in blocks, often referred to as pack-
ets or frames. In this work we will consider the case where the duration of a frame
is much smaller than the channel coherence time, so that the path gains cl(t) can
be considered constant over a frame; this corresponds to a block-fading channel.

3.1.3 Standardized Channel Models

In the simulations, we will make use of different channel models to validate our
results, depending on whether the channel is frequency-flat or frequency-selective.

For a frequency-flat channel, we will generate a complex-valued Gaussian
channel gain with zero mean (Rayleigh fading). The mean-squared magnitude
of the channel gain is set equal to 1/dα, where d represents the distance between
the TX and RX, and α represents the path loss exponent (α = 2 in free space).

When simulating a frequency-selective channel, we will use a standardized
model for multipath channels [13], which is characterized by the number of paths,
the corresponding path delays and the relative power Rn(0)/R1(0) of the nth path
with respect to the first path. Table 3.1 shows the parameters of the ITU Pedes-
trian B and the ITU Vehicular A channel models. The former model describes
an environment that is characterized by small cells and low transmit power; it as-
sumes that base stations with small antenna heights are located outdoors, while
pedestrian users are located on streets and inside buildings and residences. The
latter model describes an environment that is characterized by large cells and high
transmit power.

3.2 Digital Communication System Model
In the following we give an overview of the main building blocks that are used in
a typical digital communications system. These blocks are:

• channel coding

• symbol mapping

• single-carrier or multicarrier modulation
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ITU Pedestrian B ITU Vehicular A

Path Delay (ns) Relative power (dB) Path Delay (ns) Relative power (dB)
1 0 0.0 0 0.0

2 200 −0.9 310 −1.0

3 800 −4.9 710 −9.0

4 1200 −8.0 1090 −10.0

5 2300 −7.8 1730 −15.0

6 3700 −23.9 2510 −20.0

Table 3.1: ITU Pedestrian B (left) and ITU Vehicular A (right) channel model.

3.2.1 Channel Coding

Channel coding is a means to protect the information bit stream against errors. The
channel encoder adds redundant bits to the information bit stream, which enables
the RX to correct some bit error patterns. Considering the information bitstream
consisting of Nu bits, and denoting the length of the corresponding coded bit vec-
tor c = (c1, ..., cNc

) by Nc, with Nc > Nu, the code rate is defined as the ratio
Nu/Nc.

3.2.2 Symbol Mapping

The symbol mapping transforms the stream of coded bits c into a stream of complex-
valued data symbols x = (x1, ..., xN ). First, the stream of coded bits c is divided
into groups of m bits, and each group is mapped to a data symbol. These symbols
are selected from a normalized M -point constellation χ = {α1, . . . , αM}, where

1

M

M∑
i=1

|αi|2 = 1, (3.4)

expresses the normalization condition, and the number of constellation points M
is given by

M = 2m. (3.5)

The number (N ) of data symbols is related to the number (Nc) of coded bits by
N = Nc/m. We will now give an overview of some popular constellations:

• M-ary Pulse Amplitude Modulation (M-PAM): The set χ is given by

χ = {(2k − 1−M)d(M) : k ∈ {1, . . . ,M}}, (3.6)

where

d(M) =

√
3

M2 − 1
, (3.7)
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ensures the normalization. When M = 2, this constellation is also called
binary phase-shift keying (BPSK).

• M-ary Quadrature Amplitude Modulation (M-QAM): This constellation
consists of the following set of complex symbols

χ = {(2k − 1−
√
M)

d(
√
M)√
2

+j(2l − 1−
√
M)

d(
√
M)√
2

: k, l ∈ {1, . . . ,
√
M}}, (3.8)

which combines two
√
M -PAM constellations, one for the real part and one

for the imaginary part of the M-QAM constellation. Note thatm, the number
of bits per constellation, has to be even.

• M-ary Phase-Shift Keying (M-PSK): In this case, the complex symbols
belong to the following set

χ = {ej 2π(k−1)
M : k ∈ {1, . . . ,M}}. (3.9)

These constellations are illustrated in Fig. 3.2, for the cases of 4-PAM, 16-QAM
and 8-PSK. Note that Fig. 3.2 also shows a possible mapping between the different
sets ofm bits and the constellation points. We have used a Gray mapping function.
This mapping function has the important property that the constellation points at
minimum Euclidean distance differ only in a single bit. This mapping function has
the advantage of minimizing the bit error rate for uncoded transmission.

3.2.3 Single-Carrier and Multicarrier Modulation

In this work, we consider linear digital modulation. This means that we trans-
mit a sequence s, which is a linear function of the data symbol sequence x. We
will consider single-carrier modulation in the case of a frequency-flat channel, and
multicarrier modulation in the case of a frequency-selective channel. For both
types of modulation, we describe the signal processing operations to be performed
at the TX and the RX. We will derive a simple discrete-time model which relates
the transmitted data symbols x to some vector z which is computed by the RX; in
subsequent chapters, this model will be used without further specification of the
underlying signal processing operations.

3.2.3.1 Single-Carrier Modulation

In the case of single-carrier modulation, the sample sequence s is the same as the
data symbol sequence x. The transmitted signal corresponding to x = [x1, . . . , xN ]T ∈
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(a) 4-PAM (b) 16-QAM

(c) 8-PSK

Figure 3.2: Examples of several constellations.
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χN is given by

s(t) =
√
Es

N∑
k=1

xkp(t− kT ), (3.10)

where T is the symbol interval (which corresponds to a symbol rate Rs = 1/T ),
and the baseband transmit pulse p(t) satisfies

ˆ +∞

−∞
|p(t)|2 dt = 1. (3.11)

This way, Es denotes the transmitted energy per data symbol. The pulse p(t) has
a bandwidth B, which means that the frequency spectrum P (f) of p(t) is zero for
|f | > B. The filter p(t) is selected such that g(t), given by

g(t) =

ˆ
p(t+ u)p∗(u) du, (3.12)

is a Nyquist pulse. This means that the following condition holds

g(nT ) =

{
1, n = 0

0, n 6= 0
. (3.13)

Note from (3.12) that g(t) = g∗(−t).
The signal s(t) is sent over a frequency-flat channel. Assuming that the dura-

tion of the signal s(t) is much less than the channel coherence time, the received
signal can be represented as

r(t) = hs(t− τ1) + n(t), (3.14)

where h is the complex channel gain, which is constant over the duration of s(t), τ1
is the channel delay, and n(t) is zero-mean complex-valued circularly symmetric
additive white Gaussian noise (AWGN) with power spectral density σ2, which will
be denoted as n(t) ∼ Nc(0, σ2δ(u)).

The received signal r(t) is applied to a filter with impulse response p∗(−t),
which is matched to the transmit filter. The matched filter output signal z(t) is
sampled at instants kT + τ1. The resulting samples zk = z(kT + τ1) are given by

zk =
√
Eshxk + nk, (3.15)

where nk is a zero-mean complex-valued circularly symmetric Gaussian noise
contribution with E [nk+in

∗
k] = σ2δi. Dividing both sides of (3.15) by

√
Esh,

in order to reduce the coefficient of xk to one, yields the simple observation model

yk = xk + wk, (3.16)

where wk is a zero-mean complex-valued circularly symmetric Gaussian noise
contribution with E [wk+iw

∗
k] = 1

γ δi, with γ = Es|h|2/σ2 denoting the signal-to-
noise ratio (SNR). The RX tries to recover the transmitted information bits from
the samples [y1, ..., yN ].
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3.2.3.2 Multicarrier Modulation

In a multicarrier modulation, or more specifically Orthogonal Frequency-Division
Multiplexing (OFDM), the symbol vector x = [x1, . . . , xN ]T ∈ χN is trans-
formed into the sequence s′ = [s′1, . . . , s

′
N ]T according to

s′ =
1√
N

FHx, (3.17)

where F ∈ CN×N denotes the Fourier matrix, which is defined as

Fk,l = e−j2π
(k−1)(l−1)

N , k = 1, . . . , N ; l = 1, . . . , N. (3.18)

In order to avoid that the frequency-selective channel causes interference between
the data symbols, we construct the vector s by inserting a cyclic prefix of ν samples
in front of the vector s′; this yields

s =

√
N

N + ν


s′N−ν+1

...
s′N
s′

 . (3.19)

The contribution of the symbol xn to sk consists of the sample of the signal
xne

j2πfnt, taken at instant (k − ν − 1)T , for k = 1, ..., N + ν, where fn =

(n− 1)/(NT ), for n = 1, ..., N . Hence, the components of s are the N + ν sam-
ples of the sum of N subcarriers, where the nth subcarrier is located at frequency
fn and conveys the data symbol xn. As the spacing between subcarrier frequencies
equals 1/(NT ), the sampled subcarriers are mutually orthogonal over an interval
of N samples.

The N + ν components of the vector s are transmitted using the signal s(t),
given by

s(t) =
√
Es

N+ν∑
k=1

skp(t− kT ), (3.20)

where p(t) has the same properties as in (3.10). Considering that we need N + ν

samples [s1, ..., sN+ν ] to transmit N data symbols [x1, ..., xN ], the symbol rate is

given by Rs = N
N+ν · 1

T ; because of the scaling factor
√

N
N+ν in (3.19), Es in

(3.20) denotes the transmitted energy per data symbol.
The signal s(t) is transmitted over a frequency-selective channel. Assuming

that the duration of the transmitted signal s(t) is much smaller than the channel
coherence time, the path gains can be considered constant during the transmission
of s(t). The resulting received signal is given by

r(t) =

L∑
l=1

cls(t− τl) + n(t), (3.21)
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where n(t) is complex-valued AWGN with power spectral density σ2.
At the RX, the signal r(t) is applied to a matched filter with impulse response

p∗(−t), and the resulting filter output signal v(t) is sampled at rate 1/T . Let
us denote by h(t) the impulse response of the cascade of the transmit filter, the
channel and the receive filter, i.e., h(t) =

∑L
l=1 clg(t− τl); defining Th and th as

the duration and the starting point of h(t), respectively, we have Th = τmax + Tg ,
and th = τ1 − (Tg/2), where Tg is the duration of the pulse g(t). Introducing
hm = h(t0 +mT ), where t0 is a sampling instant between th and th+T , we have
hm = 0 for m < 0 or m > Lh − 1, with Lh = ceil(Th/T ). The RX stacks the
matched filter output samples vk = v(t0 + νT + kT ) with k = 1, ..., N , into the
vector v = [v1, . . . , vN ]T , and computes the vector z as

z =

√
N + ν

N

1√
N

Fv, (3.22)

where F is the Fourier matrix. Note that the samples v(t0 +kT ) with k = 1, ..., ν,
which correspond to the cyclic prefix, are ignored by the RX. Provided that ν ≥
Lh − 1, it is shown in [14] that the contribution of the vector s′ to v can be ex-
pressed as

√
N

N+νHs′, where H is a N ×N cyclic matrix: the first column of H

equals [h0, ..., hLh−1, 0, ..., 0]T , and the (n + 1)th column is a downward cyclic
shift of the nth column. Because of the cyclic property of H, it can be verified that

zk =
√
EsHkxk + nk, k = 1, . . . , N, (3.23)

where Hk = H(ej2πfkT ) with H(ej2πfT ) =
∑Lh−1
m=0 hme

−j2πfmT denoting the
discrete-time Fourier transform of the impulse response samples [h0, ..., hLh−1],

and nk is a zero-mean complex-valued circularly symmetric Gaussian noise con-
tribution with E [nk+in

∗
k] = σ2

wδi, and σ2
w = N+ν

N σ2. Applying single-tap equal-
ization involves dividing both sides of (3.23) by

√
EsHk; this again yields (3.16),

but now with E [wk+iw
∗
k] = 1

γk
δi, where γk = Es|Hk|2

σ2
w

denotes the SNR on the
kth subcarrier. The RX tries to recover the transmitted information bits from the
samples [y1, ..., yN ].

We note that a more generic model will be considered in later chapters, which
allows every subcarrier to have a different transmit energy and constellation size.
The resulting system model is obtained by slightly modifying (3.23), in such a way
that both the constellation χ and transmit energy Es can become dependent on the
subcarrier index k.

Multicarrier modulation on a frequency-selective channel and single-carrier
modulation on a frequency-flat channel give rise to a similar relation between
y and x, provided that the multicarrier modulation uses a cyclic prefix of suffi-
cient length. Because of the cyclic prefix, each subcarrier “sees” a frequency-flat
channel, with a gain depending on the subcarrier index; in spite of the frequency-
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selective channel, the orthogonality of the subcarriers is maintained over the inter-
val corresponding to the N samples processed by the RX. Because of the intro-
duction of a cyclic prefix, OFDM experiences some loss of spectral efficiency and
power efficiency, caused by the factor N

N+ν ; however, typically we have N � ν,
in which case the loss is very small. For single-carrier modulation, the SNR is the
same for all data symbols, whereas for OFDM the SNR depends on the subcarrier
index.

3.3 MMSE Estimator

In this section we give the reader a brief introduction to MMSE estimation. Let
us consider an observation vector y, of which the statistical properties depend on
a parameter a; our aim is to produce an estimator â = φ(y) of a, in such a way
that the mean square error (MSE) between â and a is minimum. The MSE to be
minimized is defined as

E
[
|â− a|2

]
= E

[
|φ(y)− a|2

]
, (3.24)

where the expectation is with respect to the joint probability density p(y, a). It is
shown in [15] that the MMSE estimator equals the a posteriori expectation of a,
which is given by

â = E [a|y] , (3.25)

where the expectation is with respect to the a posteriori density p(a|y). The re-
sulting minimum value of the MSE equals the average (over y) of the a posteriori
variance of a, which reduces to

E
[
|â− a|2

]
min

= E
[
E
[
|a|2|y

]
− |E [a|y] |2

]
= E

[
|a|2
]
− E

[
|E [a|y] |2

]
. (3.26)

In the following, we describe how we can use the MMSE estimator to pre-
dict the value of a random process on a future time instant, based on observations
related to previous time instants. We introduce the following model for the obser-
vations

yk = xk + wk, k = 1, . . . , N + 1, (3.27)

where x = [x1, . . . , xN+1]T and w = [w1, . . . , wN+1]T are jointly Gaussian
with zero mean. Now, we want to predict the value a = xN+1 based on only the
previous observations y1, y2, . . . , yN . From our discussion above, we know that
the minimum MSE is achieved by the a posteriori expectation of a, i.e., E [a|y].
Defining y = [y1, . . . , yN ]T and introducing Ryy = E

[
yyH

]
, rya = E [ya∗]
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and Raa = E [aa∗], we can write the a posteriori probability density p(a|y) in the
following form:

p(a|y) ∝ p(y, a)

∝ exp

(
−
[

yH aH
] [ Ryy rya

rHya Raa

]−1 [
y

a

])
, (3.28)

where ∝ denotes “equal within a factor not depending on a”. Setting[
Ryy rya
rHya Raa

]−1

=
1

σ2
MSE

[
P −q

−qH 1

]
, (3.29)

we obtain from (3.28) that

p(a|y) ∝ exp

(
− 1

σ2
MSE

(
a− qHy

)H
(a− qHy)

)
. (3.30)

It follows from (3.30) that for given y, a is Gaussian with mean qHy and variance
σ2

MSE. Solving (3.29) for σ2
MSE and q, we find

qH = rHyaR
−1
yy , (3.31)

σ2
MSE = Raa − rHyaR

−1
yyrya. (3.32)

Hence, the estimator and the corresponding minimum MSE are given by

â = qHy = rHyaR
−1
yyy, (3.33)

E
[
|â− a|2

]
min

= σ2
MSE = Raa − rHyaR

−1
yyrya. (3.34)

The quantities Raa, Ryy and rya are easily obtained from the autocorrelation
and cross-correlation matrices of x and w. Note that the MMSE estimator (3.33)
is a linear function of y; this is because p(y, a) is Gaussian. Hence, restricting
the MMSE estimator to be linear, i.e., â(y) = qHy, and selecting q to min-
imize E

[
|qHy − a|2

]
would give rise to the same solution (3.33) and perfor-

mance (3.34).

3.4 Performance Metric
This section presents several performance metrics that we will be using in the fol-
lowing chapters. We emphasize that the performance metrics described in 3.4.1
and 3.4.2 are information-theoretical metrics. They describe the best theoretical
performance that the network can achieve. However, as these performances met-
rics are derived under assumptions which are not met in practice, it is safe to say
that an actual network will always achieve a performance which is worse than these
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theoretical limits. For example, these metrics are derived under the assumption that
the transmitted symbols are distributed according to a continuous Gaussian proba-
bility density [16], which is substantially different from the discrete constellations
that are commonly used in a practical network.

In section 3.4.3 we introduce a more practical metric, which will be the main
focus of the third part of this dissertation.

3.4.1 The Capacity Metric

The capacity of a channel represents the highest information rate R, expressed
in information bits per channel use (with a channel use denoting the transmission
of a data symbol), at which reliable communications is possible [16]. Reliable
communications means that there exists a sequence of codes (with growing block
length) with corresponding rate R, for which the average error probability goes to
zero as the block length of the code goes to infinity.

Let us consider an AWGN channel characterized by z =
√
Esx + n, where x

is a complex-valued data symbol with E
[
|x|2
]

= 1, n is a zero-mean circularly
symmetric Gaussian noise contribution with E

[
|n|2

]
= σ2 and z is the input to

the RX. The capacity of this AWGN is given by

CAWGN = log2

(
1 +

Es

σ2

)
. (3.35)

Introducing a fixed channel gain h ∈ C, which is known by the RX, the corre-
sponding capacity becomes

Ch = log2

(
1 +
|h|2Es

σ2

)
. (3.36)

Next, we assume that the channel gain h is time-varying. If each codeword is
long enough to experience all possible channel gain values, the following capacity
formula is applicable

Cerg = Eh
[
log2

(
1 +
|h|2Es

σ2

)]
. (3.37)

The quantity Cerg is known as the ergodic capacity. However, in the case where
the channel gain h is slowly varying and each codeword experiences only a single
realization of the channel gain h, it will be more useful to describe the capacity of
the channel as a random variable. This scenario is discussed in the next section.

Finally, we discuss the capacity of a multicarrier network when the channel
gains are known by the RX. According to (3.23), a multicarrier system with a
sufficiently long cyclic prefix can be modeled as N independent channels; the
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capacity of a single channel can be found directly from equation (3.36), i.e. the
capacity for the channel seen by the kth subcarrier is given by

log2

(
1 +
|Hk|2Es

σ2
w

)
. (3.38)

As the channels are independent, the capacity COFDM of a multicarrier network
(in bits/OFDM symbol) is given by the sum of the capacities of all the subcarriers:

COFDM =

N∑
k=1

log2

(
1 +
|Hk|2Es

σ2
w

)
. (3.39)

3.4.2 The Outage Capacity and Outage Probability

Assume that we want to transmit a message to the destination at an information
rate R. In the case of slowly varying h, we define the outage probability as [14]

Pout
∆
= Pr {Ch < R} , (3.40)

where Ch is defined in (3.36). The probability Pout is the probability that the
capacity Ch is smaller than the fixed transmission rate R. Thus, we assume that
the capacity Ch is a random variable, whose distribution depends on the statistics
of the channel gain h. We note that the outage probability Pout is a more suitable
performance metric than the capacity for applications with a fixed data rate, such
as video transmission, as the outage probability expresses the reliability of the
system, instead of the maximum achievable rate.

A related performance metric is the ε-outage capacity Cε of the channel. This
metric is defined as

Cε = max
R

R

s.t. Pout(R) ≤ ε,
(3.41)

where ε > 0 and the dependency of Pout on the transmission rate R is explicitly
shown. The outage capacity Cε denotes the maximal rate for which the outage
probability Pout(R) is smaller or equal to ε. As the outage probability Pout(R) is
an increasing function of R, it follows that the outage probability Pout(R) will be
equal to ε when R = Cε.

3.4.3 The Goodput Metric

Besides the information-theoretical performance metrics mentioned above, we
also consider a more practical metric that is applicable to a packet-based transmis-
sion system. This metric is called the goodput (expressed in bit/s), and is defined
in [17], for a given channel realization, as the following ratio

GP ,
Nd

Tpacket
, (3.42)
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where Nd denotes the expected number of correctly received information bits (as-
sociated with correctly decoded packet) per packet, and Tpacket denotes the trans-
mission time of a single packet. The goodput metric is a function of the transmit
energy per subcarrier, the constellation size and the code rate. We note that the
transmit energy and the constellation size can be different for every subcarrier.
This metric will be discussed in more detail in section 4.3.

3.5 Resource Allocation
A resource allocation algorithm allows the TX to dynamically select its transmis-
sion parameters in such a manner that the performance of the network, which can
be described by one of the metrics discussed in section 3.4, is optimized. The algo-
rithm adapts the transmission parameters as a function of the channel information
that is available at the TX. In this dissertation, most of the derived resource alloca-
tion algorithms are aware that the channel information at the TX can contain errors,
which are caused by for example noise or feedback delays. This awareness allows
the algorithms to make a better choice regarding the transmission parameters of
the TX, which ultimately improves the network performance.

In the following, as an example, we derive a resource allocation algorithm for
both a single-carrier and a multicarrier network, using the optimization tools from
chapter 2. In both cases, the resource allocation algorithm optimizes the capacity
of the link between the TX and the RX. We make the following assumptions:

• The TX has perfect information about the channel gain towards the RX.

• The energy that the TX may transmit is restricted by E(max).

• The TX can adapt its transmission energy per data symbol.

3.5.1 Resource Allocation in a Single-Carrier Network

For a single-carrier network, the capacity of the link between the TX and the RX
is given by (3.36). The resource allocation algorithm can be found by solving the
following optimization problem

E(opt)
s = arg max

E
log2

(
1 +
|h|2Es

σ2

)
s.t. Es ≤ E(max).

(3.43)

As the objective function in (3.43) is concave and the constraint is linear, (3.43)
represents a convex optimization problem. According to section 2.3, the La-
grangian of this optimization problem is given by

L(Es, µ) = − log2

(
1 +
|h|2Es

σ2

)
+ µ(Es − E(max)), (3.44)
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where µ is the Lagrange multiplier corresponding to the constraint on the transmit
energy Es. According to the KKT condition (2.29), we have to set the derivative
of the Lagrangian L(E

(opt)
s , µ(opt)) with respect to Es equal to 0, which means

∇Es
L(E(opt)

s , µ(opt))

=
∂

∂Es

(
− log2

(
1 +
|h|2E(opt)

s

σ2

)
+ µ(opt)(E(opt)

s − E(max))

)

= − 1

ln(2)

1

1 + |h|2E(opt)
s

σ2

|h|2
σ2

+ µ(opt) = 0. (3.45)

By solving this equation, we obtain

E(opt)
s =

1

ln(2)

1

µ(opt)
− σ2

|h|2 . (3.46)

As the optimum solution also has to satisfy the following KKT condition (2.28)

µ(opt)(E(opt)
s − E(max)) = 0, (3.47)

we find the following value for µ(opt)

µ(opt) =
1

ln(2)

1
σ2

|h|2 + E(max)
. (3.48)

By combining (3.46) and (3.48), we find the following optimum

E(opt)
s = E(max). (3.49)

This result could also be found immediately by noting that the objective function
in (3.43) is a strictly increasing function of Es.

3.5.2 Resource Allocation in a Multicarrier Network

For a multicarrier network, the capacity of the link between the TX and the RX is
given by (3.39). We get the following optimization problem

E(opt) = arg max
E

N∑
k=1

log2

(
1 +
|Hk|2Ek
σ2
w

)

s.t.

N∑
k=1

Ek ≤ E(max)

Ek ≥ 0, k = 1, . . . , N,

(3.50)
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where E = [E1, . . . , EN ]T . We have added additional constraints to make sure
that the transmit energy per symbol Ek, k = 1, . . . , N , is greater than or equal to
0. As the optimization problem in (3.50) is convex, we can again find the optimum
by setting∇EL(E(opt), µ

(opt)
1 , . . . , µ

(opt)
N+1) equal to zero, which leads to

∇EL(E(opt), µ
(opt)
1 , . . . , µ

(opt)
N+1)

= ∇E

(
−

N∑
k=1

log2

(
1 +
|Hk|2E(opt)

k

σ2
w

)

−
N∑
k=1

µ
(opt)
k E

(opt)
k + µ

(opt)
N+1(

N∑
k=1

E
(opt)
k − E(max))

)
= 0. (3.51)

By solving this equation, we obtain the following value for E(opt)
k , k = 1, . . . , N ,

E
(opt)
k =

1

ln(2)

1

µ
(opt)
N+1 − µ

(opt)
k

− σ2
w

|Hk|2
. (3.52)

According to (2.28), the value of µ(opt)
k E

(opt)
k is equal to 0 for every subcarrier

k. This can either be achieved by setting µ(opt)
k = 0 or E(opt)

k = 0. We will first
consider the case where E(opt)

k = 0. In this case, from (3.52) we get that

µ
(opt)
k = µ

(opt)
N+1 −

1

ln(2)

|Hk|2
σ2
w

. (3.53)

In the other case, where µ(opt)
k = 0, the optimum value of E(opt)

k is found as
follows

E
(opt)
k =

1

ln(2)

1

µ
(opt)
N+1

− σ2
w

|Hk|2
. (3.54)

These two cases can be combined as follows

E
(opt)
k =

[
1

ln(2)

1

µ
(opt)
N+1

− σ2
w

|Hk|2

]+

, (3.55)

where the operator [.]+ represents max(., 0).
As the objective function is a strictly increasing function of Ek, k = 1, . . . , N ,

the value of µ(opt)
N+1 is found by solving the following equality

N∑
k=1

[
1

ln(2)

1

µ
(opt)
N+1

− σ2
w

|Hk|2

]+

= E(max). (3.56)

The formula shown in (3.55) is the well-known water-filling solution. We can
think of σ2

w

|Hk|2 as the floor of a segment k and 1
ln(2)

1

µ
(opt)
N+1

as the water level. The
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Figure 3.3: Illustration of the water-filling algorithm.

optimal value of E(opt)
k is then given by the height of the water in segment k. This

is illustrated in Fig. 3.3.

3.6 Cooperative Network

There is an ever growing demand for high data rates and reliable services over the
air. Further, new applications for small wireless devices have to combine these
high data rates with the requirement of a very low power consumption. Recently,
the use of cooperative networks has been proposed as a cost-effective solution to
meet these demands in next generations of wireless systems [18–21]. In a cooper-
ative network, there will be one or more relay nodes (RNs) present which aid the
TX in conveying its information to the RX. In the following, we call the original
TX and RX the source node (SN) and the destination node (DN), respectively. In
particular, the use of RNs has been shown to enhance the reliability of the network
by improving the spatial diversity of the network. This spatial diversity can be
successfully combined with other forms of diversity such as time and frequency
diversity, to mitigate signal fading which arises from multipath propagation in a
wireless environment [16].

The following are some of the more popular relaying protocols described in
literature [22–25]:

• Amplify-and-Forward: The RNs amplify the message they receive from the
SN, and forward the message to the DN.

• Decode-and-Forward: The RNs fully decode, re-encode and retransmit the
received message to the DN.
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(a) Transmission at the SN. (b) Transmission at a RN.

Figure 3.4: A cooperative network.

• Compute-and-Forward: The RNs decode linear functions of the messages
transmitted by the SN, which the RNs then forward to the DN. Given enough
equations, the DN can then recover the original message.

In the following, we will describe in more detail the different relaying protocols
we have investigated in our work. Note, that we focus our attention on the case
where the SN and the RNs transmit in non-overlapping time slots, in order to avoid
mutual interference at the DN. This is illustrated in Fig. 3.4, where we show the
transmission of a message by both the SN and by a RN.

Unless stated otherwise, we always assume that the channel gains between the
nodes are independent and the number of RNs will be denoted by the variable M .

3.6.1 Direct Transmission Protocol

The most straightforward protocol, is the direct transmission (DT) protocol. In
this protocol the RNs are not used for the transmission of the message. The SN
simply transmits the message through the direct link between the SN and the DN.
The channel between the SN and the DN is denoted by hs,d. We consider flat
Rayleigh fading, so that the channel gain hs,d is a zero-mean circularly Gaussian
distributed random variable. This scheme is considered as an important alternative
to cooperative networks. In contrast to the direct transmission, the transmission
of a message x, with E

[
|x|2
]

= 1, in a cooperative network often requires mul-
tiple time slots, which might not always be beneficial for the performance of the
network. The signal received at the DN is given by

zs,d =
√
E0hs,dx+ ns,d, (3.57)

where E0 denotes the transmission energy per symbol at the SN and ns,d ∼
Nc(0, σ2

s,d). The maximum capacity (bits/channel use) that is possible between
the SN and DN for a given channel gain hs,d is given by

CDT = log2

(
1 + E0

|hs,d|2
σ2

s,d

)
, (3.58)

assuming that the DN knows the channel gain hs,d.
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3.6.2 Amplify-and-Forward Protocol

In the amplify-and-forward (AF) protocol, the RNs amplify their received mes-
sage and forward it to the DN. If each RN participates in the transmission, the
transmission of a message will require M + 1 time slots.

In the first time slot, the SN sequentially broadcasts the components of a sym-
bol vector x ∈ CK×1, where E

[
xxH

]
= IK , to the DN and the RNs of the

network. The received signals are given by

zs,d =
√
E0hs,dx + ns,d, (3.59)

zs,r(m) =
√
E0hs,r(m)x + ns,r(m), m = 1, . . . ,M, (3.60)

where ns,d ∼ Nc(0, σ2
s,dIK) and ns,r(m) ∼ Nc(0, σ2

s,r(m)IK). The channel
gains hs,d and hs,r(m) denote the channel gain between the SN and the DN and
between the SN and the mth RN, respectively.

Then, from the second time slot till the (M + 1)th time slot, each RN will
individually amplify and forward its received message to the DN. Using Em as
the transmission energy per symbol, the mth RN amplifies its received signal and
normalizes it by √

E0|hs,r(m)|2 + σ2
s,r(m), (3.61)

which represents the square-root of the average received energy at the correspond-
ing RN. This means that the RN has to determine the average received energy
Ex,ns,r(m)

[
1
K ‖zs,r(m)‖2

]
. The message received by the DN from the mth RN

during the (m+ 1)th time slot is

zr,d(m) =

√
Em√

E0|hs,r(m)|2 + σ2
s,r(m)

hr,d(m)zs,r(m)+nr,d(m), m = 1, . . . ,M,

(3.62)
where nr,d ∼ Nc(0, σ2

r,dIK), and hr,d(m) denotes the channel gain between the
mth RN and the DN.

Finally, assuming that the DN applies maximum ratio combining to the signals
received in the different time slots, the instantaneous received SNR at the DN can
be written as

γAF =

M∑
m=0

γm, (3.63)

where

γ0 =
E0|hs,d|2
σ2

s,d

, (3.64)
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and

γm =
E0
|hs,r(m)|2
σ2
s,r(m) Em

|hr,d(m)|2
σ2
r,d(m)

E0
|hs,r(m)|2
σ2
s,r(m) + Em

|hr,d(m)|2
σ2
r,d(m)

+ 1

=
E0Em|hs,r(m)|2|hr,d(m)|2

E0|hs,r(m)|2σ2
r,d + Em|hr,d(m)|2σ2

s,r + σ2
s,r(m)σ2

r,d(m)
. (3.65)

The maximum rate (bits/channel use) that can be achieved by this protocol is given
by

RAF =
1

M + 1
log2 (1 + γAF) , (3.66)

where the factor of 1/(M+1) comes from usingM+1 time slots for transmitting
the information. As the maximum possible rate that is achievable in a general
cooperative network is not yet known [26], we do not use the word capacity to
describe (3.66). However, (3.66) provides the maximum rate that is theoretically
achievable by the considered protocol.

As the factor 1/(M+1) in (3.66) can lead to a poor performance, it is proposed
in [27] that only the best RN, which is defined as the RN with the highest SNR γm,
will assist the SN in the transmission. This selection amplify-and-forward scheme
is shown to maintain full diversity order, and achieves the following rate

RS−AF =
1

2
log2 (1 + γS−AF) , (3.67)

where
γS−AF = γ0 + max

m∈{1,...,M}
γm. (3.68)

3.6.3 Decode-and-Forward Protocol

In the decode-and-forward (DF) protocol, the RNs fully decode their received mes-
sage and forward their estimation of x towards the DN. Similar to the selection
amplify-and-forward scheme, we assume that only the RN that leads to the highest
SNR at the DN is selected to participate in the transmission. Thus, the transmission
of a message requires only two time slots.

In the first time slot, the SN broadcasts its message to the DN and RNs of
the network. The received signals are again given by (3.59)-(3.60). Then, in the
second time slot the selected RN decodes and forwards the received message to
the DN. If we assume that the mth RN is selected, the signal received at the DN is
given by

zr,d(m) =
√
Emhr,d(m)x + nr,d(m).

Finally, assuming that the DN applies maximum ratio combining to the signals
received in the different time slots, the maximum rate (bits/channel use) that can
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be achieved using the decode-and-forward protocol is [20]

RDF =
1

2
max

m∈{1,...,M}

{
min

{
log2

(
1 +

E0|hs,r(m)|2
σ2

s,r(m)

)
,

log2

(
1 +

E0|hs,d|2
σ2

s,d

+
Em|hr,d(m)|2
σ2

r,d(m)

)}}
. (3.69)

3.7 Cognitive Radio

Because of the increasing demand for wireless services and systems, the electro-
magnetic radio spectrum has become a very scarce resource. Therefore, it is more
important than ever to use it efficiently. Currently, national and international reg-
ulations determine which part of the spectrum is dedicated to specific licensed
communication services: for instance, the frequency bands for GSM-900 are 890-
915 MHz (mobile to base) and 935-960 MHz (base to mobile). Spectrum access
in the same band by another communication system is strictly forbidden. How-
ever, measurements have shown that the current static spectrum allocation leads to
a heavy underutilization of the available bandwidth.

Based on these observations, the idea of cognitive radio (CR) emerged. A
CR-TX is a device which uses advanced radio and signal processing to allow un-
licensed users to operate in an already crowded spectrum without degrading the
performance of the existing licensed users. This idea not only requires additional
research to make such a device feasible from a technical point of view, but it also
requires novel spectrum allocation policies that allow additional TXs to operate in
a licensed frequency band. In the context of cognitive radio, the unlicensed users
are also called the secondary users (SUs), while the licensed users are referred to
as the primary users (PUs).

Thus, CR has the potential to tackle the demanding problems of both scarcity
and underutilization of the frequency spectrum [1,28]. However there are different
ways in which the CR can solve this problem. In the following sections, we briefly
discuss the three main paradigms in CR:

• The underlay paradigm

• The overlay paradigm

• The interweave paradigm

3.7.1 The Underlay Paradigm

In the underlay paradigm, the SU network may transmit concurrently with the PU
network only if the interference caused to the PU network remains under a certain
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Figure 3.5: Example of an underlay network.

threshold. This threshold expresses a level of interference that is acceptable for
the PU network. This means that as long as the interference remains under this
threshold, the quality of service of the PU network will still be guaranteed [29–32].
We have illustrated the underlay paradigm in Fig. 3.5. The solid lines represent
the intended signal paths, which connects the TX to a RX from the same network.
The dashed lines however, represent the interference paths, connecting the TX
from one network to a RX from another network, causing interference from the
SU network to the PU network, and vice versa. In the following chapters, we will
focus our attention to the interference caused at the PU-RX. So we will neglect the
interference from the PU-TXs to the SU-RX. If necessary, this interference could
be taken into account by increasing the variance of the noise at the SU-RX [33].

In order to keep the interference level below the set threshold, the SU network
requires some information about its channel gains to the PU network, in order
that the SU network knows how much interference it is generating at the PU-
RXs. This information could be obtained from a band manager [31, 34], which
monitors the spectrum and mediates between the PU and SU network, or, assuming
time-division duplexing in the PU network and channel reciprocity, this channel
information could be extracted by the SU-TX when the considered PU-RX has
switched to a transmission mode.

There are several ways in which the SU network can control the interference
caused at the PU-RXs. For example, the SU-TXs can dynamically adapt their
transmit energy per symbol as a function of their channel gains towards the PU-
RXs. In another example, the SU network can choose a very low transmission
power, such that the interference level is almost certainly below threshold for every
realistic value of the channel gain. However, the latter approach will only work
for short range communications within the SU network, as this approach severely
limits the allowable transmission power of the SU network.
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The main advantage of the underlay paradigm, is that it requires none or little
cooperation from the PU network. The PU-TXs can be completely unaware of the
existence of the SU-TXs that simultaneously operate in the same frequency band.
Hence, this method also does not require any synchronization between the PU
and SU network. However, the disadvantage of this method is that the interference
level constraints to be met at the PU-RX limit the achievable data rate performance
of the SU network.

We will now discuss some ways to express these interference constraints. We
make the distinction between the peak interference constraints and the average
interference constraints. Denoting by g the channel gain between the SU-TX and
the PU-RX, the peak interference constraint is expressed as

E|g|2 ≤ Γ, (3.70)

where E denotes the transmit energy per symbol and Γ denotes the interference
threshold; E is in general a function of all channel gains in the CR network. This
approach will be investigated in chapters 5, 8 and 10.

However, another possibility is to control the average interference level at the
PU-RXs over all the fading states. This approach results in the following average
interference constraint

E
[
E|g|2

]
≤ Γ̄, (3.71)

where Γ̄ denotes the average interference threshold, and the average is over g and
all other channel gains E depends on. The average interference constraints will be
used in chapters 6 and 7.

Further, notice that in order to satisfy the peak interference constraint (3.70),
the SU-TX has to know the instantaneous channel gain towards the PU-RX. How-
ever, due to feedback delay and estimation errors it can happen that the channel
state information (CSI) at the SU-TX is imperfect. In this case, the SU-TX can no
longer guarantee that the peak interference constraint at the PU-RXs is satisfied.
Therefore, alternative formulations of the interference constraints are needed that
can be satisfied by the SU-TX.

• A first possibility is to satisfy the interference constraints only on average,
conditioned on the available imperfect CSI, denoted ICSIPU. In this case
the peak interference constraint is replaced by

E E
[
|g|2 |ICSIPU

]
≤ Γ. (3.72)

This approach will be considered in chapters 8 and 10.

• A second possibility is to define the interference constraint by means of
uncertainty sets [35, 36]. By defining the following uncertainty set S

S = {g : g = E [g |ICSIPU] + αε, ‖ε‖ ≤ 1} , (3.73)
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we can formulate the interference constraint as follows

E|g|2 ≤ Γ, ∀g ∈ S (3.74)

where the complex scalar α defines the size of the uncertainty interval,
which directly influences the minimum probability that the interference is
below the interference threshold Γ. This type of constraint will be investi-
gated in chapter 5.

• A third possibility, used in [37–39], is to neglect the statistical variation
of g for given ICSIPU, which corresponds to simply replacing in (3.70) g
by its conditional expectation E [g |ICSIPU]. The following interference
constraint results:

E |E [g |ICSIPU]|2 ≤ Γ. (3.75)

We note that the above interference constraints can be linked to the concept of
interference probability as defined in [37]. The interference probability (IP) for
the PU-RX reads as

IP = Pr
(
E|g|2 > Γ

)
. (3.76)

In the case that the dynamically allocated energy E leads to a too large IP, one can
substitute Γ in the corresponding interference constraint by κΓ. The scaling factor
κ is chosen such that IP reaches an acceptable value, after finding a new dynamic
allocation of the E which satisfies the new constraint.

3.7.2 The Overlay Paradigm

In the overlay paradigm, the SU network actively cooperates with the PU network,
which requires the SU network to know the messages and the codebook of the PU
network. An example of a cognitive overlay network is shown in Fig. 3.6. Here,
a PU-TX sends a message which is received both by the PU-RX and a SU-TX. In
the case where the message cannot be decoded by the PU-RX, the SU-TX can act
as a RN for the PU network by decoding and forwarding the received message to
the PU-RX. This way, the SU network uses a part of its resources to improve the
performance of the PU network. However, as the SU network also transmits its
own messages, it thereby causes interference at the PU-RX which in turn degrades
the performance of the PU network. The overlay paradigm now dictates that the
SU network has to guarantee that the resulting performance of the PU network is
at least as good as when the SU network would not be present.

3.7.3 The Interweave Paradigm

The interweave paradigm differs from the previous two paradigms, in that the SU
network is not allowed to transmit concurrently with the PU network. This mode
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Figure 3.6: Example of an overlay network.

Figure 3.7: Example of an interweave network.

of operation is also known as opportunistic communication. The idea here is that
the SU network periodically senses the spectrum, and tries to locate the parts of
the spectrum which are currently unoccupied. These unoccupied parts in time
and frequency are schematically shown in Fig. 3.7. These parts are often called
spectrum holes. Once a spectrum hole is detected, the SU network can start its
transmission in this unoccupied frequency band. However, as soon as the PU
network starts using this frequency band, the SU network has to immediately cease
its transmissions in that band.

3.8 Chapter Summary

This chapter has presented the reader with the system model that forms the basis
for the next chapters. We introduced the wireless channel models, and discussed
the main building blocks that are relevant for the description of the communication
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network. The remaining chapters will use both the flat fading and the frequency-
selective fading channel models.

A short introduction about the MMSE estimator was presented. This sec-
tion provides the reader with the necessary background for the channel prediction
which we often assume to be performed at the TX.

Further, this chapter gave an overview of the performance metrics that we use
in our dissertation to describe the performance of the network and showed how
the TX can optimize these metrics by means of a dynamic adaptation of its trans-
mission parameters. We also introduced the two cooperation protocols that will be
considered in the subsequent chapters, i.e., amplify-and-forward and decode-and-
forward.

Finally, we presented the three main paradigms of cognitive radio: the under-
lay, overlay and interweave paradigm. The underlay and overlay paradigm allow
the SU network to transmit concurrently with the PU network, while the inter-
weave paradigm avoids concurrent transmissions.

The three paradigms require that different amounts of information about the
PU network are available at the SU network. For the underlay paradigm, it is nec-
essary to know how much interference the SU network generates at the PU-RXs.
The overlay paradigm is clearly the one where the most information is needed. As
the SU network cooperates with the PU network, it needs to know the codebook
of the PU network and in most cases also the PU messages. For the interweave
paradigm, the SU network has to know or sense whether the PU network is cur-
rently transmitting in a certain frequency band.

In this dissertation, we will consider the underlay paradigm. The main ad-
vantage of this paradigm is that the PU network can be completely oblivious to
the presence of the SU network. In contrast to the overlay paradigm, no synchro-
nization or cooperation between the PU and SU networks is required. Further, the
underlay paradigm allows the SU network to transmit without interruptions, which
contrasts the interweave paradigm.





4
Packet-Based Transmission Systems

and the Goodput Metric

In the literature, resource allocation in cognitive underlay networks with imperfect
channel state information (CSI) has received much attention. However, there are
many papers [37,40–44] that only focus on rather theoretical performance metrics,
such as the channel capacity or the SNR at the SU-RX, which have only limited
relevance to practical systems using specific codes and constellations. As it was
shown in [45] and [46] that resource allocation algorithms can achieve a better
performance, when they are aware of the CSI imperfections at the TX, it would be
beneficial if these algorithms were also available for a practical coded multicarrier
system. These algorithms would extend the results in [45,46], which were obtained
for an uncoded Orthogonal Frequency-Division Multiplexing (OFDM) system; in
such a system, the probability of a bit error on a subcarrier only depends on the
SNR of the considered subcarrier, which considerably simplifies the resource al-
location problem. However, the results for uncoded OFDM are of limited use in a
practical scenario where channel coding across subcarriers is used.

The third part of this thesis will consider the problem of implementing these
resource allocation algorithms in a practical coded multicarrier transmission sys-
tem, with imperfect CSI at the SU-TX, due to estimation errors or feedback delays.
Because the bits are coded and the channel is frequency-selective, the performance
of the network depends upon a complicated function of the SNRs on all the sub-
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carriers which are used for the transmission. The actual performance metric we
consider is the goodput (GP), which will be introduced in more detail. This metric
gives us the advantage of allowing the optimization of realistic modulation and
coding formats.

This chapter provides the necessary concepts for chapter 10, where we will
derive several resource allocation algorithms which optimize the code rate together
with uniform or non-uniform bit allocation and uniform or non-uniform energy
allocation. The key idea behind the proposed method relies on optimizing the
long-term average GP of the SU link, averaged over the realizations of both the
actual channel and the available CSI at the SU-TX, under the constraints on the
total transmitted energy and on the level of interference affecting the PU-RXs.

In section 4.1, we will introduce the packet-based transmission system. Fur-
ther, as we make the assumption that these systems use bit-interleaved coded mod-
ulation, we explain this coding technique in section 4.2. The GP metric that will
be used to describe the performance of these systems will be introduced in section
4.3. Section 4.4 describes a technique called SNR mapping, which makes the an-
alytical description of the performance of these coded multicarrier systems much
easier. Finally, the conclusions are drawn in section 4.5.

4.1 A Packet-Based Transmission System
In practice, a transmission system will often send its information bits in small
groups or packets. These packets are frequently assumed to contain a fixed number
of bits, which simplifies the implementation of the transmission system.

A transmission packet, as illustrated in Fig. 4.1, is divided intoNp information
bits of payload and NCRC redundant bits for the cyclic redundancy check (CRC),
and has a total length ofNtot = Np +NCRC bits. The CRC allows the RX to check
whether or not the received packet was correctly received. We briefly explain a
CRC in appendix 4.A. In the following we will always use the following CRC
polynomial [47]

g(x) = x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x1+1.

(4.1)
To protect the transmission of this packet we will use bit-interleaved coded

modulation, which we explain in detail in the next section.

4.2 Bit-Interleaved Coded Modulation
We consider the transmission of data symbols over a frequency-selective channel,
using OFDM with N subcarriers (see section 3.2.3.2). We assume that the symbol
xk on the kth subcarrier, which consists of mk ∈ Dm coded bits, belongs to a
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Payload CRC 

𝑁p 𝑁CRC 

Figure 4.1: A transmission packet.

normalized square 2mk -QAM constellation; hence, the OFDM symbol represents∑
k∈N mk bits, where N , {1, . . . , N}. The kth component of the properly

scaled fast Fourier transform (FFT) output at the RX can be represented as yk =

xk + wk, with wk ∼ Nc(0, 1
γk

), where γk = Ek|Hk|2
σ2
w

denotes the SNR on the kth
subcarrier; Ek and Hk are the transmit energy per symbol and the channel gain,
both related to the kth subcarrier, σ2

w = N+ν
N σ2 where σ2 is the noise spectral

density at the RX input and ν is the length of the cyclic prefix (in sampling intervals
of duration T ).

The transmission of the packets is protected by channel coding. Here we con-
sider bit-interleaved coded modulation (BICM) which uses a convolutional code.
BICM has been proposed for the first time in [48], as a more flexible alternative
to trellis-coded modulation, allowing the code and the constellation mapping to be
selected independently.

The application of BICM in the considered setting involves encoding the pay-
load and CRC bits from the packets by means of a rate r convolutional code. The
resulting mtot coded bits are interleaved. The bits at the output of the interleaver
are Gray-mapped to Ns data symbols, which are transmitted over a frequency-
selective fading channel as a frame of NOFDM = dNs/Ne consecutive OFDM
symbols.

Based on its observation, the RX tries to recover the coded bits generated by
the convolutional encoder. Using the one-to-one correspondence between the input
and output bits from the convolutional encoder, the Ntot bits from each packet are
derived from the mtot recovered coded bits. We consider the decoding proposed
by [48], which yields a RX consisting of the following building blocks: (i) a soft
demapper computes the log-likelihood ratio (LLR) for each coded bit from the
OFDM symbol; (ii) a de-interleaver applies to themtot LLRs a permutation which
is the inverse of the permutation from the interleaver at the TX; and (iii) a Viterbi
decoder operates on the de-interleaved LLRs to recover the coded bits.

The resulting system block diagram is shown in Fig. 4.2, where “channel” rep-
resents the concatenation of the OFDM modulator, the frequency-selective channel
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Figure 4.2: Building blocks of a BICM system.

and the OFDM demodulator. These blocks and their corresponding variables are
discussed in more detail below.

4.2.1 Convolutional Encoder

In order to protect the information bits against noise and channel fading, we as-
sume that the TX employs a convolutional encoder with code rate r ∈ Dr, where
Dr denotes the set of possible code rates. An example of a rate-1/2 convolutional
encoder, with input sequence b1 and output sequences c1 and c2, is shown in
Fig. 4.3. In this example the encoder consists of 3 delay cells (each denoted by
D); the content of these delay cells represents the encoder state. The constraint
length of the code is defined as 1 plus the number of delay cells (i.e., constraint
length 4 for the considered example). Starting from the all-zero state, the coded
bit sequences c1 and c2 are obtained as the modulo-2 convolution between b1 and
the impulse responses g1 = (0, 1, 0, 1) and g2 = (1, 1, 1, 0), respectively. The
impulse responses have a length equal to the constraint length; the 1s and 0s in
g1 and g2 indicate the presence and absence, respectively, of a connection from
the encoder input and the delay cell outputs to the corresponding encoder output.
For example, the 4-bit input sequence b1 = (1, 0, 1, 1) leads to the 7-bit output
sequences c1 = (0, 1, 0, 0, 1, 1, 1) and c2 = (1, 1, 0, 0, 0, 1, 0). Each of these out-
put sequences consists of a number of bits equal to the number of input bits (4),
followed by a number of tail bits equal to the number of delay cells (3); the tail
bits result from bringing the encoder state to zero by appending three additional
0s to the input sequence. Assuming statistically independent input bits, it can be
verified that coded bits, at positions differing by at least the constraint length, are
statistically independent, because they depend on disjoint subsets of information
bits. After the encoding, the two coded sequences c1 and c2 are multiplexed into
the single coded sequence c = (0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0).

When the tail bits are not transmitted, the number of coded bits equals twice
the number of input bits, resulting in a code rate of 1/2. However, including
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Figure 4.3: A convolutional encoder.

the tail bits in the transmission proves helpful to the decoding at the RX, which
then can exploit the fact that the end state of the encoder is the all-zero state; the
transmission of the tail bits gives rise to some reduction of the code rate, which
becomes negligibly small when the number of input bits is much larger than the
constraint length of the code.

In the following, we will define a convolutional code by giving the octal rep-
resentation of the impulse responses. For example, the encoder in Fig. 4.3 can be
defined by the pair (5, 16).

We note that when a higher code rate is required, one option is to choose a
different encoder. However, in some cases it can be advantageous to derive a
higher-rate code from a given mother code by means of a method called punctur-
ing. This method allows the communication system to use the same encoder (and
decoder) for different code rates. As an additional benefit, the decoder has a much
lower complexity than it would have when designed for a high code rate.

Considering a rate-1/2 convolutional code as mother code, we can obtain a
code of rate 2/3 by using the following puncturing matrix

P =

(
1 1

1 0

)
, (4.2)

with the first and second row referring to the encoder outputs c1 and c2, respec-
tively. The encoder outputs c1 and c2 are divided into blocks having a length equal
to the number of columns in P. The 1s and 0s in a row of P indicate which bits
from the blocks of the corresponding encoder output must be kept and discarded,
respectively. According to the puncturing matrix P from (4.2), the encoder out-
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Code Rate Puncture Matrix Hamming Distance

1/2

(
1

1

)
10

2/3

(
1 0

1 1

)
6

3/4

(
1 0 1

1 1 0

)
5

5/6

(
1 0 1 0 1

1 1 0 1 0

)
4

Table 4.1: The optimal puncture matrices and Hamming distances for the code
(171, 133) [49].

put sequences are divided into 2-bit blocks; the blocks originating from c1 remain
unaltered, whereas in the blocks originating from c2 the second bit is removed.
Equivalently, from the bit sequence c obtained by multiplexing c1 and c2, every
fourth bit is discarded. Applying this puncturing to the previous example results
in the coded sequence c′ = (0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0).

In table 4.1 we show the puncturing matrices which lead to the lowest bit error
rate performance under soft Viterbi decoding [49] when puncturing the rate-1/2
mother code (171, 133). It can be shown that the mother code has the largest
possible minimum Hamming distance for a constraint length of 7.

4.2.2 Bit Interleaver and Mapper

The coded bits resulting from the encoder are fed to a bit interleaver, which ap-
plies a random permutation to the mtot coded bits: denoting by cn and cint,n the
nth bit at the input and the output, respectively, of the interleaver, these bits are
related by cn = cint,π(n), where (π(1), ..., π(mtot)) represents a permutation of
(1, ...,mtot).

We then divide the interleaved bits cint into blocks of
∑
k∈N mk bits. The ith

(i = 1, . . . NOFDM) block is then Gray-mapped1 to a data symbol vector x(i) =

[x1(i), . . . , xN (i)]T to be transmitted on the subcarriers of the OFDM signal: the
first m1 bits of a block are mapped to the symbol x1(i), the next m2 bits are
mapped to symbol x2(i), and so on, until the last mN bits of a block are mapped
to symbol xN (i).

The task of the interleaver is to permute the coded bits c in such a way that the
bits from cint that are mapped to the same symbol originate from positions in the
encoder output stream that are far apart, so that these coded bits can be considered
statistically independent.

1We assume Gray mapping as this leads to the best performance in BICM [50].
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4.2.3 Soft Demapper and De-Interleaver

The RX first performs soft demapping by computing the LLR for each bit from
cint. Let us denote by cj,k(i) the jth bit from the symbol xk(i); hence, cj,k(i) is
the bit from cint at position j+ (i− 1)

∑N
l=1ml (when k = 1) or j+

∑k−1
l=1 ml +

(i− 1)
∑N
l=1ml (when k > 1). The LLR associated with cj,k(i) is defined as

LLRi,j,k(yk(i)) = ln

(
p(yk(i)|cj,k(i) = 1, Hk)

p(yk(i)|cj,k(i) = 0, Hk)

)
, (4.3)

where yk(i) corresponds to the observation of xk(i) and the channel gain Hk is
known by the RX. When LLRi,j,k(yk(i)) is positive (negative), cj,k(i) is likely to
equal 1 (to equal 0). The larger the magnitude |LLRi,j,k(yk(i))|, the more reliable
the information provided by the sign of LLRi,j,k(yk(i)).

The likelihood p(yk(i)|cj,k(i) = b,Hk) with b ∈ {0, 1} is obtained as

p(yk(i)|cj,k(i) = b,Hk) =
∑
α∈χk

p(yk(i)|xk(i) = α,Hk) Pr(xk(i) = α|cj,k(i) = b),

(4.4)
where χk is the set of constellation points related to the constellation of the symbol
xk(i). Assuming that the bits (c1,k(i), ..., cmk,k(i)) are statistically independent
because of the interleaving, we obtain Pr(xk(i) = α|cj,k(i) = b) = 2−(mk−1)

for α ∈ χjk,b and Pr(xk(i) = α|cj,k(i) = b) = 0 for α /∈ χjk,b, where χjk,b is the
subset of constellation points from χk for which cj,k(i) = b. This yields

LLRi,j,k(yk(i)) = ln

(∑
α∈χjk,1

p(yk(i)|xk(i) = α,Hk)∑
α∈χjk,0

p(yk(i)|xk(i) = α,Hk)

)

= ln

(∑
α∈χjk,1

exp
(
−γk|yk(i)− α|2

)∑
α∈χjk,0

exp (−γk|yk(i)− α|2)

)
. (4.5)

The computation of the LLRs can be simplified by keeping in both summations
from (4.5) only the largest term, i.e.,

LLRi,j,k(yk(i)) ≈ γk
(

min
α∈χjk,0

|yk(i)− α|2 − min
α∈χjk,1

|yk(i)− α|2
)
. (4.6)

This approximation avoids the use of logarithmic and exponential functions. This
approximation has minimal impact on the receiver’s performance when Gray map-
ping is being used [51].

The LLRs of the interleaved coded bits cint = (cint,1, ..., cint,mtot
) are de-

noted (λint,1, ..., λint,mtot
). These LLRs are de-interleaved to obtain the LLRs

(λ1, ..., λmtot) of the encoder output bits c = (c1, ..., cmtot), i.e., λn = λint,π(n).
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4.2.4 Viterbi Decoder

Ideally, we want the RX to detect as many correct packets as possible. When
the information bits are equally likely, this can be achieved by maximizing the
following maximum likelihood (ML) sequence detection criterion [52]

arg max
c
p(y(1), . . . ,y(NOFDM)|c, H1, . . . ,HN ), (4.7)

where y(i) = (y1(i), ..., yN (i)) denotes the observations related to the ith OFDM
symbol. However, the typical approach for a BICM system (4.7) is to approximate
this criterion as follows [50, 51]

arg max
c
p(y(1), . . . ,y(NOFDM)|c, H1, . . . ,HN )

= arg max
c

NOFDM∑
i=1

N∑
k=1

ln (p(yk(i)|c1,k(i), . . . , cmk,k(i), Hk))

≈ arg max
c

NOFDM∑
i=1

N∑
k=1

mk∑
j=1

ln (p(yk(i)|cj,k(i), Hk)) . (4.8)

This step is suboptimal in most cases as an optimal ML decoder requires joint
demapping and decoding. However, the advantage of this approach is that it leads
to a simple binary decoder, which can be completely unaware of the channel and
the type of modulation that was used.

The objective function proposed in (4.8) can be rewritten as a function of the
LLRs introduced in (4.5). As the solution of the maximization does not change
when we add a constant term or scaling factor to the objective function, we can
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write the following

arg max
c

NOFDM∑
i=1

N∑
k=1

mk∑
j=1

ln (p(yk(i)|cj,k(i), Hk))

= arg max
c

NOFDM∑
i=1

N∑
k=1

mk∑
j=1

2 ln (p(yk(i)|cj,k(i), Hk))

= arg max
c

NOFDM∑
i=1

N∑
k=1

mk∑
j=1

(2 ln (p(yk(i)|cj,k(i), Hk))

− ln (p(yk(i)|cj,k(i) = 1, Hk))− ln (p(yk(i)|cj,k(i) = 0, Hk)))

= arg max
c

NOFDM∑
i=1

N∑
k=1

mk∑
j=1

(
ln

(
p(yk(i)|cj,k(i), Hk)

p(yk(i)|cj,k(i) = 1, Hk)

)

+ ln

(
p(yk(i)|cj,k(i), Hk)

p(yk(i)|cj,k(i) = 0, Hk)

))
= arg max

c

NOFDM∑
i=1

N∑
k=1

mk∑
j=1

(2cj,k(i)− 1)LLRi,j,k(yk(i))

= arg max
c

mtot∑
n=1

(2cn − 1)λn. (4.9)

This means that the decoder has to determine the sequence c which maximizes the
objective function F (c), given by

F (c) =

mtot∑
n=1

(2cn − 1)λn, (4.10)

over all legitimate encoder output sequences. As the considered code is convolu-
tional, F (c) can be efficiently maximized by means of the Viterbi algorithm [53].
In the case of a punctured convolutional code, the Viterbi algorithm is applied to
the mother code, with the LLRs corresponding to the punctured bits simply set to
zero.

4.3 Goodput Metric

In this section we will define a performance metric that is capable of describing the
performance of the packet-based transmission system introduced in the previous
sections. In section 4.1, we defined Ntot as the total number of bits in a packet,
of which there are Np information bits. The packet is protected against errors by
BICM as described in section 4.2.
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The bit allocations for every subcarrier are collected in a bit allocation vector
m , [m1, . . . ,mN ]T . The selected bit allocation vector m and code rate r are
called a transmission mode (TM) φ , {m, r} ∈ DNm × Dr. Finally, let us also
define the vector SNR , [γ1, . . . , γN ], where γk denotes the SNR of the kth
subcarrier at the FFT output at the RX.

We already briefly introduced the GP in section 3.4.3. As this metric expresses
the ratio of the expected number of correctly received information bits (associated
with correctly decoded packets) to the actual transmission time, it is clear that this
metric has a very clear practical interpretation.

Let us first consider the case where the channel is static, so that SNR is con-
stant over time. The GP (in bit/s) corresponding to a fixed TM φ = {m, r} and
vector SNR can be written as

GP(φ,SNR) ,
Np (1− PER(φ,SNR))

Tpacket
, (4.11)

where Tpacket denotes the transmission time of a single packet and PER(φ,SNR)

is the packet error rate (PER) corresponding to the selected (φ,SNR). Taking
into account that the number of coded bits per OFDM symbol equals

∑
k∈N mk,

with N , {1, . . . , N}, and the encoding of a packet gives rise to Ntot/r coded
bits, the transmission time Tpacket of a single packet is given by

Tpacket =
Ntot

r
∑
k∈N mk

Ts, (4.12)

where Ts = (N + ν)T denotes the duration of a single OFDM symbol. Normaliz-
ing the GP by dividing by N/Ts, the GP in bits per subcarrier per OFDM symbol
is expressed as

GP(φ,SNR) =
Npr

NtotN

(∑
k∈N

mk

)
(1− PER(φ,SNR)). (4.13)

The factor Np/Ntot denotes the packet efficiency; 1
N

∑
k∈N mk is the average

number of coded bits per subcarrier.
When the frequency-selective channel is time-varying, with a coherence time

much larger than the OFDM symbol duration, the channel can be considered static
over a number of OFDM symbols. As we assume that the channel is stationary
for the whole packet transmission duration, the OFDM symbol index i can be
omitted in the sequel. For each OFDM symbol, the TM φ = {m, r} is selected
according to the actual vector SNR, which depends on the channel realization.
As a consequence, the transmission time and error probability of a packet depend
on the corresponding channel realization. In appendix 4.B we point out that the
resulting GP equals the long-term average of the GP from (4.13), i.e.,

GPavg = E [GP(φ,SNR)] , (4.14)
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where the average is taken over the distribution of the channel coefficients.
So far, we have assumed that the TX selects the TM according to the value of

SNR, which depends on the channel realization. However, in practice, the TX has
no perfect knowledge about the channel realization: the channel state information
available to the TX is imperfect. As a result, the TM is a function of the available
channel information, rather than the actual channel realization. It is easily verified
that the reasoning from appendix 4.B also applies to the case of imperfect channel
state information: the result (4.14) is still valid, but the expectation is now over
both the actual channel and the available channel information.

4.4 Effective SNR Mapping

When we aim to select the TM φ such that the GP is maximized, we need to know
the relationship between φ and GP(φ,SNR) from (4.13). However, as there is
no simple analytical expression for PER(φ,SNR), it is not obvious how changing
the TM will impact the GP performance.

This problem can be circumvented by introducing an approximation technique
which is known as effective SNR mapping (ESM) [54]. This technique maps the
vector SNR to a scalar value γeff , called effective SNR, by means of (preferably
simple) analytical expressions. The meaning of this effective SNR is that a coded
system operating at SNR = γeff on an AWGN channel yields approximately the
same PER as the system under consideration, characterized by (φ,SNR). The
PER on the AWGN channel as a function of γeff is easily obtained in the form of
a table, through computer simulations. Dealing with a scalar γeff instead of the
vector SNR will considerably simplify the description of the resource allocation
problem.

Several ways to perform the ESM have been proposed. First, we will briefly
describe two general mapping functions, which can be used for any coded multi-
carrier system: the exponential ESM (EESM) and the mutual information based
ESM (MIESM). Thereafter, we will have a more extended discussion about the cu-
mulant generating function based ESM (κESM), which was specifically designed
for a BIC-OFDM system. It is this latter mapping function that will be used in
this dissertation. It should be noted that the approximation of the GP, resulting
from the application of κESM, will be used only with the purpose of facilitating
the resource allocation; when evaluating the GP performance, resulting from the
resource allocation obtained through κESM, the actual system will be simulated.

4.4.1 Exponential ESM

The EESM assumes a uniform bit allocation [55], i.e., m = mk (∀k ∈ N ); hence,
the TM is given by φ = (m, r). A simple analytic expression is proposed for the
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relation between γeff and SNR, such that

PER(φ,SNR) ≈ PERAWGN(φ, γeff), (4.15)

where PERAWGN(φ, γeff) is the PER on an AWGN channel, for the same code
and the same constellation as the system under consideration. Based on some
approximations of the pairwise error probability for coded systems (see [56] for
more details), the EESM is given by

γeff = −β ln

(
1

N

∑
k∈N

exp

(
−γk
β

))
, (4.16)

where γk is the kth component of the vector SNR, and β is a scaling factor which
has to be optimized offline for each TM φ = (m, r).

The optimized value of β for given φ is obtained in the following way. First,
independent vectors SNR(n) are generated according to the channel statistics, and
the corresponding PER(n)(φ) = PER(φ,SNR(n)) are obtained, for n = 1, ..., I .
Next, PERAWGN(φ, γeff) is determined for a suitable range of γeff , and γ(n)

AWGN(φ)
is calculated by numerically solving PER(n)(φ) = PERAWGN(φ, γ

(n)
AWGN), for

n = 1, ..., I . Finally, the parameter β is selected such that

I∑
n=1

|10 log(γ
(n)
AWGN(φ))− 10 log(γ

(n)
eff (β))|2, (4.17)

is minimized, where γ(n)
eff (β) results from (4.16) using SNR = SNR(n). This

optimization must be performed for each TM.
The performance of the BICM can be predicted by looking up the PER of the

equivalent system with the same φ = (m, r) which operates on an AWGN channel
with SNR equal to γeff . These reference curves, denoted PERAWGN(φ, γeff), can
be stored in a lookup table for each combination of constellation size and code rate
(m, r) from the set Dm ×Dr.

The EESM is limited to systems with uniform bitloading, whereas we intend
to explore also non-uniform bitloading; therefore, EESM will not be further con-
sidered in this thesis.

4.4.2 Mutual Information ESM

The MIESM is based on the observation that the relation between the PER after de-
coding and the received bit mutual information rate (RBIR) is nearly independent
from the bit allocation vector m [57]. The RBIR is defined as

RBIR =

∑
k∈N fmk(γk)∑
k∈N mk

, (4.18)
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where fm(γ) denotes the mutual information between a 2m-QAM symbol x and
the corresponding observation y, after transmission over an AWGN channel with
SNR equal to γ. More specifically, considering equiprobable constellation points,
we have

fm(γ) = m− Ex,y
[
log2

(∑
x′∈χ p(y|x′, γ)

p(y|x, γ)

)]
, (4.19)

where χ is the set of the 2m-QAM constellation points, p(y|x, γ) ∼ Nc(x, 1
γ )

and the expectation is over the joint distribution of x and y. Hence, the system
under consideration has nearly the same error performance as a BPSK system
using the same encoding and operating on an AWGN channel with SNR equal to
γeff , provided that both systems yield the same RBIR. As the RBIR for the latter
system is given by f1(γeff), the MIESM yields

γeff = f−1
1

(∑
k∈N fmk(γk)∑
k∈N mk

)
. (4.20)

The performance of the BICM can be predicted by looking up the PER of the
equivalent BPSK system which operates on an AWGN channel with SNR equal
to γeff . These reference curves, denoted PERAWGN(r, γeff), can be stored in a
lookup table for each code rate r from the set Dr.

The advantage of MIESM over the EESM is that the former is suitable for
systems with non-uniform bit allocation. However, as no closed-form expressions
are available for the functions fm(γ) the application of MIESM in the context of
resource allocation is rather involved, requiring the use of tables of the functions
fm(γ).

4.4.3 Cumulant Generating Function based ESM

In [58] a mapping function, called κESM, was introduced specifically for BICM
systems that use either convolutional or turbo codes. The mapping function relies
on an accurate evaluation of the pairwise error probability, and is shown to be very
accurate and simple to use. It is for this reason that we prefer this mapping function
over both the EESM, which is not suited for non-uniform bit allocations, and the
MIESM, which is more complicated than the κESM.

First, we introduce the cumulant generating function κ(s) of the LLR of the
codeword bits, which is defined as

κ(s) , lnE
[
esLLRj,k(yk)|SNR

]
, (4.21)

where LLRj,k(yk) is the LLR (4.5) related to the jth bit from the kth symbol; the
expectation is over the bit position j in the kth symbol, the constellation points of
the kth symbol, the subcarrier index k and the noise. The value of s is chosen such
that dκ(s)

ds = 0; it can be shown that s has to be equal to 1/2.
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The authors in [59] have shown that the pairwise error probability, PEP ,
Pr {p(y|c′) > p(y|c)|c,SNR}, resulting from a BICM system, can for high SNRs
be interpreted as the decoding error probability of an equivalent BPSK system op-
erating on an AWGN channel with SNR equal to−κ(1/2). In [59], it is also shown
that κ(1/2) can be approximated as

κ(1/2) = lnE
[
e−γkd

2(xk,x
′
k,j)/4|SNR

]
. (4.22)

Because the system is symmetric, we can assume that a 0 was transmitted. This
allows us to calculate the expectation in (4.22) by averaging over the bit position j
in the kth symbol, the constellation points xk from the set X jk,0, and the subcarrier
index k. In (4.22), d(xk, x

′
k, j) is the Euclidean distance between the constellation

points xk and x′k; x′k is defined as the constellation point from the set X jk,1 which
is closest to xk. Assuming Gray mapping and QAM constellations, it is shown
in [58] that equation (4.22) can be expressed as

κ(1/2) = ln

 1∑
k∈N mk

∑
k∈N

1

2mk−1

√
2mk
2∑

µ=1

ψk(µ)e−γk(µdk,min)2/4

 , (4.23)

where dk,min denotes the minimum Euclidean distance of the constellation used
on the kth subcarrier, and ψk(µ) is linked to the number of neighbors at distance
µdk,min. The function ψk(µ) is given by

ψk(µ) =


4δµ−1, if mk = 2 (4-QAM)

24δµ−1 + 8δµ−2 if mk = 4 (16-QAM)

112δµ−1 + 48δµ−2 + 16δµ−3 + 16δµ−4 if mk = 6 (64-QAM)

.

(4.24)
Based on these results, the κESM mapping function is introduced as

γeff = −β ln

(
1∑

k∈N mk

∑
k∈N

Ωk

)
, (4.25)

where

Ωk =

√
2mk
2∑

µ=1

ψk(µ)

2mk−1
e−γk(µdk,min)2/4β , (4.26)

and β is a scaling factor that can be optimized across all possible code rates r ∈ Dr
[60]. Using a similar reasoning as for EESM, the value of the tuning parameter β
is selected to minimize

max
r

I∑
n=1

∣∣∣10 log10

(
γ

(n)
AWGN(r)

)
− 10 log10

(
γ

(n)
eff (β)

) ∣∣∣2, (4.27)
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Figure 4.4: Illustration of the simulated and approximated GP in an AWGN
channel (r = 1/2, m = 2, 4, 6).

where γ(n)
AWGN(r) has the same meaning as γ(n)

AWGN(φ) from (4.17) with φ = (1, r)

(BPSK constellation), and γ(n)
eff (β) results from (4.25) instead of (4.16).

The performance of the BICM can be predicted by looking up the PER of the
equivalent BPSK system which operates on an AWGN channel with SNR equal to
γeff . These reference curves will be denoted PERAWGN(r, γeff) and can be stored
in a lookup table for each code rate r from the set Dr.

Fig. 4.4 shows the simulated and approximated GP over an AWGN channel
as a function of the SNR γ = Es/σ

2. The packet is transmitted using a single-
carrier modulation, with a code rate r equal to 1/2. We consider the following
constellations: 4-QAM (m = 2), 16-QAM (m = 4) and 64-QAM (m = 6). The
total packet length Ntot is equal to 1056 bits, where the number of information
bits Np and CRC bits NCRC is equal to 1024 and 32, respectively; after convo-
lutional encoding, mtot = 2112 coded bits are obtained. The simulated GP is
calculated according to (4.13) in bits/symbol. The approximated GP can be found
by substituting PER(φ,SNR) in (4.13) by PERAWGN(r, γeff). It can be seen that
the approximated GP is very close to the simulated GP in all three cases. In fact
when m = 2, it can be shown that the approximated GP is equal to the simulated
GP. This can be understood by noting that: a) a 4-QAM constellation with Gray-
mapping is equivalent to a BPSK constellation where the energy per symbol is
equal to γ/2, b) γeff in (4.25) becomes equal to γ/2 when m = 2. For 16-QAM
and 64-QAM we notice a small SNR offset of 0.1 dB or less between the simulated
and approximated GP.
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4.5 Chapter Summary
In the beginning of this chapter we introduced a packet-based transmission system.
Then, we discussed the various building blocks of a system that uses BICM. In the
last sections, we introduced the GP metric and discussed several mapping func-
tions which allow us to analyze the dependency of the PER on the vector SNR.

The third part of this dissertation will use these concepts for the optimization
of the GP performance of a packet-based SU network.
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4.A Cyclic Redundancy Check

The calculation of a CRC of length NCRC is based on a NCRC-degree polyno-
mial g(x), which characterizes the type of CRC. The Np payload bits denoted
(bNp−1, ..., b0) are represented by the (Np − 1)-degree polynomial
b(x) =

∑Np−1
i=0 bix

i, with bi ∈ {0, 1}. The polynomial representation of the
bit sequence consisting of the payload bits with NCRC zeros appended is given
by xNCRCb(x). The polynomial representation of the CRC bits is obtained as
CRC(x) = rem(xNCRCb(x), g(x)); rem(a(x), b(x)) denotes the remainder of the
modulo-2 polynomial division of a(x) by b(x), which polynomials have their co-
efficients taken from the set {0, 1}. The polynomial representation of the resulting
transmitted packet is given by

xNCRCb(x) + CRC(x), (4.28)

which by construction has g(x) as a factor. The RX verifies whether the poly-
nomial representation P (x) of the received packet is divisible by g(x); when
rem(P (x), g(x)) = 0 the received packet is considered correct, otherwise the
received packet contains errors and is rejected. The computation of the remainder
of the polynomial division can be carried out efficiently by means of shift-register
operations. For more details, we refer to [61].

Let us illustrate the calculation of the CRC by means of example, where g(x) =

x2 + 1 and the payload bits are (1, 0, 0, 1, 1), corresponding to NCRC = 2 and
Np = 5. Appending two zeros to the payload bits yields (1, 0, 0, 1, 1, 0, 0), which
has the polynomial representation x6 + x3 + x2. Considering that

x6 + x3 + x2 = (x4 + x2 + x)(x2 + 1) + x (4.29)

we obtain CRC(x) = x, which corresponds to the CRC bits (1, 0). Hence, the
transmitted packet is given by (1, 0, 0, 1, 1, 1, 0), with the first 5 bits and last 2
bits denoting the payload bits and the CRC bits, respectively; its polynomial rep-
resentation is x6 + x3 + x2 + x, which is divisible by x2 + 1 (the quotient equals
x4 + x2 + x).

Let us assume that the received packet equals (1, 0, 0, 0, 1, 1, 0), i.e., a bit error
has occurred on the fourth bit position; this yieldsP (x) = x6+x2+x. Considering
that

x6 + x2 + x = (x4 + x2)(x2 + 1) + x (4.30)

the RX obtains rem(P (x), g(x)) = x 6= 0 and declares that the received packet is
erroneous.
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4.B The Long-Term Average of the Goodput
Let us consider L consecutive intervals, each equal to the channel coherence time
Tcoh. The channel is assumed to be constant over an interval of duration Tcoh.
The SNR vector and the TM associated with the lth interval are denoted SNR(l)

and φ(l) = {m(l), r(l)}; the latter is some function of SNR(l); the resulting PER
equals PER(φ(l),SNR(l)), where PER(φ,SNR) denotes the PER correspond-
ing to a TM φ and a SNR vector SNR. During the lth interval, the number of
packets transmitted equals

N
(l)
pack =

Tcoh

Ts

r(l)

Ntot

∑
k∈N

m
(l)
k . (4.31)

The corresponding average number of correctly received information bits is given
by

N
(l)
info = NpN

(l)
pack(1− PER(φ(l),SNR(l))) (4.32)

Considering all L intervals, the GP (in bit/s) is given by
∑L
l=1N

(l)
info/(LTcoh).

Multiplying this result by Ts/N yields the GP per subcarrier per OFDM symbol,
which becomes

GP =
1

L

L∑
l=1

GP(φ(l),SNR(l)) (4.33)

where GP(φ,SNR) is given by (4.13). For increasing L, GP from (4.33) con-
verges to the statistical average GPavg = E [GP(φ,SNR)], where the expectation
is over the channel statistics.
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Overview

In this part of the dissertation, we will investigate the optimization of various
information-theoretical metrics. In the following, we will provide the reader with
a summary of the most important assumptions for each chapter. This overview is
presented in table A.

From table A, we see that chapters 5, 6 and 7 investigate single-carrier net-
works that use the amplify-and-forward protocol. These chapters investigate the
optimization of the outage probability of a secondary user network and clearly dif-
fer from chapter 8, where we investigate a multicarrier network that uses a decode-
and-forward protocol. In chapter 8, we investigate the optimization of the trans-
mission rate between the source and destination node of a secondary user network.
As the channel state information is assumed to be imperfect, we will maximize the
transmission rate of a SU network under a fixed outage probability constraint.

In most chapters, we assume that the number of primary user receivers (PU-
RXs) is greater or equal than 1. Even most of the results shown in chapters 6 and
7, where we limit our discussion to the presence of a single primary user receiver,
can be extended to a scenario with multiple primary user receivers.

As explained in section 3.6.2, it can be advantageous for the performance of
the SU network if only the relay node which leads to the highest SNR at the DN
participates in the transmission. Therefore, we always assume that the SU network
uses relay selection. However, as the combination of this relay selection scheme
with average interference constraints can be difficult to analyze, we first introduce
the average interference constraints in chapter 6 without relay selection. We then
combine the relay selection with the average interference constraints in chapter 7.

Chapter 5 will investigate the use of relay nodes with multiple transmit and
receive antennas. As chapters 6 and 7 rely on an approximation of the outage
probability which is not valid for multiple antennas, we limit our discussion in
these chapters to relay nodes with a single transmit and receive antenna.

In chapters 6 and 7, we investigate the outage probability of the secondary user
network under average interference constraints and compare this performance with
the outage probability achieved under peak interference constraints. However, it
will become clear that, although the use of average interference constraints leads
to a significant performance benefit for the secondary user network, the derivation



of the corresponding resource allocation algorithms become more complex. It is
for this reason that we turn our attention solely to the peak interference constraints
for the more complicated networks discussed in chapters 5 and 8.

Finally, in this dissertation we investigate three different levels of channel state
information (CSI): perfect CSI (PCSI), imperfect CSI (ICSI) and channel distribu-
tion information (CDI). We also make a distinction between the level of channel
state information that is available at a transmitter about a) its channels to other
nodes of the secondary user network and b) its interference channels to the pri-
mary user receivers.

In chapter 5, we consider all three cases of channel state information for both
types of channels. However, the approximation for the outage probability that
is used in chapters 6 and 7 is only valid for the case where the secondary user
transmitters have CDI about their channels to the other secondary user nodes.

For the level of channel state information available about the interference chan-
nels, we consider both PCSI and CDI in chapter 6. However, our results can easily
be extended to the case with ICSI. In chapter 7, we assume that only CDI is avail-
able about the interference channels and a possible extension of our results to the
case of PCSI or ICSI is not straightforward.

Finally, chapter 8 investigates the case with ICSI for both types of channels.
However, the results for PCSI can be derived by considering the case of ICSI and
assuming that the variance of the estimation error is zero. In a similar manner,
the results for the case with CDI can be found by assuming that the value of the
channel estimate is zero and setting the variance of the estimation error equal to
the variance of the channel gain.



Chapter 5 Chapter 6 Chapter 7 Chapter 8

Relaying Protocol Amplify-and-Forward Amplify-and-Forward Amplify-and-Forward Decode-and-Forward
Type of Modulation Single-Carrier Single-Carrier Single-Carrier Multicarrier
Performance metric Outage Probability Outage Probability Outage Probability Transmission Rate
Number of PU-RXs ≥ 1 1 1 ≥ 1

Relay Selection yes no yes yes
Number of antennas ≥ 1 1 1 1

Type of interference constraint Peak Peak and Average Peak and Average Peak
CSI about SU channels PCSI, ICSI and CDI CDI CDI ICSI

CSI about interference channels PCSI, ICSI and CDI PCSI and CDI CDI ICSI

Table A: Overview of the assumptions in chapter 5-8.





5
Distributed Dynamic Resource

Allocation for Cooperative Cognitive
Radio with Multi-Antenna Relay

Selection

In section 3.7, we introduced the underlay paradigm. The biggest advantages of
this paradigm is that it requires only a reduced (or null) cooperation between the
SU and PU network and that it leads to a more efficient utilization of the spectrum.
However, the interference level constraints that have to be met at the PU-RXs limit
the achievable data rate performance.

In [33,35,62], a possible solution to alleviate the effect of the interference level
constraints on the achievable data rate is proposed: the SU-TXs are equipped with
multiple antennas to balance between optimizing the SU performance and avoid-
ing interference to the PU-RXs, thus paving the way to the so-called cognitive
beamforming concept. In [62], the multiple-input and multiple-output (MIMO)
channels from the SU-TX to the SU-RX and PU-RXs are assumed to be perfectly
known at the SU-TX. However, this assumption is quite unrealistic since the PU
and SU units belong to independent networks, which implies a loose, or even ab-
sence of, cooperation between them. In [33], a more robust cognitive beamform-
ing design is proposed which assumes that only the mean and covariance matrix
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of the multiple-input and single-output (MISO) channel between the SU-TX and
the PU-RX are available due to the loose cooperation between the SU and PU.
Robustness is provided by keeping the interference to the PU-RX below a thresh-
old for all realizations of the channel between the SU-TX and the PU-RX within
a given uncertainty set. This robust design is extended in [35], where, in addition
to the interfering channels, also the channel state information (CSI) about the SU
channels is assumed to be imperfect.

Further, it was shown in [63, 64] that the cooperative relaying, discussed in
section 3.6, can also be successfully used in CR networks to reduce the outage
probability of the SU network. Although the design of a multi-antenna RN in a
non-cognitive system was already investigated in [65, 66], these results cannot be
used in a cognitive scenario as there is no guarantee that the beamforming will
satisfy the interference level constraints at the PU-RXs. The design of the optimal
beamforming matrix for a multi-antenna RN in a cognitive network is presented
in [67]. Therein, it is assumed that the RNs are equipped with multiple antennas,
while the PU-RXs, SU-SN and DN are all equipped with only a single antenna.
In [68] and [69], this scenario is extended to the case where all the nodes of the
PU and SU network are equipped with multiple antennas. In [69], the beamform-
ing matrices for both the SN and RN are jointly optimized in order to maximize
the transmission rate of the SU network. However, the proposed centralized solu-
tion requires perfect CSI (PCSI) of all the SU channels, as well as the interfering
channels to the PU network. The assumption of PCSI about all the channels in
a cooperative network is not realistic, because of estimation errors and feedback
delays in a time-varying channel. A more realistic algorithm is proposed for a
multi-antenna RN in [70], where the available CSI about the channels to the DN
and the PU-RXs is assumed to be imperfect.

In this chapter (which is based on contribution [71]), after introducing the sys-
tem model and the performance metric in section 5.1, we address the design of
a distributed resource allocation algorithm in section 5.2 which minimizes the
exact outage probability of a single-carrier SU network based on multi-antenna
RNs operating in an amplify-and-forward mode in an underlay scenario. The re-
source allocation optimizes the power allocation and beamforming scheme for the
SU-TXs. This scheme is optimal in the sense that it minimizes the exact outage
probability of the SU network with relay selection, under both a transmit power
constraint and a constraint on the interference power generated at every PU-RX.
Section 5.3 starts by showing that the optimal cognitive beamforming matrix at
the RN, considered in [67, 70], can be reduced to a cognitive beamforming vector.
Then, several distributed resource allocation algorithms are presented for differ-
ent levels of CSI at the SU-TXs: perfect CSI and imperfect CSI are considered,
along with the case where only channel distribution information (CDI) is available.
The algorithms allow the SU network to take into account different levels of CSI
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Figure 5.1: The cognitive radio relay network.

available at the SU-TX, (independently) for both the SU-TXs to PU-RXs inter-
ference channels and the channels toward the DN. The proposed approach allows
to trade off the above levels of CSI, requiring different complexity and message
exchange, against the achievable outage probability under the given interference
constraints at the PU-RXs. By deriving different algorithms which depend on
the available level of CSI, we extend the robust approach used in the single-hop
scenarios from [33], [35] to a cooperative multi-antenna multi-relay scenario. In
section 5.4, we show the numerical results, which prove that the multi-antenna
relays can significantly improve the performance of the SU network, which is oth-
erwise severely limited by the harsh interference constraints. Further, this section
also shows how the number of relays, the number of antennas and the level of CSI
impact the performance of the SU network. Finally, we point out that the proposed
algorithms outperform several algorithms presented in literature. The chapter is
concluded in section 5.5.

5.1 System Model

5.1.1 The Cooperative Network

The cognitive radio (CR) scenario we consider is based on a single-carrier SU
network, consisting of a SN, a DN and M RNs. The RNs will use the selection
amplify-and-forward scheme presented in section 3.6.2. We also assume thatNPU

PU-RXs are active in the same frequency band. In Fig. 5.1, we present a CR
network that is typical for device-to-device communications [70]: the SN and the
DN are equipped with a single antenna, while the RNs have Na transmit/receive
antennas. It represents, for example, a scenario where two mobile phones can com-
municate directly with the help of the (multi-antenna) base station of a femtocell.
The PU-RXs have K receive antennas.
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In this chapter, we assume that all wireless channels follow a flat fading model,
which was presented in section 3.1. The random variables hs,d ∈ C, hs,r(m) ∈
CNa×1, hr,d(m) ∈ CNa×1, indicated in Fig. 5.1, denote zero-mean circularly
symmetric complex Gaussian channel gains between the SN and the DN, between
the SN and the Na receive antennas of the mth RN, and between the Na trans-
mit antennas of the mth RN and the DN, respectively. In the sequel we make use
of the covariance matrix of hr,d(m), defined as Rh(m)

∆
= E

[
hr,d(m)hHr,d(m)

]
.

The coefficients of the Rayleigh-fading interference channels from the SN to the
pth PU-RX and from the mth RN to the pth PU-RX will be denoted by gs,p ∈
CK×1 and Gr,p(m) ∈ CNa×K , respectively, with respective covariance matri-

ces Rs,p
∆
= E

[
gs,pg

H
s,p

]
and Rr,p(m)

∆
= E

[
ḡr,p(m)ḡHr,p(m)

]
, where ḡr,p(m) =

vec(Gr,p(m)) (m = 1, . . . ,M ; p = 1, . . . , NPU).
As described in section 3.6.2, the SN transmits its symbols in two time slots.

In the first time slot, a symbol x, with E
[
|x|2
]

= 1, is transmitted to the DN and
the M RNs. The signals received by the DN and the mth RN, are expressed as

zs,d =
√
E0hs,dx+ ns,d, (5.1)

zs,r(m) =
√
E0hs,r(m)x+ ns,r(m), m = 1, . . . ,M, (5.2)

where E0 denotes the transmit energy per symbol used by the SN, and the noise
terms ns,d and ns,r(m) are distributed as Nc(0, σ2

s,d) and Nc(0, σ2
s,r(m)INa

), re-
spectively.

In the second time slot, the DN selects the RN which yields the highest SNR
at the DN [27], and the selected mth RN, m = 1, . . . ,M , multiplies its received
signal by a cognitive beamforming matrix F(m) ∈ CNa×Na and forwards it to the
DN. The signal received by the DN from the mth RN can be written as

zr,d(m) = hTr,d(m)F(m)zs,r(m) + nr,d(m), (5.3)

where the noise term nr,d(m) ∼ Nc(0, σ2
r,d(m)). Further, the average transmit

energy per symbol Em of the mth RN is given by

Em = E0‖F(m)hs,r(m)‖2 + σ2
s,r(m)‖F(m)‖2. (5.4)

5.1.2 The Performance Metric

The metric that will be used to quantify the performance of the SU network is the
link outage probability Pout between the SN and the DN, which we defined in
section 3.4 as

Pout
∆
= Pr{RS−AF ≤ R}, (5.5)

where R is the desired rate at which the SN wants to transmit the information bits
and RS−AF is the instantaneous maximum rate of the SN-DN channel (including
the selected relay channel).
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The SNR at the DN associated with the mth RN is given by

γm =
E0|hTr,d(m)F(m)hs,r(m)|2

σ2
s,r(m)‖hTr,d(m)F(m)‖2 + σ2

r,d(m)
. (5.6)

At the DN, the best RN is selected, i.e., the one yielding the larger SNR γm [27].
Hence, after the second time slot (with only one RN transmitting out of M ), max-
imum ratio combining of the signals received from the SN and the selected RN is
applied. The overall received SNR at the DN of the amplify-and-forward cooper-
ative network after maximum ratio combining yields

γS−AF = γ0 + max
m∈{1,...,M}

γm, (5.7)

where γ0 = E0 |hs,d|2/σ2
s,d. Thus, the corresponding instantaneous maximum rate

(in bit per channel use) is given by (3.67)

RS−AF =
1

2
log2(1 + γS−AF). (5.8)

The corresponding outage probability is given by

Pout = Pr{γS−AF ≤ 22R − 1}, (5.9)

where γS−AF depends on E0, the cognitive beamforming matrices {F(m), m =

1, ...,M} and all channel gains hs,d, {hs,r(m), m = 1, ...,M} and {hr,d(m), m =

1, ...,M} from the SU network.

5.2 Resource allocation
The resource allocation consists of dynamically selecting the transmit energy E0

at the SN and the cognitive beamforming matrix F(m) at the mth RN, m =

1, . . . ,M , such that Pout (5.9) is minimized, under transmit energy constraints
at the SU-TXs, and interference constraints at the PU-RXs. The objective function
and the constraints depend on the level of available CSI.

5.2.1 Available Channel Information

Considering a generic vector f of channel gains, PCSI refers to the case where the
realization of f is known. In the case of ICSI, one has access only to an estimate
f̂ of f , and to the covariance matrix Re of the corresponding estimation error
e = f − f̂ ; the error is caused by noise and/or feedback delay (see appendix 5.A).
In the case of CDI, only the channel covariance matrix Rf is known.

We assume that the RNs and the DN always have PCSI regarding their receiv-
ing channels, i.e., the mth RN and the DN know the realizations of hs,r(m) and
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{
hs,d,h

T
r,d(m)F(m)hs,r(m),m = 1, . . . ,M

}
, respectively. In order to perform

the maximum ratio combining, the DN also has to know both the noise variances
σ2

s,d and σ2
s,r(m)‖hTr,d(m)F(m)‖2 + σ2

r,d(m) which correspond to the signals re-
ceived from the SN and from the selected RN, respectively.

PCSI of the interference and transmission channels is much harder to obtain in
a time-varying environment, because it requires feedback from the other SU nodes
or even from the PU network. Therefore, we will consider the optimization of
Pout for the cases where the SN and the RNs have PCSI, ICSI or CDI regarding
their interference channels (gs,p and {Gr,p(m), m = 1, . . . ,M}, respectively)
to the PU-RXs and regarding their transmission channels ({hs,d, hs,r(m), m =

1, . . . ,M} and {hr,d(m), m = 1, . . . ,M}, respectively); later on, we will point
out that the SN needs no knowledge about its transmission channels.

5.2.2 Transmit Energy Constraints

We impose the following constraint on the transmit energy of the SN

0 ≤ E0 ≤ E(max)
0 , (5.10)

while the transmit energy of the mth RN, m = 1, . . . ,M , is constrained by

0 ≤ Em ≤ E(max)
m , (5.11)

where Em is given by (5.4). In the above, E(max)
m denotes the maximal transmit

energy per symbol that the mth SU node, m = 0, . . . ,M , is able or allowed to
transmit.

5.2.3 The Interference Constraints

Denoting by Is,p and Ir,p(m) the interference at the pth PU-RX, p = 1, . . . , NPU,
caused by the SN and the mth RN, respectively, we have

Is,p = E0‖gs,p‖2, (5.12)

Ir,p(m) = E0‖GT
r,p(m)F(m)hs,r(m)‖2 + σ2

s,r(m)‖GT
r,p(m)F(m)‖2. (5.13)

According to the underlay paradigm, the interference at the PU-RXs should be
below a given interference threshold Γ. The formulation of these interference
constraints depends upon the level of CSI that is available at the transmitting nodes
about their channel gains to the PU-RXs. In practice it will be very difficult for the
SU network to obtain PCSI about the channel gains towards the PU-RXs. For this
reason, we will also consider ICSI and CDI.
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5.2.3.1 Interference Constraints with PCSI

When PCSI is available at the corresponding transmitting node, the interference
constraints to be met by the SN and the mth RN, m = 1, . . . ,M , are expressed as

Is,p ≤ Γ, p = 1, . . . , NPU, (5.14)

Ir,p(m) ≤ Γ, p = 1, . . . , NPU, (5.15)

where Is,p and Ir,p(m) are given by (5.12) and (5.13), with gs,p and Gr,p(m)

denoting the actual channel realizations.

5.2.3.2 Interference Constraints with ICSI

Here we assume that the CSI at each SU-TX about its channel gain to the pth PU-
RX is imperfect. Similar to f̂ in (5.63), the variables ĝs,p and ˆ̄gr,p(m) denote the
estimates of gs,p and ḡr,p(m), respectively.

Based on the instantaneous channel gain given by (5.63), we define for given
ĝs,p, Bs,p, ˆ̄gr,p(m) and Br,p(m) the following ellipsoid channel uncertainty sets
[33]

Us,p(ĝs,p,Bs,p)
∆
=
{
gs,p : gs,p = ĝs,p + Bs,pεs,p, ‖εs,p‖2 ≤ 1

}
, (5.16)

Ur,p(ˆ̄gr,p(m),Br,p(m))
∆
=
{

ḡr,p(m) : ḡr,p(m) = ˆ̄gr,p(m) + Br,p(m)εr,p(m),

‖εr,p(m)‖2 ≤ 1
}
, (5.17)

where εs,p ∈ CK×1 and εr,p(m) ∈ CKNa×1. The variables ĝs,p and ˆ̄gr,p(m)

denote the center of the ellipsoids, while the variables Bs,p and Br,p(m) determine
their shape. We now choose Bs,p and Br,p(m), m = 1, . . . ,M , as

Bs,p =

√
χ2
α(2K)

2
R

1
2
e,s,p, (5.18)

Br,p(m) =

√
χ2
α(2KNa)

2
R

1
2
e,r,p(m), (5.19)

where Re,s,p and Re,r,p(m) denote the error covariance matrix Re from appendix
5.A, corresponding to the substitutions f = gs,p and f = ḡr,p(m), respectively,
and χ2

α(l) denotes theα-percentile of the χ2-distribution with l degrees-of-freedom.
For the above values of Bs,p and Br,p(m), the actual channel gains gs,p and
ḡr,p(m) belong with probability α to their respective sets Us,p(ĝs,p,Bs,p) and
Ur,p(ˆ̄gr,p(m),Br,p(m)). Hence, the task of the SU network is that of ensur-
ing that the interference constraints (5.14)-(5.15) hold for every channel gain in
Us,p(ĝs,p,Bs,p) and Ur,p(ˆ̄gr,p(m),Br,p(m)). The parameter α denotes the de-
sired level of robustness, namely the minimum probability for which the interfer-
ence constraints (5.14)-(5.15) hold. Thus, the resulting interference constraints are
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expressed as

Is,p ≤ Γ, p = 1, . . . , NPU , ∀gs,p ∈ Us,p(ĝs,p,Bs,p), (5.20)

Ir,p(m) ≤ Γ, p = 1, . . . , NPU, ∀ḡr,p(m) ∈ Ur,p(ˆ̄gr,p(m),Br,p(m)). (5.21)

5.2.3.3 Interference Constraints with CDI

This scenario can be seen as a special case of the previous section 5.2.3.2. When
CDI is available, we only know the distribution of the channel gains gs,p and
ḡr,p(m). We now exploit the fact that if we fix the values of the estimated chan-
nel gains to the mean of the actual channel gains, i.e., ĝs,p = E [gs,p] = 0

and ˆ̄gr,p(m) = E [ḡr,p(m)] = 0, we can see the covariance matrices Rs,p and
Rr,p(m), which correspond to the channel gains gs,p and ḡr,p(m), respectively,
as the error covariance matrices of the previous section. Therefore, we can still
write the interference constraints as in equations (5.20)-(5.21), but with modified
uncertainty sets (5.16)-(5.17). The values of Bs,p and Br,p(m), m = 1, . . . ,M ,
are selected as

Bs,p =

√
χ2
α(2K)

2
R

1
2
s,p, (5.22)

Br,p(m) =

√
χ2
α(2KNa)

2
R

1
2
r,p(m), (5.23)

where Rs,p and Rr,p(m) were introduced in section 5.1.1.

5.2.4 The Objective Function

The aim of the resource allocation is to minimize the link outage probability (5.9)
by dynamically allocating the SN transmit energy E0 and the RN beamforming
matrices F(m), m = 1, ...,M . Let us stack all channel gains from the SU network
(i.e., hs,d, {hs,r(m), m = 1, ...,M} and {hr,d(m), m = 1, ...,M}) into the vec-
tor hSU. Denoting by CSI the channel information which is available at the SN
and the RNs regarding the channel vector hSU, the minimization of Pout is equiv-
alent with choosing the value of E0 and F(m), m = 1, ...,M , which minimizes

Pr{γS−AF ≤ 22R − 1|CSI}, (5.24)

for a given value of CSI. Although we have presented the objective function in
a centralized manner, it will be demonstrated in section 5.3 that for some types of
CSI the resulting resource allocation algorithms are distributed: each node only
needs CSI about its own channel gains to calculate its transmission parameters;
for the other types of CSI where the optimum resource allocation algorithm is
centralized, also a (suboptimum) distributed algorithm will be derived.
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5.3 Minimization of the Link Outage Probability
In this section several distributed algorithms will be proposed to minimize the
outage probability Pout of the SU network over the transmit energy E0 and the
beamforming matrices F(m), m = 1, . . . ,M , under the interference and transmit
power constraints.

In section 5.3.1, we start by pointing out that the optimum beamforming ma-
trix F(m) performs maximum ratio combining of the received signals followed by
beamforming that is described by a beamforming vector v(m). This result simpli-
fies the expression of the transmission and interference constraints, and it becomes
clear that the constraints on E0 and F(m), m = 1, . . . ,M , are independent of
each other. The independence of the constraints, together with the observation
that the outage probability Pout (5.9) is a monotonically decreasing function of
E0, allows to separate the optimization of E0 from the optimization of F(m),
m = 1, . . . ,M . It is quite obvious that the optimization problem of the SN re-
duces to the constrained maximization of the transmit energy E0, irrespective of
the level of CSI available at the SN regarding its transmission channel gains. This
constrained maximization of E0 is considered in section 5.3.2. Next, the beam-
forming vector v(m) is optimized in section 5.3.3, making a distinction between
the different levels of channel information available at the RNs about the channel
gains towards the DN. For each of these cases, we also consider three levels of CSI
(PCSI, ICSI, CDI) for the interference channels, yielding a total of 9 combinations.

5.3.1 Structure of the Optimal Beamforming Matrix

The following theorem shows that the optimal beamforming matrix F(m) has a
specific structure, which is valid irrespective of the channel knowledge at the RNs
regarding their interference channels and channels to the DN.

Theorem 5.1. Assuming the mth RN has a perfect knowledge of its channel vector
hs,r(m) from the SN, the optimal beamforming matrix F(m), which minimizes
the outage probability under the transmit constraint (5.11) and the interference
constraints that correspond to the level of available information on the interference
channels, has the following structure

F(m) =
v∗(m)hHs,r(m)/‖hs,r(m)‖√
E0‖hs,r(m)‖2 + σ2

s,r(m)
, (5.25)

where v(m) ∈ CNa×1 can be any complex vector.

Proof. See appendix 5.B.

It should be noted that the normalization present in the denominator of (5.25)
implies that the RN has to determine the average received energy per symbol for
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every frame. It follows from (5.25) that the signal F(m)zs,r(m) transmitted by the
mth RN can be expressed as v∗(m)z′s,r(m), where v(m) is a beamforming vector
(to be further optimized), and

z′s,r(m) =
hHs,r(m)zs,r(m)

‖hs,r(m)‖
√
E0‖hs,r(m)‖2 + σ2

s,r(m)
, (5.26)

results from applying maximum ratio combining of the signals received by the mth
RN, followed by the proper scaling.

By substituting (5.25) in (5.4), (5.6) and (5.13), the energy Em, the SNR γm
and the interference Ir,p(m), m = 1, ...,M , can be expressed as

Em = ‖v(m)‖2, (5.27)

γm =
γs,r(m)γr,d(m)

γs,r(m) + γr,d(m) + 1
, (5.28)

Ir,p(m) = ‖vH(m)Gr,p(m)‖2, (5.29)

where
γs,r(m) = E0‖hs,r(m)‖2/σ2

s,r(m), (5.30)

and
γr,d(m) = |vH(m)hr,d(m)|2/σ2

r,d(m). (5.31)

The constraints involving the optimum beamforming matrix F(m) can be ex-
pressed in terms of the beamforming vector v(m). It will be convenient to in-
troduce the rank-1 matrix S(m)

∆
= v(m)vH(m). The matrix S(m) is positive

semi-definite, which is denoted as S(m) � 0.

• The transmit constraint (5.11) at the mth RN, m = 1, . . . ,M , becomes

‖v(m)‖2 ≤ E(max)
m , (5.32)

or, equivalently,
Tr (S(m)) ≤ E(max)

m . (5.33)

• The interference constraint (5.15) to be met by the mth RN, m = 1, . . . ,M ,
in the case of PCSI reduces to

‖vH(m)Gr,p(m)‖2 ≤ Γ, p = 1, . . . , NPU, (5.34)

We transform this constraint into

Tr
(
S(m)Gr,p(m)GH

r,p(m)
)
≤ Γ, p = 1, . . . , NPU. (5.35)
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• In the case of ICSI, the interference constraint (5.21) related to the mth RN,
m = 1, . . . ,M , is given by

‖vH(m)Gr,p(m)‖2 ≤ Γ, ∀ḡr,p(m) ∈ Ur,p(ˆ̄gr,p(m),Br,p(m)),

p = 1, . . . , NPU (5.36)

with Br,p(m) given by (5.19). This can be rewritten as

ḡHr,p(m)SK(m)ḡr,p(m) ≤ Γ, ∀ḡr,p(m) ∈ Ur,p(ˆ̄gr,p(m),Br,p(m)),

p = 1, . . . , NPU (5.37)

where SK(m) = IK ⊗ S(m). Note that for given (m, p) the constraint
on S(m) must be satisfied for a continuum of interference channel gains.
However, we can convert this constraint by using the following S-lemma
[72].

Lemma 5.1. Let

fj(z) = zHAjz + 2<(bHj z) + cj , j = 1, 2,

where z ∈ CN×1, Aj ∈ CN×N is a Hermitian matrix, bj ∈ CN×1 and
cj ∈ R. Suppose that there exists a z0 such that f1(z0) < 0. Then the
following two statements are equivalent:

1. f2(z) ≤ 0 for every z ∈ CN×1 for which f1(z) ≤ 0

2. There exists some λ ≥ 0 such that

λ

(
A1 b1

bH1 c1

)
−
(

A2 b2

bH2 c2

)
� 0.

Defining f1(εr,p(m)) = εHr,p(m)εr,p(m)− 1 and

f2(εr,p(m)) = εHr,p(m)BH
r,p(m)SK(m)Br,p(m)εr,p(m)

+ 2<((BH
r,p(m)SK(m)ˆ̄gr,p(m))Hεr,p(m))

+ ˆ̄gHr,p(m)SK(m)ˆ̄gr,p(m)− Γ, (5.38)

we can use the S-lemma to rewrite the interference constraint (5.37) for
given (m, p) as follows

(
λp(m)IKNa −BH

r,p(m)SK(m)Br,p(m) −BH
r,p(m)SK(m)ˆ̄gr,p(m)

−ˆ̄gHr,p(m)SK(m)Br,p(m) Γ− λp(m)− ˆ̄gHr,p(m)SK(m)ˆ̄gr,p(m)

)
� 0,

(5.39)
which has to hold for at least one non-negative value of λp(m).



5-12 RESOURCE ALLOCATION WITH MULTI-ANTENNA RELAY SELECTION

• In the case of CDI, the constraint related to the mth RN, m = 1, . . . ,M , is
equal to (5.36) with Br,p(m) given by (5.23) and ˆ̄gr,p(m) = 0, which yields

‖vH(m)Gr,p(m)‖2 ≤ Γ, p = 1, . . . , NPU, ∀ḡr,p(m) ∈ Ur,p(0,Br,p(m)),

(5.40)
or, equivalently, if λp(m) ≥ 0 as(

λp(m)IKNa −BH
r,p(m)SK(m)Br,p(m) 0

0 Γ− λp(m)

)
� 0,

p = 1, . . . , NPU. (5.41)

The latter can be simplified to

BH
r,p(m)SK(m)Br,p(m) � ΓIKNa , p = 1, . . . , NPU. (5.42)

5.3.2 Optimal Transmit Energy E0

The new formulation of the constraints, shown in section 5.3.1, clearly demon-
strates that the optimization of the transmit energy E0 can be separated from the
optimization of F(m), m = 1, . . . ,M , without any performance loss. At the SN,
the following optimization problem has to be solved

E
(opt)
0 = arg max

E0

E0

s.t. (5.10), intf constraints,
(5.43)

where “intf constraints” refers to the relevant interference constraints correspond-
ing to the level of available knowledge about the interference channels. As the
transmit constraint is given by (5.10), the SN needs information only about its
interference channels.

When PCSI about the channel gains to the PU-RXs is available, the interfer-
ence constraints (5.14) yield the following solution

E
(opt)
0 = min

{
Γ

‖gs,1‖2
, . . . ,

Γ

‖gs,NPU‖2
, E

(max)
0

}
. (5.44)

When ICSI is available, the interference constraints are given by (5.20). Using
the lemma 5.1, this interference constraint for a given PU-RX p, p = 1, . . . , NPU,
can be rewritten as(

λpIK − E0B
H
s,pBs,p −E0B

H
s,pĝs,p

−E0ĝ
H
s,pBs,p Γ− λp − E0‖ĝs,p‖2

)
� 0, λp ≥ 0. (5.45)

The optimal E(opt)
0 is found by solving

E
(opt)
0 = arg max

E0,λ1,...,λNPU

E0

s.t. (5.10), (5.45),
(5.46)
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which is a semidefinite program that can be solved in polynomial time using the
software package CVX [5].

Finally, when only CDI is available, the solution is obtained by substituting
ĝs,p = 0 in (5.45), which can be simplified to

E0B
H
s,pBs,p � ΓIK , p = 1, . . . NPU, (5.47)

where Bs,p, p = 1, . . . , NPU, is given by (5.22). The optimal E(opt)
0 is found as

E
(opt)
0 = min

{
Γ

σ2
max(1)

, . . . ,
Γ

σ2
max(NPU)

, E
(max)
0

}
, (5.48)

where σmax(p) is the largest singular value of Bs,p, p = 1, . . . , NPU.

5.3.3 Optimal Relay Beamforming

In this subsection we will discuss the optimization problems for the different RNs.
A distinction is made between the levels of information (PCSI, ICSI, CDI) at the
RNs about their channel gains to the DN. We will first introduce the generic opti-
mization problem

V(opt) = arg min
V

Pr{γS−AF ≤ 22R − 1|CSI}

s.t. (5.32), intf constraints, m = 1, . . . ,M,
(5.49)

where V
∆
= [v(1),v(2), . . . ,v(M)]. Depending upon the available information

on the interference channels, the constraint functions (5.34), (5.36) or (5.40) have
to be used, for PCSI, ICSI or CDI, respectively. As the constraints on v(m),
m = 1, . . . ,M , are independent, we will show that we can split optimization
problem (5.49) into M independent subproblems. In order to demonstrate this, we
will assume that the RNs also know the value of E0 and hs,d; however, it will turn
out that this requirement is unnecessary for most cases. First, we introduce the
conditional cumulative distribution function (CDF)

Fm(x) = Pr {γm ≤ x|CSI} . (5.50)

This allows us to rewrite the objective function from optimization problem (5.49)
as

Pr{ max
m∈{1,...,M}

γm ≤ 22R − 1− γ0|CSI} =

M∏
m=1

Fm(22R − 1− γ0), (5.51)

where the second step comes from the fact that the channels to and from the dif-
ferent RNs are assumed to be independent. The optimization problem for the mth
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RN becomes, m = 1, . . . ,M ,

v(opt)(m) = arg min
v(m)

Fm(22R − 1− γ0)

s.t. (5.32), intf constraints.
(5.52)

It will become clear that this optimization problem is not necessarily concave [4],
which makes it very hard to solve. Therefore, we will rewrite the optimization
problem in terms of the rank-1 positive semi-definite matrix S(m) = v(m)vH(m),
which yields

S(opt)(m) = arg min
S(m)�0,λ1(m)≥0,...,λNPU

(m)≥0
Fm(22R − 1− γ0)

s.t. (5.33), intf constraints,
(5.53)

where the interference constraint functions are (5.35), (5.39) or (5.42). Note that
λp(m) only appears as an optimization variable if (5.39) is used. Further, we
have dropped the rank-1 constraint Rank(S(m)) = 1, which makes optimiza-
tion problem (5.53) a semidefinite program. However, by dropping the rank con-
straint, the matrix S(opt)(m) from (5.53) in general can have a rank higher than 1.
The optimal solution to optimization problem (5.52) is only found in the case that
Rank(S(opt)(m)) = 1.

5.3.3.1 Beamforming with PCSI

In the case where the RNs have perfect knowledge of their respective channel
gains to the DN, the minimization of the objective function in (5.53) becomes
equivalent with the maximization of γm for the given channel realizations. As
γm is a monotonically increasing function of

∣∣vH(m)hr,d(m)
∣∣2, the minimiza-

tion of Fm(22R − 1 − γ0) in (5.53) can be substituted by the maximization of∣∣vH(m)hr,d(m)
∣∣2 = Tr

(
hr,d(m)hHr,d(m)S(m)

)
. In appendix 5.C, we show

that for the three levels of CSI regarding the interference channels, optimiza-
tion problem (5.53) has a rank-1 solution. Hence, we can write S(opt)(m) =

v(opt)(m)(v(opt)(m))H , and v(opt)(m) is the optimal solution of optimization
problem (5.52).

5.3.3.2 Beamforming with ICSI

In the case where the RNs are assumed to have ICSI on their channel gains to the
DN, the actual channel gain to the DN can be written as

hr,d(m) = ĥr,d(m) + er,d(m), (5.54)

where er,d(m) ∼ Nc(0,Re(m)) and Re(m) is defined as Re in appendix 5.A,
with f = hr,d(m).
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The corresponding objective function to be minimized is shown in (5.52),
where among the variables affecting γm only the error vectors er,d(m) are consid-
ered random, and the remaining variables are assumed to be known; for notational
convenience, the conditioning on the known vector CSI will not be shown.

Using (5.28) we can manipulate the CDF (5.50) into

Fm(x) = Pr
[
|vH(m)hr,d(m)|2 ≤ ηm(x)

]
, (5.55)

when 0 ≤ x < γs,r(m) with ηm(x) = σ2
r,d(m)x(γs,r(m) + 1)/(γs,r(m)− x).

If x ≤ 0 or γs,r(m) ≤ x, the objective function Fm(x) is equal to 0 or 1,
respectively, and independent of the value of v(m). When 0 ≤ x < γs,r(m),
exploiting the fact that

∣∣vH(m)hr,d(m)
∣∣2 is distributed according to a scaled non-

central χ2 distribution, the objective function Fm(x) can be rewritten as [73]

Fm(x) = 1−Q
(√

2a(m),
√

2b(m,x)
)
, (5.56)

where Q(·, ·) represents the first-order Marcum Q-function [74, eq. (4.33)], and
a(m) and b(m,x) are both real-valued functions given by

a(m) =

∣∣∣vH(m)ĥr,d(m)
∣∣∣2

vH(m)Re(m)v(m)
(5.57)

and

b(m,x) =
ηm(x)

vH(m)Re(m)v(m)
. (5.58)

Using [75, eq. (7),(8)] it is easy to see thatQ
(√

2a(m),
√

2b(m,x)
)

is increasing

in a(m) and decreasing in b(m,x). Therefore, setting vH(m)Re(m)v(m) = c,
c being a real-valued variable, the optimization problem (5.52) can be solved by
maximizing a(m) for each value of c. Hence, using S(m), the objective function
in optimization problem (5.53) is changed to

S(m, c) = arg max
S(m)�0,λ1(m)≥0,...,λNPU

(m)≥0
Tr
(
S(m)ĥr,d(m)ĥHr,d(m)

)
,

(5.59)
with an additional constraint: Tr [Re(m)S(m)] = c. Ideally, this modified opti-
mization problem then has to be solved for every value of c, where c ∈ [0, cmax].
In practice, we divide this interval in a sufficiently large number of points and
solve this modified optimization problem for each point. The value of cmax can
be found by solving optimization problem (5.53), but with the following objective
function

cmax = max
S(m)�0,λ1(m)≥0,...,λNPU

(m)≥0
Tr [Re(m)S(m)] . (5.60)
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Finally, the optimal value of the original optimization problem (5.53) is found by
substituting S(m, c) in (5.56) and then minimizing (5.56) over c. With c∗ mini-
mizing (5.56), the optimal value S(opt)(m) equals S(m, c∗).

Because of the equality constraint Tr [Re(m)S(m)] = c, the results from ap-
pendix 5.C cannot be applied here. This means that in general Rank(S(opt)(m)) ≥
1. In this case, a suboptimal rank-1 solution can be obtained from the matrix
S(opt)(m) by using the randomization approach described in [76]. First, we gen-
erate L independent random vectors vl(m) ∼ Nc(0,S(opt)(m)), l = 1, . . . , L,
which are then scaled such that each of them satisfies with equality the most strin-
gent constraint. Finally, the vector vl(m), l = 1, . . . , L, which gives the largest
value for the objective function is selected as an approximation for v(opt)(m).

Note that for the minimization of (5.56) the mth RN has to know, apart from
CSI about its own channel gains to the DN and PU-RXs, the instantaneous SNR
value γ0 on the direct SN-DN channel. Thus, this solution is not distributed as
γ0 depends on the realization of the channel gain hs,d and the transmit energy E0

selected by the SN. Therefore, we also consider a distributed version of this opti-
mization problem, which minimizes (5.56) over c under the worst-case assumption
on γ0, that is γ0 = 0. The performance of this distributed yet suboptimum solution
will be compared to the optimum but centralized solution in section 5.4.4.

5.3.3.3 Beamforming with CDI

In this case, we assume that the RNs only know the distribution of their chan-
nel gains to the DN. We follow the same reasoning as in section 5.3.3.2, but
now hr,d(m) is assumed to be a random variable with mean 0 and covariance
matrix Rh(m). This means that in equation (5.56) we have a(m) = 0 and
b(m,x) = ηm(x)/v(m)HRh(m)v(m). In section 5.3.3.2, it was shown that
Fm(x) is increasing with b(m,x). Hence, the minimization of Fm(22R − 1− γ0)

in (5.53) can be substituted by the maximization of Tr (Rh(m)S(m)). For the sce-
nario with PCSI about the interference channels, we prove in appendix 5.C that we
can always find a rank-1 solution to optimization problem (5.53). For the case of
ICSI and CDI, it is possible that S(opt)(m) has a rank higher than 1. In this case, a
rank-1 approximation is found by using the randomization approach described in
section 5.3.3.2.

5.4 Numerical Results

We consider the configuration as shown in Fig. 5.2. The SN and DN are located
at coordinates (0, 0) and (1.375, 0), respectively, while the supporting RNs are
assumed to be uniformly distributed inside an annulus with outer radius 1.25 and
inner radius 0.25. The PU-RXs are uniformly distributed inside an annulus with
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Figure 5.2: The topology of the network.

outer radius 2.5 and inner radius 1.5. The SN broadcasts its message in the first
time slot, and in the second time slot only the best RN amplifies and forwards the
message to the DN. The solid lines refer to the messages exchanged within the SU
network, while the dashed ones refer to the interference from the SN and RNs to
the PU-RXs.

The outage probabilities are calculated by means of Monte Carlo simulations.
For each channel realization, we randomly select a different location for the RNs
and the PU-RXs. We assume that E

[
|hs,d|2

]
= 1/d2

s,d, E
[
hs,r(m)hHs,r(m)

]
=

1/d2
s,r(m)INa

, Rh(m) = 1/d2
r,d(m)INa

, Rs,p = 1/d2
s,pIK and Rr,p(m) =

1/d2
r,p(m)IKNa

(m = 1, . . . ,M ; p = 1, . . . , NPU), where ds,d, ds,r(m), dr,d(m),
ds,p and dr,p(m) denote the distances between the corresponding nodes.

We take the same value E(max) for the maximal transmit energies E(max)
m ,

m = 0, . . . ,M , and set the noise variances on all channels equal to σ2. This
allows to express the outage probabilities of the different scenarios as a function
of E(max)/σ2 (dB). In the case of ICSI, the estimation error σ2

e is chosen equal
to σ2/(2E(max)), the number of delayed channel estimates P = 7 and the update
interval D = 4096 symbol intervals. For more information about these variables
we refer to appendix 5.A. For all simulations, we take R = 0.5 bits/channel use,
α = 0.9, symbol interval T = 50 ns, Doppler frequency fd = 144 Hz and Γ = σ2.

In the following, the performance of the relay network will be compared to a
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SU direct-link network, which optimizes the following expression for the outage
probability

Pout = Pr{log2(1 +
E0 |hs,d|2
σ2

s,d

) ≤ R}, (5.61)

where the optimum value of E0 is obtained from (5.44), (5.46) or (5.48), depend-
ing upon the available CSI on the channel gains to the PU-RXs. The main disad-
vantage of the relay network compared to the direct-link network is the require-
ment of an additional time slot.

We also note that in the case where Rank(S(m)) > 1, a rank-1 solution is
found by applying the randomization approach from section 5.3.3.2. The number
of generated vectors L is chosen equal to 50. In our numerical results, we have
found that the performance loss compared to the multi-rank solution is negligi-
ble. Therefore, in the case where Rank(S(m)) > 1, only the performance curves
corresponding to the rank-1 approximation will be shown.

Unless mentioned otherwise, in the case where ICSI about the channels to
the DN is available, we will show the performance corresponding to the central-
ized optimization problem.

5.4.1 Influence of the Number of Antennas per PU-RX

We now consider the performance of a SU network with 2 RNs (M = 2); the
RNs are each equipped with 3 transmit and receive antennas (Na = 3). We show
the performance in the scenario where there are two PU-RXs present (NPU =

2) with a single antenna (K = 1) and the scenario where there is a single PU-
RX (NPU = 1) with two antennas (K = 2). Fig. 5.3 shows three subfigures,
where each subfigure corresponds to a certain level of CSI about the interference
channels. Each subfigure then shows the curves for all the levels of CSI about the
coefficients between the RNs and the DN: PCSI, ICSI and CDI.

5.4.1.1 PCSI about Interference Channel

Fig. 5.3a shows the exact outage probabilities in the case where the SN and the
RNs have PCSI about their interference channels. The availability of the PCSI will
allow the RNs to transmit their beams away from the PU-RXs. The performances
in the case of PCSI and ICSI about the channel coefficients to the DN are very
similar, because both cases allow the RNs to steer their beams towards the DN and
at the same time away from the PU antennas. However when only CDI is available
about the channel gains to the DN, the RNs are only able to reduce the interference
at the PU-RXs. This explains the large performance gap between the performance
curves for CDI and PCSI.

We also notice that the outage probability Pout is the highest in the case where
NPU = 1 andK = 2. This is explained by the fact that we consider an interference
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Figure 5.3: Comparison between a single PU-RX with K = 2 and two PU-RXs
with K = 1 (M = 2, Na = 3).
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constraint per PU-RX, which means the interference constraint is harder to satisfy
when K > 1.

Additionally, it is worth emphasizing that the outage probability Pout will
eventually converge to a non-zero value for increasing E(max). To explain this,
we take a closer look at (5.7) and (5.28). In the case of PCSI about the channel
gains to the DN, when Na > KNPU and E(max) goes to infinity, there are enough
degrees of freedom available to select an infinitely large v(m) which is orthogonal
to the columns of Gr,p(m) for p = 1, ..., NPU. This means that the optimal solu-
tion of (5.52) will result in a value for

∣∣vH(m)hr,d(m)
∣∣2 which is infinitely large,

so that (5.28) can then be written as γm = γs,r(m) = E0

σ2
s,r(m) ‖hs,r(m)‖2. Hence,

using (5.5) and (5.28), the outage probability for infinite E(max) can be written as

Pout = Pr

{
E

(opt)
0 |hs,d|2
σ2

s,d

+ max
m∈{1,...,M}

E
(opt)
0

σ2
s,r(m)

‖hs,r(m)‖2 ≤ 22R − 1

}
,

(5.62)

where E(opt)
0 is given by (5.44). This lower limit can be further decreased by

adding more RNs to the SU network or by equipping the RNs with more antennas.
We have shown also the limiting value (5.62) in Fig. 5.3a.

5.4.1.2 ICSI about Interference Channel

Fig. 5.3b shows the exact outage probabilities in the case where the SN and the
RNs have ICSI about their interference channels. Comparing these curves with
those from Fig. 5.3a clearly shows that the ICSI about the interference channels
causes a significant performance loss. Hence, having only ICSI (instead of PCSI)
on the channel gains to the PU antennas deteriorates the performance much more
than having ICSI on the channel gains to the DN.

5.4.1.3 CDI about Interference Channel

Finally, Fig. 5.3c shows the exact outage probabilities in the case where the SN
and the RNs only have CDI about their interference channels. In this scenario we
notice that for increasing E(max)/σ2 the outage probability quickly converges to
a non-zero limiting value. This shows that the performance of the SU network is
severely limited by the interference constraints: the RNs are unable to steer the
transmit beam away from the PU-RXs, which means they do not benefit from the
higher allowed transmit energy when E(max)/σ2 is increased. This is even worse
for the case where NPU = 1 and K = 2.



CHAPTER 5 5-21

5.4.2 Influence of the Number of RNs

We compare the performance of a SU network with a single RN (M = 1) and
with 2 RNs (M = 2). Further, we set Na = 3, NPU = 2 and K = 1. In
Fig. 5.4a, we consider PCSI for the interference channels and the channels to the
DN. As a reference we have also shown the performance of the maximum ratio
reception (MRR)-orthogonally projected maximum ratio transmission (OPMRT)
and MRR-maximum ratio transmission (MRT) schemes proposed in [77]. For the
MRT algorithm, the beamforming matrix is given by F(m) = ah∗r,d(m)hHs,r(m),
where a ∈ R is chosen such that the constraints (5.11) and (5.13) are satisfied.
For the OPMRT algorithm, the beamforming matrix is given by the projection
of ah∗r,d(m)hHs,r(m) into the null space of [Gr,1(m), . . . ,Gr,NPU(m)]T , where
a ∈ R is chosen such that (5.11) is satisfied. It can be clearly seen that a signifi-
cant performance improvement can be achieved by using the optimal beamforming
algorithm from section 5.3.3.1, which we labeled PCSI in Fig. 5.4a. Further we
notice that we get a performance gain by increasing the number of RNs M . This
performance gain is explained by the fact that the DN is able to select the RN
which has the most favorable channel conditions, which are: strong channel gain
between SN and RN, a strong channel gain between the RN and the DN and a
weak link between the RN and the PU-RXs.

In Fig. 5.4b, we consider ICSI for the interference channels and the chan-
nels to the DN. We have also shown the performance of the robust beamforming
(RB) proposed in [70]. In order to compare both algorithms in a fair way, the
parameters Tp and Q described in [70] for the RB algorithm are set to Tp =

2R−1
e,r,p(m)/χ2

α(2KNa), p = 1, . . . , NPU, and Q = 2R−1
e (m)/χ2

α(2Na). In
Fig. 5.4b, we show that by specifically optimizing the outage probability Pout, a
higher reliability can be achieved compared to the RB algorithm which optimizes
the worst-case capacity. Further, we again see a clear gain in performance by
increasing the number of RNs from 1 to 2.

5.4.3 Number of Antennas

In Fig. 5.5, we take M = 2, NPU = 2, K = 1 and we compare the various
scenarios for a different number of transmit and receive antennas at each RN:
Na = 2, 3 and 4. As in section 5.4.1, we split the discussion according to the
level of CSI about the interference channel coefficients.

5.4.3.1 PCSI about Interference Channel

Fig. 5.5a shows Pout in the case where the SU-TXs have PCSI about their inter-
ference channel. We also show the limiting values of Pout when E(max) goes to
infinity and PCSI is available about the channel gains to the DN. For Na = 3, 4,
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Figure 5.4: Comparison of our proposed algorithms and the MRR-OPMRT and
MRR-MRT scheme in [77], and the robust beamforming scheme in [70] (M = 1

and 2, Na = 3, NPU = 2, K = 1)

the limit is given by (5.62), which is valid for Na > KNPU only; for Na = 2,
we have solved (5.43) and (5.53) without transmit energy constraint. These lower
limits clearly show that the largest performance improvement is achieved by going
from 2 to 3 antennas. This is because we need at leastNa = 3 to avoid interference
at the 2 PU-RXs; forNa < 3, the RNs have to limit their transmit energies in order
not to violate the interference constraints.

In the case of CDI, we see an improvement by going from Na = 2 to Na = 3,
but only a very small improvement by increasing the number of antennas Na from
3 to 4. The latter gain is only caused by the maximum ratio combining at the RN,
while the former gain is also caused by the fact that the number of antennas Na

exceeds the number of PU-RX antennas KNPU. However, in the case of ICSI
and PCSI we keep noticing a large performance improvement by increasing the
number of antennas at the RNs. The gain is explained by the maximum ratio
combining and beamforming towards the DN. We note that the performance loss
between the case of ICSI and PCSI is rather small (a difference in E(max)/σ2 of
around 1− 2 dB). Finally, Fig. 5.5a also shows the performance of the direct link
SN-DN in the case of PCSI about the channel gains to the PU-RXs. The relay
network outperforms the direct link network in all three cases.

5.4.3.2 ICSI about Interference Channel

In Fig. 5.5b, the case where the SU-TXs have ICSI about their interference channel
is addressed. In the case of CDI, we again notice that there is an improvement by
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Figure 5.5: Comparison between Na = 2, 3 and 4 (M = 2, NPU = 2, K = 1).
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going from Na = 2 to Na = 3, while there is almost no performance difference
between Na = 3 and Na = 4, since (i) transmit beamforming towards the DN
is impossible, when only CDI is available about the channel gains to the DN, and
(ii) at the RN, the gain offered by the maximum ratio combining is countered by
the loss in performance caused by the uncertainty on the interference channels.
Further, from (5.19), it is clear that the interference constraints are dependent on
the factor χ2

α(2KNa). This factor increases with the number of antennas Na,
which makes the interference constraints more stringent. In Fig. 5.5b, we also
show the performance of the direct link SU network in the case where the SN
has ICSI about its interference channel. Again, we can emphasize that the multi-
antenna multi-relay network has a significantly better performance than the direct
link network.

5.4.3.3 CDI about Interference Channel

In Fig. 5.5c, we consider the case where the SU-TXs have CDI about the inter-
ference channel. We observe that when only CDI is available about the channel
gains to the DN, increasing the number of antennas at the RNs does not bring any
performance gain and can even lead to a degradation caused by the more stringent
interference constraints due to the larger value of the factor χ2

α(2KNa). In the case
of ICSI and PCSI about the channel gains to the DN, we notice only a very small
performance improvement. It is clear that interference is the main limiting factor
in this scenario, and increasing the number of antennas does not significantly im-
prove the performance. Finally, in Fig. 5.5c we have also shown the performance
of the direct link SU network which only has CDI about its interference channels.
In this case, the multi-antenna multi-relay network does not provide any perfor-
mance improvement, compared to the direct link, when only CDI on the channels
to the DN is available, since beamforming is impossible and the multiple antennas
are not able to avoid interference at the PU-RXs; when using the relays, the gain
provided by maximum ratio combining at the DN is offset by the need for two time
slots.

5.4.4 Centralized versus Distributed Solutions

In this subsection we assume that the SN and the RNs have ICSI about their chan-
nel coefficients to the DN. We make a distinction between PCSI, ICSI and CDI
for the knowledge about the interference channels. Choosing M = 2, NPU = 2,

K = 1 and Na = 3, the performance of the centralized and distributed solutions
of (5.53) are compared in Fig. 5.6; note that in the centralized solution γ0 must be
known by the RNs, whereas in the distributed solution the RNs assume γ0 = 0.
In order to investigate the influence of the distance ds,d on the performance, we
show the outage probability for two scenarios: one where the SN and DN are sep-
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Figure 5.6: Comparison between the centralized and distributed solution
(M = 2, NPU = 2, K = 1, Na = 3, ICSI for channels to DN).

arated by a distance d, and one where they are separated by a distance d/2, with
d = 1.375. Fig. 5.6 shows that the distributed solution yields only a very small
performance loss when ds,d = d. In the case where ds,d = d/2, the performance
loss is slightly higher. However, as the distributed solution is easier to implement,
the slight performance loss of the distributed algorithm is certainly acceptable.

5.4.5 Quality of the ICSI

In Fig. 5.7 the performances of the SU network are displayed for different values of
the channel estimation error σ2

e . We consider σ2
e equal to σ2

e,low = σ2/(10E(max)),
σ2

e,mod = σ2/(2E(max)) and σ2
e,high = 5σ2/(2E(max)) and assume that the SN

and the RNs have ICSI about their channel coefficients to the DN. In the case of
PCSI about the interference channels, the RNs can avoid interference at the PU-
RXs; the performance differences for the considered values of σ2

e can be attributed
to the different accuracies of RN beamsteering towards the DN. In the case of ICSI
about the interference channels, the RNs cannot avoid interference at the PU-RXs,
yielding a worse performance compared to PCSI; the performance differences for
the considered values of σ2

e are larger than for PCSI, because the estimation error
variance also applies to the interference channels, hence affecting the amount of
interference. Finally, when only CDI about the interfering channels is available,
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Figure 5.7: Comparison for different estimation error variances (M = 2,
NPU = 2, K = 1, Na = 3, ICSI for channels to DN).

the performance is severely limited by the interference constraints, and the effect
of the estimation error variance σ2

e is very small.

5.5 Chapter Summary

In this chapter, we presented several distributed resource allocation algorithms that
succeed in minimizing the exact outage probability of a cooperative SU network
with multi-antenna amplify-and-forward relay selection, while protecting the qual-
ity of service of the PU network. The derived resource allocation algorithms have
the following advantages: (i) they minimize the exact outage probability instead
of an approximation as in [27]; (ii) they are distributed, thus meaning that each
node of the SU network can independently optimize its transmission parameters.
The latter results in more practical algorithms when compared to the more general
yet centralized algorithms proposed in [69]; (iii) in the numerical results, they are
shown to have a clear performance benefit over other already existing algorithms,
introduced in [70, 77].

Further, the numerical results also showed that the introduction of multi-antenna
RNs can substantially improve the performance of a SU network which uses the
underlay paradigm. The performance of the SU network was investigated for dif-
ferent levels of channel knowledge. The SU network considerably benefits from
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having at least imperfect channel knowledge of the channel gains to the PU-RXs,
and having RNs with a number of antennas larger than the number of PU antennas.
When only CDI about the interference channels is available, we noticed that the
interference constraints have a devastating effect on the SU performance.

The level of channel state information available about the channels to the DN
is shown to have a smaller impact on the overall performance, as compared to the
interference channel state information. But also here substantial gains compared
to CDI are achieved when an estimate of the channel gains to the DN is available.
The quality of this estimate has less effect than the quality of the estimate of the
interference channels.

Finally, we have shown that having multiple RNs available can considerably
improve the SU performance, compared to the case with a single relay, because
the probability of having poor channel conditions is significantly reduced.
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5.A Imperfect CSI
In this section we will describe the case where the CSI available at a SU-TX is
imperfect due to feedback delay and estimation errors. The following formulas
use a generic channel vector f ∈ CF×1, where F denotes the number of compo-
nents of f . Its covariance matrix is denoted by Rf . We also introduce the vector
ICSI which denotes the imperfect CSI available at the SU-TX about the actual
channel realization f . We make the assumption that the channel vector f and the
ICSI are jointly zero-mean circularly symmetric Gaussian. It then follows that f

conditioned on the ICSI is Gaussian, with expectation f̂ = E [f |ICSI] and co-
variance matrix Re = E

[
ffH |ICSI

]
− f̂ f̂H . Introducing e ∼ Nc(0,Re), the

instantaneous channel gain f can be decomposed as

f = f̂ + e, (5.63)

where f̂ is the MMSE estimate of f based on ICSI, and the estimation error e is
independent of f̂ .

For the numerical results we will make some additional assumptions about
ICSI. We consider the case where the channel f(t) is slowly time-varying. Ac-
cording to Jakes’ model [12], described in section 3.1, we take E[f(t+u)fH(t)] =

J0(2πfdu)Rf where J(.) denotes the zeroth-order Bessel function of the first
kind, and fd denotes the Doppler frequency. At the SU-TX, the information about
f(t) consists of P delayed channel estimates, i.e.,

ICSI = [f̃T (t− τ1), . . . , f̃T (t− τP )]T . (5.64)

.
The estimate f̃(t− τk), k = 1, ..., P, is given by

f̃(t− τk) = f(t− τk) + ẽ(t− τk), (5.65)

where τk represents the feedback delay relative to the instantaneous channel vector
f(t). The noise vector ẽ(t−τk) ∼ Nc(0, σ2

eIF ), where σ2
e denotes the variance of

the estimation error. In the numerical results we take τk = kDT , which indicates
that the channel estimates are updated every D symbol intervals T .

Introducing the matrix J ∈ CP×P as Jk,l
∆
= J0(2πfd(τk−τl)), k = 1, . . . , P ; l =

1, . . . , P, and using the results from section 3.3, it can now be shown that f̂ =

XY−1ICSI, where

X
∆
= [J0(2πfdτ1), J0(2πfdτ2) . . . , J0(2πfdτP)]⊗Rf , (5.66)

Y
∆
= J⊗Rf + IP ⊗ σ2

eIF , (5.67)

and the covariance matrix is given by Re = Rf −XY−1XH .
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5.B Proof of Theorem 5.1

The following proof is based on [68]. Assuming that the mth RN knows hs,r(m),
the matrix F(m) can without loss of generality be decomposed as

F(m) = [w1(m)W2(m)]

[
hs,r(m)

‖hs,r(m)‖ H⊥s,r(m)

]H
, (5.68)

where w1(m) ∈ CNa×1, W2(m) ∈ CNa×(Na−1) and H⊥s,r(m) ∈ CNa×(Na−1).

The matrix H⊥s,r(m) makes
[

hs,r(m)
‖hs,r(m)‖ H⊥s,r(m)

]
a unitary matrix, which means

that (H⊥s,r(m))Hhs,r(m) = 0. Using (5.68), it can be shown that γm from (5.6) is
given by

γm =
E0‖hs,r(m)‖2|hTr,d(m)w1(m)|2

σ2
s,r(m)

(
|hTr,d(m)w1(m)|2 + ‖hTr,d(m)W2(m)‖2

)
+ σ2

r,d(m)
. (5.69)

Combining equation (5.4) and (5.68), we can express the transmit power Em as

Em = E0‖hs,r(m)‖2‖w1(m)‖2 + σ2
s,r(m)(‖w1(m)‖2 + ‖W2(m)‖2). (5.70)

In the same way, by combining (5.13) and (5.68), the interference Ir,p(m) to be
used in the interference constraints from section 5.2.3 can be written as

Ir,p(m) = E0‖hs,r(m)‖2‖GT
r,p(m)w1(m)‖2 + σ2

s,r(m)

·(‖GT
r,p(m)w1(m)‖2 + ‖GT

r,p(m)W2(m)‖2), (5.71)

where Gr,p(m) denotes the actual interference channel (PCSI), or a point in the
volume Ur,p(ˆ̄gr,p(m),Br,p(m)) (ICSI) or Ur,p(0,Br,p(m)) (CDI). From (5.69)
we see that the highest value of γm is reached when W2(m) = 0. From (5.7) and
(5.9) it follows that a larger value for γm will certainly decrease the outage prob-
ability Pout, irrespective of which information (PCSI, ICSI or CDI) on hr,d(m)

is available at the mth RN. Further, we note that W2(m) = 0 will also lead to a
lower value of the transmit energy Em (5.70) and the interference Ir,p(m) (5.71).
Therefore we can conclude that the optimal value of W2(m) will always be 0.
Without loss of generality we can define

w1(m) =
v(m)∗√

E0‖hs,r(m)‖2 + σ2
s,r(m)

, (5.72)

which leads to (5.25).
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5.C Rank-1 Solution of the Relaxed Optimization Prob-
lem

Here we show that under certain conditions the relaxed optimization problem
(5.53) has a solution of rank 1.

5.C.1 A Useful Lemma

In [36], the following lemma is proven

Lemma 5.2. The following optimization problem is convex in S and always has
solutions with Rank(S)≤ 1:

S(opt) = arg max
S�0

Tr (AS)

s.t.Tr (BiS) ≤ bi, i = 1, . . . , I,
(5.73)

where A is a Hermitian matrix, the matrices Bi are Hermitian with Bi � 0 and∑I
i=1 Bi � 0, and the scalars bi satisfy bi ≥ 0, ∀i.

This lemma can be directly applied to optimization problem (5.53) when PCSI
is available about the interference channels, and with PCSI or CDI on the channels
to the DN.

5.C.2 Rank-1 Solution to Optimization Problem (5.53) with ICSI
or CDI on the Interference Channels

In the following, we will prove that optimization problem (5.53) with ICSI or
CDI on the interference channels and PCSI on the channels to the DN also has
a rank-1 solution. If we let χ denote the optimal value of the objective function
Tr
(
hr,d(m)hHr,d(m)S(m)

)
, we can rewrite the optimization problem as follows

S(m) = arg min
S(m)�0,λ1(m)≥0,...,λNPU

(m)≥0
Tr (S(m))

s.t.Tr
(
hr,d(m)hHr,d(m)S(m)

)
≥ χ− δ

(5.39) or (5.41), p = 1, . . . , NPU,

(5.74)

where δ denotes any small positive value. This optimization problem is convex
and it can be easily verified that as δ approaches 0 the solution will approach the
same optimal value as optimization problem (5.53). It can now be proven that
the solution to optimization problem (5.74) has a rank-1 solution. The following
proof is a modified version of the proof given in appendix D in [70]. To make our
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proof valid for both the case where ICSI or CDI is available for the interference
channels, we will use

Kp � 0, (5.75)

to denote either (5.39) or (5.41) in the case of ICSI or CDI, respectively.
As Slater’s condition holds, the duality gap of (5.74) will be zero. This means

that we can solve this optimization problem by minimizing the following La-
grangian

L = Tr (S(m)) + ξ
(
χ− δ − Tr

(
hr,d(m)hHr,d(m)S(m)

))
− Tr (WS(m))−

NPU∑
p=1

(Tr (VpKp) + µpλp(m)) , (5.76)

where ξ ≥ 0, W � 0, Vp � 0 and µp ≥ 0, p = 1, . . . , NPU , are the dual
variables corresponding to the various constraints. We can rewrite Kp as

Kp = Ap −CH
p (IK ⊗ S(m))Cp, (5.77)

where

Ap =

(
λp(m)IKNa 0

0 Γ− λp(m)

)
. (5.78)

In the case where ICSI is available for the interference channels, the matrix Cp is
given by

Cp =
(

Br,p(m) ˆ̄gr,p(m)
)
, (5.79)

where Br,p(m) is given by (5.19).
In the case where CDI is available, we get

Cp =
(

Br,p(m) 0
)
, (5.80)

where Br,p(m) is given by (5.23).
The Lagrangian can now be expressed as

L = Tr (S(m))− Tr (WS(m))− Tr
(
ξhr,d(m)hHr,d(m)S(m)

)
+

NPU∑
p=1

Tr
(
(IK ⊗ S(m))CpVpC

H
p

)
−
NPU∑
p=1

Tr (VpAp) + φ(ξ, χ, δ,µ,λ),

= Tr (S(m))− Tr (WS(m))− Tr
(
ξhr,d(m)hHr,d(m)S(m)

)
+

K∑
k=1

NPU∑
p=1

Tr
(
S(m)U(k,k)

p

)
−
NPU∑
p=1

Tr (VpAp) + φ(ξ, χ, δ,µ,λ), (5.81)

where µ = [µ1, . . . , µNPU
]T , λ = [λ1(m), . . . , λNPU

(m)]T and φ(ξ, χ, δ,µ,λ)

denotes a function which is independent of S(m). In the last step, we introduced
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the matrices U
(k,k)
p � 0, k = 1, . . . ,K, which are submatrices that are located in

the block diagonal of CpVpC
H
p as follows

CpVpC
H
p =


U

(1,1)
p · · · U

(1,K)
p

...
. . .

...
U

(K,1)
p · · · U

(K,K)
p

 . (5.82)

According to the KKT conditions [4] ∇S(m)L has to be equal to zero, which is
equivalent to

A−W − ξhr,d(m)hHr,d(m) = 0, (5.83)

where we have introduced the following matrix

A = INa
+

K∑
k=1

NPU∑
p=1

U(k,k)
p . (5.84)

It is clear that A � 0, which means that rank(A) = Na.
As a second step we use (5.83) and theorem 5.6.1 in [78] to bound the rank of

matrix W as follows

rank(A) ≤ rank(W) + rank(ξhr,d(m)hHr,d(m))

≤ rank(W) + 1, (5.85)

which yields
rank(W) ≥ Na − 1. (5.86)

In the final step we want to bound the rank of the matrix S(m). We now use the
following KKT condition

Tr (S(m)W) = 0. (5.87)

Because both S(m) and W are positive semi-definite matrices there exist matrices
C and D such that

W = CCH , (5.88)

S(m) = DDH . (5.89)

These can be used to rewrite equation (5.87) as

Tr (S(m)W) = Tr
(
DDHCCH

)
= Tr

(
CHDDHC

)
=
∑
i

∑
j

|(DHC)i,j |2 = 0. (5.90)
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This equality can only be satisfied if DHC = 0, which leads to

S(m)W = DDHCCH = 0. (5.91)

We now use equation (5.91) and apply Sylvester’s rank inequality (theorem
5.6.5 in [78]) to get

rank(W) + rank(S(m)) ≤ rank(S(m)W) +Na

≤ Na, (5.92)

which combined with (5.86) gives

rank(S(m)) ≤ Na − rank(W)

≤ 1. (5.93)





6
Distributed Dynamic Resource

Allocation for Cooperative Cognitive
Radio with Average Interference

Constraints

In this chapter (which is based on contribution [79]), we investigate a special case
of the multi-antenna scenario we discussed in chapter 5. The goal of this chapter
is to investigate the performance of the SU network when average interference
constraints are considered.

The interference constraint that we discussed in the previous chapter restrict
the peak interference at the PU-RXs. These constraints can be seen as a short-term
constraint that limits the peak interference level (PI) at each fading state. However,
in this chapter we consider the possibility of a long-term constraint that regulates
the average interference level (AI) at the PU-RXs over all the fading states [80].
From the cognitive radio (CR) network perspective, the AI constraint is expected
to be more favorable than the PI one, since the former enables more flexibility in
the dynamic allocation of the transmit energy over the fading states. Under both
these types of interference constraints, we propose distributed resource allocation
strategies aimed at minimizing the outage probability of a cooperative CR net-
work. However, where the previous chapter used the exact outage probability, we
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now use an approximation for the outage probability in order to find an analyti-
cal solution for the optimization problem with AI constraints. The outage proba-
bility performance of these AI-based algorithms is compared to the performance
achieved under the PI constraint.

This chapter is divided as follows. Section 6.1 presents the cooperative sys-
tem model and defines the link performance metric of interest. Section 6.2 inves-
tigates centralized and distributed energy allocation strategies that minimize the
outage probability under the AI constraint, when the TXs either have perfect CSI
or CDI about the interference channels, and briefly recalls the resource allocation
under the PI constraint. In section 6.3, the simulation results obtained in terms of
outage probability confirm the effectiveness of the proposed resource allocation
algorithms, whereas a few conclusions are drawn in section 6.4.

6.1 System Model
Consider a cognitive relay network where a SU-SN and M SU-RNs transmit to a
SU-DN in the same frequency band of a primary network, according to the under-
lay paradigm [1], i.e., by imposing severe constraints on the interference level. We
make the same assumptions as in section 5.1, except that

1) All the devices, i.e., the PU-RXs, SN, RNs and DN, are equipped with a
single antenna;

2) We do not consider best-relay selection, thus the transmission of a given
data frame occurs in (M + 1) time slots;

3) We assume that the SN and RNs either have PCSI or CDI about their inter-
ference channels;

4) The SN and RNs only have CDI about their SU transmission channels;

5) We limit the number of PU-RXs NPU to 1. For notational brevity, we will
therefore drop the subindex p from the corresponding variables.

This leads to several simplifications compared to the previous chapter. The SNR
γm of (5.28) can be simplified as follows

γm =
E0Em|hs,r(m)|2|hr,d(m)|2

E0|hs,r(m)|2σ2
r,d(m) + Em|hr,d(m)|2σ2

s,r(m) + σ2
s,r(m)σ2

r,d(m)
. (6.1)

Further, we will define the following variances κ2
s,d , E

[
|hs,d|2

]
, κ2

s,r(m) ,

E
[
|hs,r(m)|2

]
and κ2

r,d(m) , E
[
|hr,d(m)|2

]
.

For a given information transmission rate R, the link outage probability can be
formulated as
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Pout = Pr{RAF ≤ R}, (6.2)

where the SN-DN channel rate RAF is given by (3.66).
It has to be remarked, however, that the evaluation of (6.2) for a given set of

γm, m = 0, . . . ,M , reveals a quite demanding task. For this reason we will use
an approximation which has been proposed in [27]. The authors of [27] show that
the outage probability Pout for a cooperative amplify-and-forward scheme, can be
asymptotically bounded at high-SNR by

Pout ≤ 1

M + 1

[
2(M+1)R − 1

]M+1

α0 ·
M∏
m=1

(αm + βm) , (6.3)

Pout ≥ 1

(M + 1)MM

[
2(M+1)R − 1

]M+1

α0 ·
M∏
m=1

(αm + βm) , (6.4)

where α0, αm and βm are the parameters of the exponential distribution of
E0|hs,d|2/σ2

s,d, E0|hs,r(m)|2/σ2
s,r(m) and Em|hr,d(m)|2/σ2

r,d(m), respectively,
given by

α0 ,
σ2

s,d

E0 E [|hs,d|2]
=

σ2
s,d

E0 κ2
s,d

, (6.5)

αm ,
σ2

s,r(m)

E0 E [|hs,r(m)|2]
=

σ2
s,r(m)

E0 κ2
s,r(m)

, (6.6)

βm ,
σ2

r,d(m)

Em E [|hr,d(m)|2]
=

σ2
r,d(m)

Em κ2
r,d(m)

. (6.7)

6.2 Resource Allocation
In order to protect the PU transmission, the interference level at the PU-RX has to
be kept under a predefined threshold. The coefficients of the channel gains from
the SN to the PU-RX and from the mth RN to the PU-RX will be denoted by
gs ∈ C and gr(m) ∈ C, respectively, with respective variances ρ2

s
∆
= E

[
|gs|2

]
and

ρ2
r (m)

∆
= E

[
|gr(m)|2

]
. The following approaches are pursued:

• The AI constraint regulates the average level of interference as

E
[
E0 |gs|2

]
≤ Γ̄, (6.8)

E
[
Em |gr(m)|2

]
≤ Γ̄, m = 1, . . . ,M, (6.9)

where Γ̄ denotes a given threshold depending on the characteristics of the
PU-RX.
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• The PI constraint, which we used in (5.14) and (5.15), forces the peak level
of interference below the threshold Γ as

E0 |gs|2 ≤ Γ, (6.10)

Em |gr(m)|2 ≤ Γ, m = 1, . . . ,M. (6.11)

In addition to the AI or PI constraints, we impose the following transmit constraint

0 ≤ Em ≤ E(max)
m , m = 0, . . . ,M, (6.12)

where E(max)
m is the maximum transmit energy admissible for the mth SU node.

Hence, choosing the AI constraint and assuming that both SN and RNs have an
ideal knowledge of either PCSI or CDI about their channel coefficients to the PU-
RX, the optimization problem to search for the optimal E , [E0, E1, . . . , EM ]

T

can be formulated as

E(opt) = arg min
E
{Ψ (E)}

s.t. (6.8)−(6.9)

0 ≤ Em ≤ E(max)
m , m = 0, . . . ,M,

(6.13)

where the objective function is defined as

Ψ (E) , Eg

[
σ2

s,d

E0 κ2
s,d

·
M∏
m=1

[
σ2

s,r(m)

E0 κ2
s,r(m)

+
σ2

r,d(m)

Em κ2
r,d(m)

]]
, (6.14)

and the expectation is made over channel coefficients g , [gs, gr(1), · · · , gr(M)]
T

between the M + 1 SU nodes and the PU-RX. As the AI-based optimization prob-
lem (6.13) takes care of the long-term constraint of the interference level, it will
also consider the long-term objective function (6.14) which is the result of the
average over the fading coefficients between the SU-TXs and the PU-RX.

As an alternative, adopting the PI constraint with PCSI, the optimization prob-
lem can be put into the form

E(opt) = arg min
E
{Φ (E)}

s.t. (6.10)−(6.11)

0 ≤ Em ≤ E(max)
m , m = 0, . . . ,M,

(6.15)

where the objective function Ψ (E) has been substituted by

Φ (E) ,
σ2

s,d

E0 κ2
s,d

·
M∏
m=1

[
σ2

s,r(m)

E0 κ2
s,r(m)

+
σ2

r,d(m)

Em κ2
r,d(m)

]
, (6.16)
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as the objective function Φ (E) is completely equivalent with Ψ (E) for the PI
constraints (6.10)-(6.11).

We will now derive analytic expressions for the transmit energy vector E in
the following cases:

• The SU network has to satisfy AI constraints and PCSI is available about
the interference channels;

• The SU network has to satisfy AI constraints and CDI is available about the
interference channels;

• The SU network has to satisfy PI constraints and PCSI is available about the
interference channels.

6.2.1 AI Constraint under PCSI

6.2.1.1 Centralized Solution

As a reference scenario, we will derive the optimum solution of optimization prob-
lem (6.13) forM = 1. As the optimization problem in (6.13) is convex and Slater’s
condition holds, the duality gap of this optimization problem is equal to zero. To
solve this optimization problem, we first write down the Lagrangian according
to (2.10)

L(E, µ0, µ1) = Eg

[
σ2

s,d

E0 κ2
s,d

·
[

σ2
s,r(1)

E0 κ2
s,r(1)

+
σ2

r,d(1)

E1 κ2
r,d(1)

]
+ µ0(E0 |gs|2 − Γ̄)

+µ1(E1 |gr(1)|2 − Γ̄)

]
, (6.17)

where µ0 and µ1 are two Lagrange multipliers which have to satisfy the following
equations

µ0

(
Eg

[
E0(µ0, µ1) |gs|2

]
− Γ̄

)
= 0, (6.18)

µ1

(
Eg

[
E1(µ0, µ1) |gr(1)|2

]
− Γ̄

)
= 0. (6.19)

The value of these Lagrange multipliers can be found numerically or by using the
stochastic subgradient method as described in section 2.5.

As we have neglected the transmit constraint (6.12), the Lagrangian in (6.17)
is only optimal in the case that 0 ≤ Em ≤ E

(max)
m ,m = 0, 1. When we have

found the solution, we will check if this assumption holds. The solution is found
by putting ∇EL(E, µ0, µ1) equal to 0. By solving this equation, we find the fol-
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lowing expression for the transmit energy at the SN

E
(opt)
0 =


√
µ1

κs,r(1)
σ2
s,r(1) |gr(1)|+

√
8µ0

κ2
r,d(1)

σ2
r,d(1)

|gs|2 + µ1
κ2
s,r(1)

σ2
s,r(1) |gr(1)|2

2µ0
κs,d

σs,d

κs,r(1)
σs,r(1)

κr,d(1)
σr,d(1) |gs|2


2/3

.

(6.20)
The transmit energy at the RN can then be easily found as

E
(opt)
1 =

1√
µ1E

(opt)
0

κs,d

σs,d

κr,d(1)
σr,d(1) |gr(1)|

. (6.21)

If the value for E(opt)
0 and E(opt)

1 given by (6.20) and (6.21) satisfies the transmit
energy constraint (6.12), we have found the optimal solution. However if either
(6.20) or (6.21) violates the transmit energy constraint, we have to check which of
the following cases apply:

1. In the case where both E(opt)
0 and E(opt)

1 violate the maximal transmit en-
ergy constraint it can easily be shown that the optimal values are

E
(opt)
0 = E

(max)
0 , (6.22)

E
(opt)
1 = E

(max)
1 . (6.23)

2. In the case where only E(opt)
0 > E

(max)
0 , it can be shown that the optimum

values are given by

E
(opt)
0 = E

(max)
0 , (6.24)

E
(opt)
1 = min

 1√
µ1E

(max)
0

κs,d

σs,d

κr,d(1)
σr,d(1) |gr(1)|

, E
(max)
1

 . (6.25)

3. If E(opt)
1 > E

(max)
1 it can be proven that

E
(opt)
0 = min

(
1

32/3

31/3 κ
2
s,r(1)

σ2
s,r(1) +

κ2/3
s,r (1)

σ
2/3
s,r (1)

α
2/3
1√

µ0E
(max)
1

κs,d

σs,d

κ
4/3
s,r (1)

σ
4/3
s,r (1)

κr,d(1)
σr,d(1) |gs|α1/3

1

,

E
(max)
0

)
, (6.26)

E
(opt)
1 = E

(max)
1 , (6.27)

where

α1 = 9
√
µ0(E

(max)
1 )3/2κs,d

σs,d

κ3
r,d(1)

σ3
r,d(1)

|gs|+
√

3α2, (6.28)
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α2 = 27µ0(E
(max)
1 )3

κ2
s,d

σ2
s,d

κ6
r,d(1)

σ6
r,d(1)

|gs|2 −
κ4

s,r(1)

σ4
s,r(1)

. (6.29)

If α2 < 0, equation (6.26) can be rewritten as

E
(opt)
0 = min


2

3

√
3 cos

 1
3 arctan

 1
9

√−3α2

√
µ0(E

(max)
1 )3/2

κs,d
σs,d

κ3
r,d

(1)

σ3
r,d

(1)
|gs|


√
µ0E

(max)
1

κs,d

σs,d

κr,d(1)
σr,d(1) |gs|

, E
(max)
0

 .

(6.30)

6.2.1.2 Distributed Solution

We now search for a distributed solution of optimization problem (6.13). For a
given value of E0, the optimization problem (6.13) turns into M separate opti-
mization problems, one for each RN. The optimization problem (6.13) for the mth
RN can be put into the form

E
(opt)
m = arg min

Em

{
Egr(m)

[
1

Em

]}
s.t. E

[
Em |gr(m)|2

]
≤ Γ̄

0 ≤ Em ≤ E(max)
m ,

(6.31)

whose solution can be obtained as stated by the following theorem.

Theorem 6.1. Under the assumptions of: (i) AI constraint, and (ii) assuming a
given energyE0, the optimal energy allocation for the mth RN such that the outage
probability is minimized can be written as

E(opt)
m = min

{√
1

λm|gr(m)|2 , E
(max)
m

}
,m = 1, . . . ,M, (6.32)

where λm is the Lagrange multiplier corresponding to the interference constraint
(6.9).

Proof. See appendix 6.A.

A few remarks are now in order.

• The Lagrange multiplier λm has to be evaluated only once, and then, it is
applied for all possible channel realizations of gr(m).
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• In order to find a distributed solution, we propose to use the solution of the
RNs also for the optimization of the transmit energy E0 of the SN. Hence,
we propose to optimize E0 according to

E
(opt)
0 = min

{√
1

λ0|gs|2
, E

(max)
0

}
. (6.33)

This approach is not optimal. However, we will see in section 6.3 that the
performance loss compared to the optimal solution is minimal.

6.2.2 AI Constraint under CDI

In the case of the AI-based constraints under CDI, the SU nodes only know the
statistics of their channel gain towards the PU-RX. This means that the energy
vector E depends only on ρ2

s and ρ2
r (m), m = 1, . . . ,M . Therefore, the optimiza-

tion problem (6.13) can be simplified as

E(opt) = arg min
E
{Ψ (E)}

s.t. E0ρ
2
s ≤ Γ̄

Emρ
2
r (m) ≤ Γ̄, m = 1, . . . ,M

0 ≤ Em ≤ E(max)
m , m = 0, . . . ,M,

(6.34)

It now follows that the optimal value E(opt)
0 is obtained as

E
(opt)
0 = min

{
Γ̄

ρ2
s

, E
(max)
0

}
, (6.35)

and E(opt)
m is given by

E(opt)
m = min

{
Γ̄

ρ2
r (m)

, E(max)
m

}
, m = 1, . . . ,M. (6.36)

It is worth remarking that: i) although the optimization problem (6.34) has a cen-
tralized formulation, its solution is distributed; ii) unlike the AI-based optimization
problem under PCSI, the distributed solution given by (6.35) and (6.36) is globally
optimal.

6.2.3 PI Constraint under PCSI

According to the PI constraint, the instantaneous interference level at the PU-RX
due to the nodes of the SU network may not exceed a predefined threshold [80].
As the objective function in (6.15) is monotonically decreasing as a function of
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Em, m = 0, . . . ,M , the optimal solution E(opt)
m is thus obtained as the maximum

energy satisfying the constraints, i.e.,

E
(opt)
0 = min

{
Γ

|gs|2
, E

(max)
0

}
,

E
(opt)
m = min

{
Γ

|gr(m)|2 , E
(max)
m

}
, m = 1, . . . ,M.

(6.37)

We note that this solution corresponds to the solution we found in the previ-
ous chapter. Equation (6.37) corresponds to (5.44) for the SN and to the solution
proposed in section 5.3.3.3 for the RN.

6.3 Numerical Results

In this section, the performance of the AI-based resource allocation is compared
to the PI-based one in terms of the outage probability that is achieved by the SU
network. The channel gain coefficients between the SU nodes and between the SU-
TXs to the PU-RX are all assumed to be zero-mean circularly symmetric complex
Gaussian random variables with unit variance. The noise variance is set to be
equal for every device in the network, namely σ2 = σ2

s,d = σ2
s,r(m) = σ2

r,d(m),
m = 1, . . . ,M , and we take Γ̄ = Γ. We start by considering only a single RN
(M = 1). The outage probability performance is evaluated by averaging over 107

independent channel realizations assuming that the information rate is set toR = 1

bit/s/Hz.
Figure 6.1 shows the simulated outage probability given by (6.2) (solid lines)

and the outage probability evaluated through the upper bound given by (6.3) (dot-
ted lines), which coincides with the lower bound (6.4) when M = 1. The maxi-
mum transmit energy admissible for both the SN and RN is chosen as E(max) =

E
(max)
0 = E

(max)
1 . The outage probability is expressed as a function ofE(max)/σ2

(dB) and we fix E(max)/Γ = 10 dB. It is apparent that the proposed distributed
resource allocation algorithms, based on the AI approach with either perfect CSI
(triangle marks) or CDI (circle marks), outperform the conventional PI-based en-
ergy allocation (square marks) discussed in the previous chapter. As a performance
benchmark, we have also shown the outage probability for the centralized solution
from section 6.2.1.1. As we can see, there is almost no performance loss by us-
ing the distributed solution presented in section 6.2.1.2. Finally, we also show the
performance when no PU-RX is active, this illustrates the performance when there
exist no constraints on the interference level. The above results show that limiting
the peak interference turns out to be more restrictive than setting a threshold on the
average value, with the result that the overall CR network makes a more efficient
usage of the available resources, i.e., the transmit energy transmitted by the nodes.
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Figure 6.1: Outage probability versus E(max)/σ2 (E(max)/Γ = 10 dB).
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Figure 6.2: Outage probability versus E(max)/σ2 (Γ/σ2 = 10 dB).

In Fig. 6.2, the outage probability is again expressed as a function ofE(max)/σ2

(dB), but the interference threshold is now directly proportional to the noise vari-
ance according to Γ/σ2 = 10 dB. It can be observed that the outage probabil-
ity for the AI approach with ideal CDI (circle marks) does not change if the
CR transmit energy constraint is increased past 10 dB, whereas for smaller val-
ues the outage probability collides with the performance of the no-PU case (solid
line). The reason that these lines collide for E(max)/σ2 < 10 dB can be seen
by substituting ρ2

s = ρ2
r (m) = 1 in (6.35) and (6.36), which gives, indeed,

E
(opt)
m /σ2 = min

{
10, E(max)/σ2

}
= E(max)/σ2, m = 0, . . . ,M . Further,

the energy allocation based on AI with CSI outperforms the PI-based approach
with CSI, although both of them tend to flatten out whenever the AI/PI constraints
become more dominant than the maximum transmit energy constraint.
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Figure 6.3: Outage probability versus E(max)/σ2 (M = 1, 2 and 3,
E(max)/Γ = 10 dB).

In Fig. 6.3 we have shown the exact outage probabilities for a different number
of RNs. We consider M = 1, 2 and 3 and fix E(max)/Γ = 10 dB. It is clear that
the performance becomes worse for low values of E(max)/σ2 when we increase
the number of RNs. This loss in performance is caused by the factor 1/(M + 1)

which decreases the possible rate in (3.66). However, this loss can be avoided by
using the selection algorithm used in chapter 5. For high values of E(max)/σ2,
we get an improvement in performance as the use of multiple RNs increases the
diversity order.

6.4 Chapter Summary

In this chapter, we have focused on the difference in performance between resource
allocation strategies with average or peak interference constraints for cooperative
CR wireless systems.

First, we introduced bounds for the link outage probability and discussed both
the AI and PI constraints which are aimed at protecting the PU-RX. Then, a closed-
form distributed energy allocation has been found under the AI approach when ei-
ther perfect knowledge of the channel (CSI) or its distribution (CDI) are available.
Numerical results demonstrate that the AI-based energy allocation algorithm both
with perfect CSI and CDI shows an edge in terms of outage probability perfor-
mance on the traditional PI-based method at the price of a similar computational
complexity.

Further, in the case with perfect CSI, the distributed approach was shown to
have nearly no performance loss compared to the optimal centralized approach.

Finally, although multiple RNs (M > 1) increase the diversity order of the SU
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network, there is also a significant performance loss for low values of E(max)/σ2.
This performance loss is caused by the fact that each RN needs its own orthogo-
nal time slot. It is possible to avoid this performance loss by using the selection
amplify-and-forward scheme introduced in section 3.6.2. However, as we will see
in the following chapter, the combination of the AI constraints together with the
selection amplify-and-forward scheme is not trivial.
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6.A Proof of Theorem 6.1
From (6.31) it can be seen that the objective function and the constraint functions
are all convex. As Slater’s condition holds, the duality gap will be zero. According
to (2.10) the Lagrangian is equal to

L(Em, λm) = Egr(m)

[
1

Em
+ λm(Em |gr(m)|2 − Γ̄)

]
. (6.38)

The optimal value of Em can now be found by calculating the following derivative

∇EmL(Em, λm) = Egr(m)

[−1

E2
m

+ λm|gr(m)|2
]
, (6.39)

and setting it to 0. It follows that

E(opt)
m = min

{√
1

λm|gr(m)|2 , E
(max)
m

}
, (6.40)

where the value of λm has to satisfy the following equality

E
[
Em |gr(m)|2

]
− Γ̄ = 0, (6.41)

and can be found through the stochastic subgradient method as described in section
2.5 or by solving the following analytical equation

ˆ 1

λm(E
(max)
m )2

0

E(max)
m

x

ρ2
r (m)

exp(− x

ρ2
r (m)

) dx

+

ˆ ∞
1

λm(E
(max)
m )2

√
x

λm

1

ρ2
r (m)

exp(− x

ρ2
r (m)

) dx = Γ̄. (6.42)

In the case where the interference constraint (6.9) is inactive, the value of λm will
be 0.
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Resource Allocation for Cooperative

Cognitive Radio with Best-Relay
Selection under an Average

Interference Constraint

As we have shown in the previous chapter, the use of multiple RNs increases the di-
versity order of the SU network [14, 20]. The drawback of this method is the loss
in spectral efficiency, since the RNs transmit on orthogonal channels. However
this can be partially mitigated by using the selection amplify-and-forward proto-
col, introduced in section 3.6.2, where only the best RN is chosen to assist in the
transmission. This protocol requires only two orthogonal channels: one for the di-
rect link between the SN and the DN, and one for the link between the best RN and
the DN. In [27], the authors have shown that this protocol maintains the full diver-
sity order M + 1, with M denoting the number of relays. We already investigated
the performance of the relay selection algorithm under a PI constraint in chapter 5.
However, the performance of the selection amplify-and-forward protocol in com-
bination with the AI constraint still needs to be analyzed. Therefore, we derive in
this chapter both an optimum and a low-complexity suboptimum dynamic energy
allocation strategy, which minimize the link outage probability between the SN
and the DN of the SU network.
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In this chapter, we assume that the interference channels from the SU nodes to
the PU are affected by fast fading. Therefore, we make the realistic assumption
that each SU node has access only to the root mean square (RMS) (rather than
the instantaneous value) of the gain of its own interference channel to the PU. We
show that both dynamic allocation strategies considerably outperform the optimum
static allocation strategy, and that the low-complexity dynamic allocation performs
nearly as well as the optimum dynamic allocation. Finally, we confirm that our
dynamic algorithms show a significant performance improvement as compared to
the optimal dynamic algorithm under a PI constraint.
This chapter (which is based on contribution [81]) is organized as follows. In
section 7.1 we describe the system model which consists of the selection amplify-
and-forward protocol, the outage probability and the AI constraints. In section 7.2
we derive a static and two dynamic energy allocation strategies. We then discuss
the performance of these allocation strategies in section 7.3. Finally, the conclu-
sions are drawn in section 7.4.

7.1 System Model

7.1.1 Selection Amplify-and-Forward

We consider a cooperative network as shown in Fig. 7.1. The SU network is
identical to the network considered in chapter 6. However, the transmission of a
message or frame consists of only two time slots. During the first slot, the SN
transmits, and its signal is received by the DN and the RNs. During the second
slot, the best relay forwards to the destination the signal received from the SN
during the first slot.

For notational convenience, we introduce the following vector
κ , [κs,d, κs,r(1), . . . , κs,r(M), κr,d(1), . . . , κr,d(M)] which contains the RMS
values of the SU channel gains. The mean-square values of the respective chan-
nel gain magnitudes are determined by κ2

s,d = 1/dνs,d, κ2
s,r(m) = 1/dνs,r(m) and

κ2
r,d(m) = 1/dνr,d(m), where ν denotes the path-loss exponent and ds,d, ds,r(m)

and dr,d(m) are the distances between the corresponding nodes. The number of
PU-RXs is limited to 1 (NPU = 1) and the mean-square gains ρ2

s = 1/dνs,PU and
ρ2

r (m) = 1/dνr,PU correspond to gs and gr(m), m = 1, . . . ,M , respectively.
In this chapter we will assume that the SU-TXs only know their RMS channel

gains to the other SU nodes and to the PU-RXs. This is comparable to the sce-
nario with CDI of the previous chapters, with the exception that the positions of
the nodes are now no longer fixed. The positions of the nodes are now assumed to
be random variables, that remain constant over many frames. As a consequence,
the RMS gains of the different channels also have to be considered as random
variables. As in the previous chapters, we assume that the fading of all channel
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Figure 7.1: The cognitive radio relay network.

gains, for a given position of the nodes, is independent. However, note that the dis-
tances between nodes, and, therefore, also the RMS channel gains, are statistically
dependent random variables.

7.1.2 The Performance Metric

The highest achievable rate between the SN and the DN is given by (3.67), which
leads to the following outage probability

Pout = Pr

{
1

2
log2 (1 + γS−AF) < R

}
, (7.1)

where R denotes a given information transmission rate and γS−AF is given by

γS−AF = γ0 + max
m

γm. (7.2)

When the RMS values κ and transmit energies are given, the conditional out-
age probability can be expressed as

Pout(κ, E0, Er) =

ˆ ∞
0

M∏
m=1

Pr
[
γm < 22R − 1− x

]
pγ0(x) dx, (7.3)

where Er , [E1, . . . , EM ] and the probability density function (pdf) of γ0 is given
by pγ0(x) = α0e

−α0x. The probability Pr [γm < s] is given by (see [82])

Pr [γm < s] = 1− 2e−(αm+βm)s
√
αmβm (s+ 1) s

· K1

(
2
√
αmβm (s+ 1) s

)
, (7.4)

where K1(z) is a modified Bessel function of the second kind. We note that the
variables α0, αm and βm, m = 1, . . . ,M , were already defined in (6.5), (6.6) and
(6.7), respectively.
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However, as the integral in (7.3) cannot be evaluated analytically, we resort to
the high-SNR approximation of the conditional outage probability (7.3), derived
in [27]:

Pout(κ, E0, Er) ≈
1

M + 1

[
22R − 1

]M+1

· α0

M∏
m=1

(αm + βm). (7.5)

The approximate unconditional outage probability Pout is found by averaging (7.5)
over the RMS channel gains of the SU network and the transmit symbol energies
(the latter will be selected according to the RMS interference channel gains)

Pout ≈ E [Pout(κ, E0, Er)] . (7.6)

7.1.3 The Interference Constraints

As far as the interference channels are concerned, we assume that each SU node
only knows the RMS gain of its own channel towards the PU-RX. As this ran-
dom variable is constant over many frames, it is reasonable to assume that this
parameter can be acquired by the SU node. To keep the interference power at
the PU-RX below the threshold Γ̄, the SU network makes E0 and Em a func-
tion of the random variables ρ2

s and ρ2
r (m), m = 1, . . . ,M , respectively, so that

these transmit energies are also constant over many frames: we set E0 = Ψs(ρs)

and Em = Ψm(ρr(m)), where the functions Ψs(x) and Ψm(x), m = 1, . . . ,M ,
should be determined such that the outage probability is minimized under the fol-
lowing AI constraints:

E
[
E0 |gs|2

]
= Eρs

[
E0ρ

2
s

]
≤ Γ̄, (7.7)

and

M∑
m=1

E
[
Em |gr(m)|2 I(m)

]
=

M∑
m=1

Eρr(m) [Emh(m, ρr(m))] ≤ Γ̄, (7.8)

where E [.] denotes averaging over all channel gains and all RMS channel gains.
In (7.8), we have I(m) = 1 if the mth RN is selected by the DN, and I(m) = 0

otherwise; h(m, ρr(m)) is a short-hand notation for ρ2
r (m) Pr(m|ρr(m)), where

Pr(m|ρr(m)) = E [I(m)|ρr(m)] denotes the probability that the mth relay is se-
lected, conditioned on ρr(m). The quantity Eρr(m) [Emh(m, ρr(m))] depends on
the functions Ψs(x) and Ψm(x), m = 1, . . . ,M , and on the joint pdf of the RMS
gains of theM SN-RN channels, theM RN-DN channels, the SN-PU channel and
the M RN-PU channels; this joint pdf can be derived from the joint pdf of the SU
network node positions.
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We make the assumption that the joint pdf of the positions of the SU network
nodes is invariant under a permutation of its arguments, and all noise variances
are identical (σ2

s,d = σ2
s,r(m) = σ2

r,d(m) = σ2 for m = 1, . . . ,M ); this way, the
optimum functions Ψm(x) do not depend on the indexm. Taking Ψm(x) = Ψr(x)

and Em = Ψr(ρr(m)) for m = 1, . . . ,M , the terms in the summation (7.8) do
not depend on the index m of the considered RN; therefore, the constraint (7.8)
reduces to

Eρr(1) [E1h(1, ρr(1))] ≤ Γ̄

M
. (7.9)

7.2 Resource Allocation

In this section we derive several energy allocation strategies that minimize the link
outage probability between the SN and the DN. Because a closed-form analyti-
cal expression for the outage probability is not available, we will instead use the
approximated expression for the outage probability (7.6) as the objective func-
tion. The optimization will be assisted by a band manager, which knows the joint
pdf of the positions of the SU network nodes, and derives the optimum functions
Ψs(x) and Ψr(x). Based on these functions and the RMS gains of the interference
channels, the energies E0 and Em for m = 1, . . . ,M are computed. From these
energies, the noise variance σ2, the M SN-RN channel gains and the M RN-DN
channel gains for the current frame, the DN determines which relay provides the
largest instantaneous SNR, and instructs the corresponding RN to transmit with
the appropriate symbol energy. Note that only the DN needs to acquire instanta-
neous channel gains for the current frame; the quantities that must be distributed
among several nodes (i.e., RMS interference channel gains, symbol energies) are
constant over many frames.

7.2.1 Optimal Static Allocation Strategy

First, a static allocation strategy is considered as a reference scenario. In this
static strategy the SU nodes use a constant energy allocation, i.e., E0 and Em =

Er, m = 1, . . . ,M , are selected independently of the RMS interference channel
gains. Because (7.6) is a decreasing function of both E0 and Er, these energies are
selected such that both interference constraints are fulfilled with equality:

E0Eρs
[
ρ2

s

]
= Γ̄

ErEρr(1) [h(1, ρr(1))] = Γ̄
M .

(7.10)

Note that Eρr(1) [h(1, ρr(1))] is a function of E0 and Er, that can be computed
off-line from the joint pdf of the positions of the SU network nodes.
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7.2.2 Optimal Dynamic Allocation Strategy

In this subsection we will derive a dynamic allocation strategy. Because a joint
optimization of the SN and the RNs appears very difficult, we will propose an
iterative solution method, which alternates between the optimization of the SN
and the RNs.

For the SN optimization, we look for the function Ψs(x), such that the follow-
ing expression is minimized:

E
[

1
E0κ2

s,d

∏M
m=1

(
1

E0κ2
s,r(m) + 1

Emκ2
r,d(m)

)]
s.t. Eρs

[
E0ρ

2
s

]
≤ Γ̄,

(7.11)

where E0 = Ψs(ρs) and Em = Ψr(ρr(m)) for m = 1, . . . ,M ; Ψr(x) is consid-
ered to be a known function. This is a convex optimization problem, which can be
solved by the method of Lagrange multipliers. Because the objective function is a
strictly decreasing function of E0, the optimum is reached when the interference
constraint is fulfilled with equality. The following expression has to be minimized
over E0

Eρs

[
Eκ,ρr|ρs

[
1

E0κ2
s,d

M∏
m=1

(
1

E0κ2
s,r(m)

+
1

Emκ2
r,d(m)

)]]
+ µsEρs

[
E0ρ

2
s − Γ̄

]
, (7.12)

where ρr , [ρr(1), . . . , ρr(M)]. For given µs, the optimal Ψs(x) is found by
minimizing

1

Ψs(x)
Eκ,ρr|ρs=x

[
1

κ2
s,d

M∏
m=1

(
1

Ψs(x)κ2
s,r(m)

+
1

Emκ2
r,d(m)

)]
+ µs

(
Ψs(x)x2 − Γ̄

)
, (7.13)

over Ψs(x) for every value of x. To solve this minimization one needs the condi-
tional pdf p(κ,ρr|ρs = x) for every value of x, where κ and ρr contain the RMS
gains of the channels between the SU network nodes and the RMS gains of the
interference channels from the RNs to the PU; this pdf can be computed off-line
from the joint pdf of the positions of the SU network nodes. The optimal value of
the Lagrange multiplier µs is found by solving the following equation

Eρs
[
Ψs(ρs)ρ

2
s

]
= Γ̄. (7.14)

This equation can be solved by using a stochastic subgradient method described in
section 2.5.
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For the RN optimization, we look for the function Ψr(x), such that the follow-
ing expression is minimized:

E
[

1
E0κ2

s,d

∏M
m=1

(
1

E0κ2
s,r(m) + 1

Emκ2
r,d(m)

)]
s.t. Eρr(1) [E1h(1, ρr(1))] ≤ Γ̄

M ,
(7.15)

where E1 = Ψr(ρr(1)), E0 = Ψs(ρs) and Em = Φr(ρr(m)) for m = 2, . . . ,M ;
Ψs(x) and Φr(x) are considered to be known functions. Because the interference
constraint is non-convex this optimization problem can be challenging to solve.
However because the cumulative distribution function of ρr(m) is continuous, it
can be proven that the considered optimization problem has zero duality gap. As
a consequence the optimization problem can be solved by the method of Lagrange
multipliers without loss of optimality. For more details we refer to [83, 84]. We
will minimize the following expression as a function of E1

Eρr(1)

[
Eκ,ρs,ρr|ρr(1)

[
1

E0κ2
s,d

M∏
m=1

(
1

E0κ2
s,r(m)

+
1

Emκ2
r,d(m)

)]]

+ µrEρr(1)

[
E1h(1, ρr(1))− Γ̄

M

]
. (7.16)

In the same manner as for the SN, we find the optimum function Ψr(x) for given
µr by minimizing

1

Ψr(x)
Eκ,ρs,ρr|ρr(1)=x

[
1

κ2
r,d(1)

1

E0κ2
s,d

M∏
m′=2

(
1

E0κ2
s,r(m

′)
+

1

Em′κ2
r,d(m′)

)]

+ µr

(
Ψr(x)h(1, x)− Γ̄

M

)
, (7.17)

for every value of x. This requires that for every x one knows the value of h(1, x)

as a function ofE1 = Ψr(x), and the conditional pdf p(κ, ρs,ρr|ρr(1) = x); these
functions can be computed off-line from the joint pdf of the positions of the SU
network nodes. The value of h(1, x) is given by

h(1, x) = x2Pr(1|x)

= x2Eκ,ρs,ρr|ρr(1)=x

[ˆ ∞
0

M∏
m=2

Pr [γm < γ1] p(γ1) dγ1

]
,(7.18)

where p(γ1) can be found from its CDF in (7.4). The optimal value of the Lagrange
multiplier µr is found by solving the following equation

Eρr(1) [Ψr(ρr(1))h(1, ρr(1))] =
Γ̄

M
, (7.19)
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which can be done by using a stochastic subgradient method.
We will now iteratively alternate between the above algorithms, as described

below.

1. Initialize the functions Ψs(x) and Ψr(x), ∀x ; initialize µs, µr

2. Optimization SN: find Ψs(x) and µs by solving (7.13) and (7.14)

(a) minimize (7.13) ∀x, taking Ψr(x) from previous iteration

(b) update µs = max(µs + εEρs
[
Ψs(ρs)ρ

2
s − Γ̄

]
, 0)

(c) if Eρs
[
Ψs(ρs)ρ

2
s − Γ̄

]
= 0 go to step 3, otherwise go to 2a

3. Optimization RN: find Ψr(x) and µr by solving (7.17) and (7.19)

(a) minimize (7.17) ∀x, taking Ψs(x) from step 2 and Φr(x) equal to
Ψr(x) from previous iteration

(b) update the energy allocation of the other RNs:
take Φr(x) equal to Ψr(x) from step 3a

(c) update µr

= max(µr + εEρr(1)

[
Ψr(ρr(1))h(1, ρr(1))− Γ̄

M

]
, 0)

(d) if Eρr(1)

[
Ψr(ρr(1))h(1, ρr(1))− Γ̄

M

]
= 0 go to step 4, otherwise go

to 3a

4. If convergence is reached: exit, otherwise go to step 2

The parameter ε denotes the scalar step size used in the subgradient method. From
the simulations we have noticed that this algorithm shows a rapid convergence.
The change in the functions Ψs(x) and Ψr(x) is minimal between the different
iterations, and convergence is typically reached after only 3 iterations.

7.2.3 Suboptimal Dynamic Allocation Strategy

We will now derive a simple low-complexity dynamic allocation strategy, where
the functions Ψs(x) and Ψr(x) are restricted to take only 2 values, i.e.,

Ψs(x) =

{
E

(max)
s , x < θs

E
(min)
s , x > θs

, (7.20)

Ψr(x) =

{
E

(max)
r , x < θr

E
(min)
r , x > θr

, (7.21)

where E(min)
s , E(max)

s , E(min)
r , E(max)

r , θs and θr are selected such that outage
probability (7.6) is minimized. In contrast with the optimal allocation strategy



CHAPTER 7 7-9

from subsection 7.2.2, this suboptimum allocation strategy involves optimizing
over only 6 parameters. After the optimization the band manager transmits the
optimal value of E(min)

s , E
(max)
s and θs to the SN, and broadcasts the optimal

values E(min)
r , E

(max)
r and θr to every RN. The SU nodes can have a very low

complexity: the nodes only have to compare the RMS gain of their channel to
the PU with a threshold and apply the corresponding symbol energy, according to
(7.20) and (7.21).

To find the optimum we have to minimize the following function over E(min),

E(max) and Θ

E
[

1
E0κ2

s,d
·∏M

m=1

(
1

E0κ2
s,r(m) + 1

Emκ2
r,d(m)

)]
s.t. Eρs

[
E0ρ

2
s

]
≤ Γ̄

Eρr(1) [E1h(1, ρr(1))] ≤ Γ̄
M ,

(7.22)

where E(min) = [E
(min)
s , E

(min)
r ], E(max) = [E

(max)
s , E

(max)
r ] and Θ = [θs, θr].

We search for solutions where both interference constraints are fulfilled with
equality. The optimum is found by using a global optimization algorithm. Note
that this optimization can be performed off-line from the joint pdf of the SU net-
work node positions.

1. Global optimization: ∀E(min), ∀E(max) that belong to a finite set of symbol
energy values

(a) initialize θs = 0, θr = 0

(b) Increase θs until the interference constraint for the SN is fulfilled with
equality

(c) Increase θr until the interference constraint for the RNs is fulfilled with
equality

(d) Evaluate Pout from (7.6)

2. Return the value of (E(min), E(max), Θ) for which Pout achieved its mini-
mum value

Note that the algorithm needs to consider only values of E(min) and E(max) where
the interference generated by the SN (RNs) would be strictly larger than Γ̄ if θs =

∞ (θr =∞), and strictly smaller than Γ̄ if θs = 0 (θr = 0).

7.3 Numerical Results
In this section we discuss the numerical results for the different algorithms. For
the amplify-and-forward network, we assumed that all SU nodes are uniformly
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and independently distributed inside a circle centered at the origin with radius 1.
The PU-RX is located at coordinates (0, 1.5).

The exact (7.1) and approximated (7.6) outage probabilities are obtained by
means of Monte Carlo simulations. The mean-square value of the Rayleigh fading
channel gains is derived from the distance between the corresponding nodes. The
path loss exponent ν is chosen equal to 3.5 and the information rate is set toR = 1

bit/s/Hz. In Fig. 7.2 the outage probabilities are shown as a function of Γ̄/σ2

for the optimum static allocation (SA), the optimum dynamic allocation (ODA)
and the suboptimum dynamic allocation (SDA). We have shown the exact outage
probability of the direct link between the SN and DN (M = 0), along with the
exact and approximated outage probability in the case where the DN selects the
best of M RNs (M = 1, M = 2). For the direct link case, the exact outage
probability (Pr {log2 (1 + γ0) < R}) was used as the objective function for the
derivation of the optimum SA, ODA and SDA.

First, we note that the gain in performance by using multiple RNs is significant.
It is also clear that the approximation is tight at high SNR. Further, we notice that
our ODA and SDA strategies have a considerably better performance than the SA
strategy: the ODA strategy has a minimum gain of 1.2 dB compared to the SA
strategy and the SDA strategy is only about 0.3 dB worse than the performance of
the ODA strategy.

In Fig. 7.3 we compare our ODA strategy which uses an average interference
(AI) constraint with the following ODA strategy under a peak interference (PI)
constraint: E0 = Γ̄/|gs|2, Em = Γ̄/|gr(m)|2, m = 1, . . . ,M . Fig. 7.3 clearly
confirms that the allocation strategy under an AI constraint outperforms the allo-
cation strategy under a PI constraint. So when an AI constraint is reasonable for
the PU network, which is the case when the quality of service of the PU network
is determined by the average SNR [85], the performance of the SU network can be
significantly improved.

7.4 Chapter Summary

In this chapter, we combined the AI constraint with the best-relay selection proto-
col. Several strategies were investigated that minimize the link outage probability
between the SN and the DN of the SU network, and, at the same time, limit the AI
power at the PU-RX to a predefined threshold. The allocation strategies assume
that the SN and the RNs have access to the mean-square gain of their channel to
the PU-RX. Because this information is slowly varying, it is feasible to obtain this
information at the SU nodes. In the numerical results, we have shown that both
dynamic allocation strategies show a significant performance improvement over
the static allocation strategy. Further, it was shown that the performance of the
SDA strategy has a very small performance loss compared with the optimal, more
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Figure 7.2: Outage probability versus Γ̄/σ2 (direct link, M = 1 and M = 2).
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Figure 7.3: Comparison of the performance under an average or peak
interference constraint (direct link, M = 1 and M = 2).
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complex dynamic allocation strategy. Our analysis indicates that the dynamic al-
gorithms under an AI constraint show a significant performance improvement as
compared to the ODA under a PI constraint.

However, it is clear that combining the AI constraint with the best-relay se-
lection protocol is not an easy task. The optimization for the simple cooperative
network, discussed in this chapter, already became quite involved. Further, the
knowledge of the joint probability distribution of all the node positions is hard to
obtain in a practical network. For these reasons, we will focus our attention again
to PI constraints in the next chapters as we begin our discussion about multicarrier
networks.



8
Resource Allocation for Multicarrier

Cooperative Cognitive Radio Networks

In this chapter (which is based on contribution [86]), we take a closer look at a
decode-and-forward cooperative cognitive radio network. Instead of minimizing
the outage probability under a fixed rate, as in the previous chapters, we now try to
maximize the rate of the SU network under a fixed outage probability constraint.
This approach benefits applications that want to maximize their transmission rate
under a constraint that guarantees the reliability of the transmission. An example
of such an application is video transmission, where the TX can choose the quality
of the transmitted stream: when the link is reliable, the video can be transmitted at
a high-definition resolution. However, when only a weak link is present, the TX
chooses a low-resolution stream so it can guarantee the required reliability of the
transmission.

Further, we consider a multicarrier system and introduce an accurate approxima-
tion for the outage probability, which is used for the formulation of the resource
allocation problem.

The organization of this chapter is as follows: in section 8.1, we introduce the
cooperative network and the channel model. Further, we define the constraints on
the outage probability, the power and interference at the PU-RXs. Then we intro-
duce the resource allocation problem and its solution in section 8.2. We validate
the accuracy of the approximation and the performance of the resource allocation
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scheme through numerical simulations in section 8.3. Finally, the conclusions are
presented in section 8.4.

8.1 System Model

8.1.1 The Cooperative Network

We consider a cooperative network in a cognitive scenario as shown in Fig. 8.1.
The SU cooperative network consists of a SN, a DN and M RNs. We assume that
there is no direct link present between the SN and DN. The decode-and-forward
protocol is used at the relays. The transmission of a frame occurs in 2 time slots.
In the first time slot the SN transmits a frame consisting of several OFDM symbols
to the different RNs. Each OFDM symbol has a length Ts = (N + ν)T , where
T , N and ν denote the sampling interval, the number of subcarriers and the length
of the guard interval (expressed in sampling intervals), respectively. Each RN
decodes its received messages, which are then re-encoded and forwarded to the
DN. The message received at a RN over a particular subcarrier j is forwarded
over a subcarrier k, which might be different from j. This subcarrier pairing is
expressed by the binary variable πj,k, which is equal to 1 when the subcarrier j of
the first hop is paired with subcarrier k of the second hop, and 0 otherwise. Each
subcarrier is decoded by a single RN only, and each subcarrier j can only be paired
with one subcarrier k. This can be summarized as follows

∀j :

N∑
k=1

πj,k = 1, ∀k :

N∑
j=1

πj,k = 1. (8.1)

The binary variable zj,k(m) equals 1 when the subcarrier pair (j,k) is allocated to
the mth RN, and 0 otherwise. A pair (j, k) can be assigned to only one RN; this
can be expressed as

∀j, k s.t. πj,k = 1 :

M∑
m=1

zj,k(m) = 1. (8.2)

The subcarrier pairing and the relay allocation is also schematically shown in Fig.
8.1, which assumes N = 5, π2,4 = π4,1 = π5,2 = 1 and z2,4(1) = z4,1(1) =

z5,2(M) = 1; in the first and second time slot, the subcarriers with j ∈ (1, 3) and
k ∈ (3, 5) are not used (the corresponding symbol energies are zero).

8.1.2 Channel Model

We assume that the wireless channel between any two nodes of the SU network is
a frequency-selective multipath fading channel with a correlation time that is much
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Figure 8.1: Topology of the network.
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longer than the OFDM symbol duration Ts, so that the complex path gains can be
considered constant over an interval Ts. Considering root-raised-cosine transmit
and receive filters with roll-off factor β [16], the impulse response h(u, i) of the
cascade of the transmit filter, the wireless channel and the receive filter, related to
the ith OFDM symbol, is expressed as

h(u, i) =

L∑
l=1

cl(i)g(u− τl), (8.3)

where cl(i) and τl denote the gain and delay of the lth path, L denotes the number
of paths and g(u) is a raised-cosine pulse with roll-off factor β, which is defined
as

g(u) =


1, u = 0
β
2 sin

(
π
2β

)
, u = ± T

2β

sin(πuT )
πu
T

cos(πβuT )
1−( 2βu

T )
2 , u 6= ± T

2β , u 6= 0

. (8.4)

We assume that h(nT, i) = 0 for n < 0 and for n > ν, which is achieved by
adding to all path delays a sufficiently large common delay to make h(u, i) causal,
and by taking ν sufficiently large. The gains of the different paths are indepen-
dent zero-mean circularly symmetric Gaussian random variables. According to
Jakes’ model [12], we take E [cl(m+ i)c∗l (i)] = J0(2πfdmTs)σ

2
l , where J0(x)

represents the zeroth-order Bessel function of the first kind, and fd denotes the
Doppler frequency. For later use, we define Rc = diag(σ2

1 , . . . , σ
2
L) and the vec-

tor h(i) ∈ C(ν+1)×1 containing the ν + 1 samples of h(u, i), given by

h(i) , Gc(i), (8.5)

where c(i) , [c1(i), . . . , cL(i)]T and G is the (ν + 1) × L matrix with entries
Gk,l , g((k − 1)T − τl), k = 1, . . . , ν + 1; l = 1, . . . , L. The corresponding
frequency response is given by H(i) = Fh(i), where the Fourier matrix F ∈
CN×(ν+1) is determined by

Fk,l , e−j2π(k−1)(l−1)/N , k = 1, . . . , N ; l = 1, . . . , ν + 1. (8.6)

The kth component of H(i) denotes the channel gain seen by the kth subcarrier in
the ith OFDM symbol.

In appendix 8.A, we derive the model for the imperfect CSI. This model is very
similar to the model for ICSI presented in appendix 5.A for single-carrier systems.
In appendix 8.A, we show that the MMSE estimate of the channel gains for the
subcarriers will be denoted by the vector Hp(i). The actual channel gain H(i) can
then be written as

H(i) = Hp(i) + Fe(i), (8.7)
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where e(i) is independent of Hp(i) and Hp(i) is a function of the available chan-
nel information vector ICSI(i). For notational convenience, we will from now on
omit the time index i.

8.1.3 Definitions of the Constraints

8.1.3.1 Link Quality Constraint

The objective of the resource allocation is to maximize the rate between the SN
and the DN. Because the TX has only imperfect CSI available, it can happen that
the required rate R cannot be achieved on a certain subcarrier link, because it
exceeds the instantaneous capacity. Therefore we impose a quality constraint on
each subcarrier link, by limiting the outage probability Pout, which is defined as
the cumulative distribution of the capacity (in bits per channel use), conditioned
on the available channel information vector ICSI

Pout , Pr

[
log2

(
1 + |H|2 E

σ2
w

)
≤ R

∣∣∣∣∣ ICSI

]
(8.8)

= Pr

[
|H|2 ≤ d

∣∣ ICSI

]

= Pr

[
|H|2 ≤ d

∣∣Hp

]
, (8.9)

where E denotes the transmit energy per data symbol, H denotes the actual chan-
nel gain between a transmitting and receiving node as seen by the considered sub-
carrier, Hp denotes the estimated channel gain, σ2

w , N+ν
N σ2, σ2 denotes the

noise variance at the receive filter output and

d =
2R − 1

E
σ2
w. (8.10)

The quality constraint imposes a maximum value for the outage probability Pout

that each subcarrier link is allowed to experience. This outage probability Pout

denotes the probability that the actual instantaneous channel capacity conditioned
on ICSI is lower than the transmitted rate on that subcarrier.

The actual expression (8.9) for the outage probability is similar to the expres-
sion shown in (5.56). However, instead of using the exact expression, we will
approximate Pout as shown in appendix 8.B. In the appendix, we discuss a gen-
eral approach that can be used for any distribution of |H|2 conditioned on Hp as
long as the cumulant generating function is known.

In our scenario, the probability distribution of |H|2 conditioned on the MMSE
channel estimate Hp is a scaled noncentral χ2 distribution with 2 degrees of free-
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dom. Its cumulant generating function [87] is given by

µ(s) = ln
(
EH

[
es|H|

2
∣∣∣Hp

])
=

s|Hp|2
1− sσ2

p

− ln(1− sσ2
p), (σ2

ps < 1), (8.11)

where σ2
p , EH

[
|H −Hp|2|Hp

]
1 denotes the conditional mean-square estima-

tion error. According to appendix 8.B, the outage probability (8.9) is approximated
as

Pout = Q(
√
µ̈(s∗) |s∗|)e 1

2 µ̈(s∗)s∗2+µ(s∗)−s∗µ̇(s∗), (8.12)

where µ̇(s) and µ̈(s) are the first and second derivative of µ(s) with respect to s, s∗

is the negative solution of µ̇(s∗) = d, and Q(x) is the probability that a zero-mean
unit variance Gaussian random variable exceeds x.

In the following we want to achieve a fixed value for the outage probability
Pout. We first solve (8.12) numerically for s∗, and then compute the corresponding
value of d as

d(Hp, Pout) = µ̇(s∗)

=
|Hp|2 + σ2

p(1− s∗σ2
p)

(1− s∗σ2
p)2

. (8.13)

Taking (8.10) into account, we obtain

R = log2

(
1 + d(Hp, Pout)

E

σ2
w

)
, (8.14)

which is the rate (bits/channel use) that yields an outage probability Pout when the
MMSE estimate equals Hp. We notice that (8.14) is almost the same expression
as the instantaneous capacity, except that d(Hp, Pout) replaces the squared mag-
nitude |H|2 of the actual channel gain. Note from (8.13) that d(Hp, Pout) =

|Hp|2 = |H|2 in the case of perfect estimation (i.e., σ2
p = 0). The quantity

d(Hp, Pout) takes into account the imperfect CSI at the TX, and by using (8.14) as
the objective function to be maximized, we have automatically satisfied the quality
constraint (8.9).

The RNs of the SU network use the decode-and-forward protocol, introduced
in section 3.6.3, which means that the maximum instantaneous rate we can transmit
on the (j, k) subcarrier pair at the mth RN can be written as

Rj,k(m) =
1

2
min

(
log2

(
1 + ds,j(m)

Es,j,k(m)

σ2
w

)
,

log2

(
1 + dr,k(m)

Er,j,k(m)

σ2
w

))
, (8.15)

1The value of σ2
p for a certain subcarrier k is given by the kth diagonal element of FReFH .
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where Es,j,k(m) and Er,j,k(m) denote the transmit energy per data symbol for the
jth subcarrier at the SN paired with the kth subcarrier at the mth RN, and for the
kth subcarrier at the mth RN paired with the jth subcarrier at the SN. The quantities
ds,j(m) and dr,k(m) denote the quantity d(Hp, Pout) for the channels seen by the
jth subcarrier from the SN to the mth RN, and by the kth subcarrier from the mth
RN to the DN, respectively. Obviously, the rate Rj,k(m) is maximized by taking

Er,j,k(m) = ηj,k(m)Es,j,k(m), (8.16)

where we have introduced ηj,k(m) =
ds,j(m)
dr,k(m) .

8.1.3.2 Transmit Energy Constraints

The total transmit energy at each SU node is assumed to be limited. Denoting by
E

(max)
s and E(max)

r (m) the maximal total transmit energies at the SN and the mth
RN, m = 1, . . . ,M , the transmit energy constraints for the SN and for each RN
are expressed as

N∑
j=1

N∑
k=1

M∑
m=1

πj,kzj,k(m)Es,j,k(m) ≤ E(max)
s , (8.17)

N∑
j=1

N∑
k=1

πj,kzj,k(m)ηj,k(m)Es,j,k(m) ≤ E(max)
r (m), (8.18)

where in (8.18) we have made use of (8.16).

8.1.3.3 Interference Constraints

The SU network is present in the same bandwidth as NPU PU-RXs. According to
the underlay paradigm, the SU network may only gain access to the bandwidth of
the PU network, if the SU network keeps the interference at each PU-RX below
a corresponding threshold Γq , q = 1, . . . , NPU. As we assume that the exact
channel gains towards the PU-RXs are unknown to the SU-TXs, the SU network
cannot guarantee that the interference constraints are always satisfied. However,
the SU network will make sure that the average interference conditioned on the
available channel information is below the threshold Γq , q = 1, . . . , NPU.

Let us denote by Ij(q) the average interference energy experienced by the qth
PU-RX when a unit energy data symbol is transmitted by the SN on subcarrier j.
Assuming that the PU network is active in the frequency band (f1, f2), Ij(q) is
obtained as the following conditional expectation

Ij(q) = E

[ˆ f2

f1

|Htr(f)|2|Hq(f)|2Sj(f)df

∣∣∣∣∣Hp,q

]
, (8.19)
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where Htr(f) and Hq(f) are the transfer functions of the root-raised-cosine trans-
mit filter and the multipath channel between the SN and the qth PU-RX, respec-
tively, and

Sj(f) =

(
sin
(
π(N + ν)(fT − j

N )
)√

(N + ν) sin
(
π(fT − j

N )
))2

. (8.20)

The expectation in (8.19) is over Hq(f), conditioned on the MMSE estimate Hp,q

of the channel gains for the link between the SN and the qth PU-RX. A similar
expression holds for the average interference energy Ik,m(q) experienced by the
qth PU-RX when a unit energy data symbol is transmitted by the mth RN on sub-
carrier k. For every PU-RX, q = 1, . . . , NPU, the interference constraints to be
satisfied by the SN and the RNs are expressed as follows

N∑
j=1

N∑
k=1

M∑
m=1

πj,kzj,k(m)Es,j,k(m)Ij(q) ≤ Γq, (8.21)

N∑
j=1

N∑
k=1

M∑
m=1

πj,kzj,k(m)ηj,k(m)Es,j,k(m)Ik,m(q) ≤ Γq. (8.22)

Note that the previous chapters did not take the transmit filter into account. How-
ever, in these chapters we made the assumptions of a flat-fading channel and
single-carrier modulation. In this case, we can show that the interference present
in the frequency band (f1, f2) scales with

ˆ f2

f1

|Htr(f)|2|Hq(f)|2df = |Hq(f)|2
ˆ f2

f1

|Htr(f)|2df

= |Hq(f)|2. (8.23)

In the last step, we have assumed that |Htr(f)| is only non-zero between f1 and
f2. The result in (8.23), which is precisely the channel gain that we used in the
previous chapters, can thus be seen as a special case of the formulas used in (8.21)
and (8.22).

8.2 Resource Allocation

The SU network attempts to maximize the total rate between the SN and the DN,
subject to the various constraints. The resource allocation problem will be formu-
lated in a centralized manner, and can be solved by a band manager [31, 34]. In
situations where a centralized solution is not desirable, the obtained results can
still serve as a useful upper bound for the performance of distributed algorithms.
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The optimization problem reads

max
E,π,z

N∑
j=1

N∑
k=1

M∑
m=1

πj,kzj,k(m) log2

(
1 + ds,j(m)

Es,j,k(m)

σ2
w

)
s.t. (8.1), (8.2), (8.17), (8.18), (8.21), (8.22),

(8.24)

where E, π and z consist of the values Es,j,k(m), πj,k and zj,k(m) ∀j, k,m,
respectively. The optimization problem (8.24) is a mixed integer programming
problem. As this problem is non-convex, the duality gap will in general be non-
zero. However, in [88, 89] it is shown that the duality gap will be virtually zero
when the number of carriers N is greater than 8. This means that the original
problem (8.24) can be solved by the dual problem with negligible performance
loss. According to (2.16), we can define the dual problem as follows

min
β≥0,κ≥0,λ≥0,µ≥0

D(β,κ,λ,µ), (8.25)

where

D(β,κ,λ,µ) = max
π

[ N∑
j=1

N∑
k=1

πj,k max
z

[ M∑
m=1

zj,k(m) max
E

[
F (j, k,m)

]]]

+ βE(max)
s +

M∑
m=1

κ(m)E(max)
r (m) +

NPU∑
q=1

λqΓq +

NPU∑
q=1

µqΓq

s.t. (8.1)− (8.2),
(8.26)

where

F (j, k,m) = log2

(
1 + ds,j(m)

Es,j,k(m)

σ2
w

)
− α(m)Es,j,k(m), (8.27)

with

α(m) = β + κ(m)ηj,k(m) +

NPU∑
q=1

(λqIj(q) + µqηj,k(m)Ik,m(q)) . (8.28)

In (8.26) we have introduced the dual variables β, κ , [κ1, . . . , κM ]T , λ ,
[λ1, . . . , λNPU

]T and µ , [µ1, . . . , µNPU
]T which are associated with constraints

(8.17), (8.18), (8.21) and (8.22), respectively. From equation (8.26), it is clear that
this maximization problem can be decomposed into three separate subproblems.

For the first subproblem, the optimization problem is solved for any valid relay
assignment zj,k(m) = 1 and subcarrier pairing πj,k = 1. This subproblem is

formulated as Fmax(j, k,m) = maxEs,j,k(m)

[
F (j, k,m)

]
; the optimal transmit

energy Es,j,k(m) is given by Es,j,k(m) =

[
1

ln(2)α(m) −
σ2
w

ds,j(m)

]+

.
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The second subproblem involves the optimization over zj,k(m) for any valid
pairing πj,k = 1; the optimal value of zj,k(m) (m = 1, . . . ,M) is given by

zj,k(m) =

{
1, if m = arg maxm Fmax(j, k,m)

0, otherwise
. (8.29)

Now that we have found the optimal energy allocation and the relay selection for
any given subcarrier pairing πj,k = 1, we still have to find the optimal subcarrier
pairing.

This third problem reduces to a linear assignment problem. Such a problem
can be efficiently solved by using a standard Hungarian algorithm, with complexity
O(N3) [90]. We illustrate the Hungarian method by an example in appendix 8.C.

So now we have found the value of D(β,κ,λ,µ) for a specific value of the
Lagrange multipliers. The optimal values of the Lagrange multipliers β∗, κ∗, λ∗

and µ∗ that minimizeD(β,κ,λ,µ) are found by means of the subgradient method
described in section 2.4.

8.3 Numerical Results

We first investigate the accuracy of our proposed approximation (8.12) of the out-
age probability Pout. This approximation will be compared to the exact (simu-
lated) outage probability Pout (8.8) and to a Gaussian approximation proposed
in [91]. In [91] the probability density (conditioned on the estimation Hp) of the
capacity log2(1 + |H|2E

σ2
w

) is approximated by a Gaussian distribution with mean

log2(1 + a
b ) and variance 2a

(ln(2)(a+b))2 , where a , |Hp|2/σ2
p and b , σ2

w/(Eσ
2
p).

In Fig. 8.2a (with (a, b) = (1, 10)) and 8.2b (with (a, b) = (100, 0.1)), we show
both approximations along with the exact outage probability Pout as a function of
the rate R (bits/channel use). We notice that the Gaussian approximation has its
highest accuracy for R near the mean of the capacity log2(1 + |H|2E

σ2
w

) (this mean
is 0.250 and 9.967 for Fig. 8.2a and Fig. 8.2b, respectively), however the region of
interest corresponds to smaller values of R, yielding small Pout. From the figure
it is clear that the overall accuracy is much higher for the approximation (8.12)
based on the exponentially tilted distribution than for the Gaussian approximation.
Further, according to [91] the Gaussian approximation is only useful when a is
large, whereas our approximation is accurate for a wide range of a and b values.

The simulation parameters of the resource allocation problem are summarized
in table 8.1. For the channel model we have used the ITU vehicular A model,
which we described in section 3.1.3. The wireless channel between the nodes is
normalized:

∑L
l=1 σ

2
l = 1. The presence of a single PU-RX (NPU = 1) is as-

sumed that occupies the same frequency band as the SU network. The maximal
total transmit energies E(max)

s and E(max)
r (m), m = 1, . . . ,M , are chosen equal
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Figure 8.2: Approximations of Pout. (a) a = 1, b = 10. (b) a = 100, b = 0.1.

to E(max). Fig. 8.3 shows the rate R (bits/channel use) as function of E(max)/σ2
w

(dB), for Γ/σ2
w = 0, 10 and∞ (dB). The interference threshold Γ has a consider-

able impact on the performance of the SU network for high values of E(max)/σ2
w.

For Γ/σ2
w = 0 dB and 10 dB we clearly notice a limiting value of the rate R with

increasing E(max)/σ2
w. In this region we say that the performance is interference

limited: a further increase in the maximal transmit energy E(max) will have little
influence on the achievable rate R. When the ratio E(max)/σ2

w has a low value,
we notice that the curves for the different ratios of Γ/σ2

w are close to each other.
In this region the performance is limited by the available transmit energy E(max),
which means that a less restrictive value of the interference threshold Γ will lead
to a negligible performance benefit.

We have also illustrated the effect of the memory P of the predictor. When
P = 1 we notice that the SU suffers a considerable performance loss compared to
the case with perfect CSI. However when a predictor is used with memory P = 4,
we already notice a considerable performance improvement. By using a larger pre-
dictor memory we get a better estimate of the actual channel gains and the resulting
performance loss because of imperfect CSI is reduced. If we further increase the
predictor memory P from 4 to 7, we notice that the obtained performance im-
provement is negligible. This is explained by the fact that the correlation between
the oldest value of the estimated CSI ĥ and the actual impulse response h becomes
very low (J0(2πfd7DTs) = 0.26) because of the time-varying channel.
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Parameter Value

Subcarriers (N ) 64

Cyclic Prefix (ν) 20

Sampling Interval (T ) (1.92 · 106)−1s
Doppler Frequency (fd) 144 Hz
Estimation Error (σ2

e ) 0.01

Outage Probability (Pout) 0.001

Roll-off factor (β) 0.1

Number of RNs (M ) 3

CSI update interval (D) 7

Table 8.1: System parameters.
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8.4 Chapter Summary
In this chapter we proposed an approximation for the outage probability condi-
tioned on the available channel information. In the numerical results, we have
shown that this approximation is more accurate than the often used Gaussian ap-
proximation.

Based on this approximation we derived an optimal resource allocation algo-
rithm that takes into account imperfect CSI. Simulations have shown that a small
performance loss compared to the case with perfect CSI can be achieved, provided
that the memory P of the predictor is large enough. Finally, the results provided
in this chapter offer an interesting benchmark to which the performance of more
practical distributed algorithms can be compared.

In this and previous chapters, we derived several allocation algorithms for cog-
nitive radio networks that rely on the use of theoretic performance metrics. While
chapters 5-7 tried to minimize the outage probability of the SU network, this chap-
ter took a different approach, by optimizing the rate of the SU network under a
fixed outage probability constraint.

The following chapters take a look at resource allocation algorithms that op-
timize a more practical performance metric. This performance metric is closely
related to the actual performance of a network and is called the goodput.
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8.A Imperfect CSI
In order to perform dynamic resource allocation, the transmitting nodes need some
form of CSI. Similar as in appendix 5.A, we assume that the transmitting node ob-
tains an estimated impulse response via a feedback channel. The channel estimate
Ĥ(i) of the frequency response H(i) is given by

Ĥ(i) = H(i) + w(i), (8.30)

where w(i) ∼ Nc(0, INσ
2
e ) and σ2

e represents the estimation error.
However, it is possible to further improve this estimate by using the prior

knowledge that h(i) has only ν + 1 components. By using this information, an
estimate ĥ(i) of the impulse response h(i) can be obtained from the following
optimization

min
ĥ(i)
‖Ĥ(i)− Fĥ(i)‖2, (8.31)

which yields

ĥ(i) = (FHF)−1FHĤ(i)

= h(i) + n(i), (8.32)

where n(i) ∼ Nc(0, (FHF)−1σ2
e ). As ĥ(i) contains all the useful information

about the channel, it will actually be this estimate that is fed back to the corre-
sponding TX.

However, the TX receives an impulse response estimate only once every D
OFDM symbols, which means that the CSI received at the TX will be outdated.
The TX uses a MMSE estimator to approximate the actual impulse response. The
MMSE impulse response estimate ĥp(i) is derived from the P previously received
impulse response estimates ICSI(i) , [ĥT (i−D), . . . , ĥT (i−DP )]T . Similar
as in section 3.3, it can be proven that the following relationship holds

h(i) = E [h(i)|ICSI(i)] + e(i)

= XY−1ICSI(i) + e(i)

= ĥp(i) + e(i), (8.33)

where ĥp(i) ∼ Nc(0,GRcG
H −Re) and e(i) ∼ Nc(0,Re), where

Re = GRcG
H −XY−1XH . (8.34)

Introducing the matrix J ∈ CP×P with entries Jk,l , J0(2πfdDTs(k − l)),
k = 1, . . . , P ; l = 1, . . . , P , the matrices X and Y are written as follows

X = [J0(2πfdDTs), . . . , J0(2πfdPDTs)]⊗GRcG
H , (8.35)

Y = J⊗GRcG
H + IP ⊗ (FHF)−1σ2

e . (8.36)

The predicted channel gains for the subcarriers are the components of the vector
Hp(i) = Fĥp(i).
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8.B Derivation of Approximation (8.12)

Approximating the probability density p|H|2(x|Hp), of |H|2 conditioned on Hp,
by a Gaussian density is expected to yield a poor approximation of (8.9) for small
Pout, because in this case the mean EH

[
|H|2|Hp

]
is much larger than d. To put

more weight in the neighborhood of d, we will exponentially tilt p|H|2(x|Hp) to
create a new density pZ(x), and approximate pZ(x) by a Gaussian density. The
tilted density is given by [15]

pZ(x) = p|H|2(x|Hp)esx−µ(s), s ≤ 0, (8.37)

where µ(s) is given by (8.11). Its mean and variance equal µ̇(s) and µ̈(s), where
µ̇(s) and µ̈(s) are the first and second derivative of µ(s) with respect to s. We take
s = s∗ with µ̇(s∗) = d, so that the mean of pZ(x) equals d. Taking into account
that s∗ ≤ 0, we obtain

s∗ =
2d− σ2

p −
√
σ4

p + 4d|Hp|2

2dσ2
p

. (8.38)

The outage probability Pout can be expressed in terms of pZ(x) as

Pout =

ˆ d

0

p|H|2(x|Hp) dx

=

ˆ d

0

pZ(x)eµ(s∗)−s∗x dx. (8.39)

Approximating pZ(x) by a Gaussian density with mean µ̇(s∗) and variance µ̈(s∗),
and replacing in (8.39) the integration interval by (−∞, d) yields the approxima-
tion (8.12).

8.C The Hungarian Algorithm

We illustrate the Hungarian algorithm by using an example. Assume that we have
the following matrix 

16 84 87 56

5 61 34 58

55 49 20 9

7 42 42 10

 . (8.40)

The goal is to select from each row a single element, while satisfying the following
requirements:

1. Each column has to be selected just once.
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2. The sum of all the selected elements has to be minimal.

In the first step we subtract the row minimum from each row. For example, this
means that for the first row, we subtract 16 from each element of that row. This
gives us the following matrix

0 68 71 40

0 56 29 53

46 40 11 0

0 35 35 3

 . (8.41)

It is clear that adding or subtracting a constant to each row does not change our
optimum.

In the second step, we will do the same for the columns. We get
0 33 60 40

0 21 18 53

46 5 0 0

0 0 24 3

 . (8.42)

We check if the minimum number of lines that cover all zeros is equal to the
number of rows of the matrix. We find

0 33 60 40

0 21 18 53

46 5 0 0

0 0 24 3

 . (8.43)

Which means we need three lines to cover all zeros. As this is lower than the
number of rows, we need an additional step that will create additional zeros.

The smallest element that is not crossed out is 18. We subtract this number
from all uncovered elements and add it to the elements that are crossed out twice.
After these operations, we get the following matrix

0 15 42 22

0 3 0 35

64 5 0 0

18 0 24 3

 . (8.44)

We again check the minimum number of lines that is needed to cover all zeros.
Now, we find 

0 15 42 22

0 3 0 35

64 5 0 0

18 0 24 3

 . (8.45)
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As there are now 4 lines, the algorithm is finished and we find the following opti-
mum 

0 15 42 22

0 3 0 35

64 5 0 0
18 0 24 3

 , (8.46)

which corresponds to 
16 84 87 56

5 61 34 58

55 49 20 9
7 42 42 10

 . (8.47)

We note that if the sum of the selected elements needs to be maximal instead
of minimal, we can simply apply the same algorithm for the same matrix where all
its elements are negated.





Part III

Optimization of the Goodput





9
Accurate Modeling of the κESM with
Imperfect Channel State Information

In chapter 4, we discussed the effective SNR mapping (ESM), which is a technique
that transforms a vector of subcarrier SNRs into a scalar effective SNR. Our goal
now is to apply this technique at the TX, such that the TX can dynamically choose
its transmission parameters. However, the calculation of the κESM requires the
availability of perfect CSI at the TX, which can be problematic as the available
CSI, in a practical system, is often imperfect, due to the presence of noise, and
outdated, because of the time-varying channel.

If we condition the κESM on the available imperfect CSI, the κESM becomes
a random variable. It appears that its distribution, when only imperfect CSI is
available, cannot be expressed in closed form.

There have been several papers [92–95] which apply a moment matching ap-
proximation to approximate the pdf, of the effective SNR related to the EESM,
with a certain distribution. However, these papers rely on perfect CSI and try to
calculate the long-term average performance of a system, while we are interested
in providing the TX with an accurate statistical model of the effective SNR so it
can make an accurate prediction of the instantaneous link quality. This way, the
TX can make a better choice regarding its transmission parameters and thereby
avoid packet errors or a loss in spectral efficiency by over- or underestimating the
actual channel conditions.
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Therefore, this chapter (which is based on contribution [96]) extends the ap-
proach in [92–95] to κESM in combination with imperfect CSI. Our proposed
approximation will then be used in the following chapter to optimize the goodput
when only imperfect CSI is available at the TX.

Section 9.1 briefly describes the system model, while section 9.2 introduces
our proposed approximation of the κESM. In section 9.3 we compare our model
in terms of approximation accuracy against models based on the Gaussian dis-
tribution, the gamma distribution and the more complex Pearson and generalized
extreme value (GEV) distributions. This chapter is concluded in section 9.4.

9.1 System Model

A point-to-point OFDM link is considered where a message is transmitted by
means of the packet-oriented BIC-OFDM communication system described in
chapter 4. At the RX, the kth OFDM subcarrier, with k ∈ N , {1, . . . , N} is
observed as

zk ,
√
EkHkxk + nk, (9.1)

where Ek is the transmit energy on the kth subcarrier, Hk is the corresponding
channel coefficient, xk is the constellation symbol transmitted on subcarrier k cor-
responding to mk ∈ Dm coded bits and E

[
|xk|2

]
= 1, and nk ∈ Nc

(
0, σ2

w

)
is

the ambient noise.
The received signal-to-noise ratio (SNR) associated with the kth subcarrier can

then be defined as

γk ,
Ek|Hk|2
σ2
w

. (9.2)

In the following chapter, the TX will use the κESM to optimize the energy
allocation per subcarrier Ek and the transmission mode φ.

The time-varying multipath channel is modeled as in section 8.1.2. The only
difference is that we now no longer assume that g(u) is a
raised-cosine pulse, and take g(u) = δ(u). This means that the samples h(mT, i),
m = 0, . . . , ν, are now independent circularly symmetric zero-mean Gaussian
complex random variables and E [h(mT, i+ j)h∗(mT, i)] = J0(2πfdjTs)σ

2
m.

For later reference, we define1 Rh , diag(σ2
0 , . . . , σ

2
ν) and the channel impulse

vector h(i) , [h(0, i), h(T, i), . . . , h(νT, i)]T .

1Note that if we have a number of paths L < ν + 1, only L diagonal elements of Rh are strictly
greater than 0.
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In order to select the optimal TM φ, the TX requires an estimation of the cur-
rent channel state. As in (8.7), it can be shown that the predicted frequency re-
sponse Hp(i) is linked to the actual frequency response H(i) as follows:

H(i) = Hp(i) + Fe(i), (9.3)

where e(i) ∼ Nc(0,Re) and F denotes the Fourier matrix introduced in (8.6). As
this covariance matrix is not necessary full rank, for later reference we define

Fe(i) = Bs(i), (9.4)

where s(i) ∼ Nc(0, Iq), q is the rank of the covariance matrix FReF
H and

BBH = FReF
H . The matrix B ∈ CN×q can be easily found from an eigen-

value decomposition of the matrix FReF
H . For notational convenience, the index

i will be omitted in the sequel.

9.2 Statistical Model of κESM

In this section we propose a simple statistical model for the description of the ef-
fective SNR γeff resulting from κESM, which takes into account the imperfect and
outdated CSI. If perfect CSI were available, the TX could make a proper selection
of its transmission parameters, based on the corresponding value of the effective
SNR. However, when the TX only has outdated and imperfect CSI at its disposal,
simply replacing the actual CSI by its prediction when computing the effective
SNR can lead to an over- or underestimation of the instantaneous quality of the
link. A better selection of the transmission mode would result if the TX knew
how γeff is distributed given the predicted CSI Hp. However, as the κESM is
highly non-linear in terms of {γk, k = 1, . . . , N}, the exact pdf conditioned on
the prediction Hp is extremely difficult to obtain [97].

In the context of approximating the distribution of the effective SNR γeff as-
sociated with the EESM in the case of perfect CSI, it is proposed in [92] to ap-
proximate e−γeff/β as a beta-distributed random variable. We will now apply this
method to the effective SNR resulting from κESM. The main difference with [92]
however, is that we will not consider perfect CSI, but derive the distribution of
γeff , which we introduced in (4.25), conditioned on a prediction Hp of the current

channel state. If αk,µ , 1∑
n∈N mn

ψk(µ)

2mk−1 and (Bs)k denotes the kth component
of the vector Bs, the following random variable

Y =
∑
k∈N

√
2mk
2∑

µ=1

αk,µe
−
Ek|Hp,k+(Bs)k|2(µdk,min)

2

4βσ2w , (9.5)
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for given Hp,k, k = 1, . . . , N , will be approximated by a beta-distributed ran-
dom variable. A beta-distributed random variable Z takes values from the inter-
val [0, 1]; its cumulative distribution function (CDF) is given by Pr[Z < z] =

B(z, a, b)/B(1, a, b) for 0 ≤ z ≤ 1, where

B(z, a, b) =

zˆ

0

ua−1(1− u)b−1du, (9.6)

denotes the incomplete beta function, and a and b are shaping parameters of the
beta distribution. The parameters a en b are related to the mean and variance of Z
as follows [92]

a =
E [Z] (E [Z]− E [Z]

2 − Var[Z])

Var[Z]
, (9.7)

b =
(1− E [Z])(E [Z]− E [Z]

2 − Var[Z])

Var[Z]
. (9.8)

We will approximate the actual distribution of Y conditioned on a prediction Hp

by a beta distribution, such that the mean and variance of the beta distribution are
the same as the mean and variance of the actual distribution. Hence, the shaping
parameters a and b of the approximating beta distribution are obtained by replac-
ing in (9.7)-(9.8) E [Z] and Var[Z] by E [Y ] and Var[Y ], respectively, which are
derived in closed form in appendix 9.A (see (9.14), (9.25)).

The beta distribution based approximation of the CDF of γeff then becomes [92]

Pr[γeff ≤ x] ≈ 1− B(e−
x
β , a, b)

B(1, a, b)
, (9.9)

for x ≥ 0.

9.3 Numerical Results
We consider the communication system characterized by the parameters from table
9.1. These parameters are based on a LTE system which means that only the 1320

inner subcarriers of the 2048 subcarriers are available for data transmission [98].
The sampling frequency is thus equal to 1

T = 2048
132020 MHz and the energy per

symbolEs = Ek, k = 1, . . . , N . For the channel model we use the ITU pedestrian
B model [13]. Our beta distribution based approximation model will be compared
to other approximation models from literature. The latter include approximations
of

• the distribution of γeff by the (more involved) generalized extreme value
(GEV) distributions [94] and Pearson distributions [99], and by the (analyt-
ically simpler) lognormal distribution [100] and gamma distribution [93];
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Parameter Value

SNR (Es/σ
2
w) 10 dB

Bandwidth (B) 20 MHz
FFT size 2048

Length of cyclic prefix (ν) 160

Doppler frequency (fd) 144 Hz
CSI update interval (D) 7

Estimation error (σ2
e ) 12.5 dB

Scaling coefficient (β) 1

Table 9.1: System parameters.

• the distribution of Y = e−γeff/β by a Gaussian distribution [94] and a log-
normal distribution [95]; the latter will be referred to as the log-Gaussian
approximation, to clearly make the distinction with the case where the dis-
tribution of γeff is approximated by a lognormal distribution [100].

While these approximations from literature pertain to the EESM with perfect CSI,
we have applied these approximations to κESM with predicted CSI.

In Fig. 9.1 we show the CDF and the complementary CDF (CCDF) resulting
from the empirical distribution of γeff and the various approximations, for a pre-
dicted frequency response given by Hp,k = 0.5 · (1+i)√

2
(∀k). A 4-QAM constel-

lation is used (mk = m = 2, k = 1, . . . , N ) and the number of used subcarriers
N = 64. The subcarriers are non-contiguous and are evenly spaced across the
available bandwidth B. The estimation error is given by Fe ∼ Nc(0,FReF

H).
The empirical results are generated from 106 samples obtained by simulation.
From Fig. 9.1 we note that both the GEV and Pearson approximation are very
close to the simulated CDF and CCDF. We further notice that the Gaussian ap-
proximation is very poor in tracking the simulated CCDF, while the log-Gaussian
approximation is incapable of tracking the simulated CDF. Finally, we see that the
performance of the proposed beta distribution based approximation is very close to
the accuracy of the GEV and Pearson approximations, and clearly outperforms the
other approximations methods with the exception of the gamma approximation.
The latter is shown to be slightly more accurate for the considered realization of
the predicted channel frequency response.

A quantitative measure of the approximation accuracy is obtained from the
Kullback-Leibler (KL) divergence, which is defined as [101]

D(p||q) =

ˆ ∞
−∞

p(x) ln
p(x)

q(x)
dx, (9.10)

where p(x) is the simulated pdf and q(x) denotes the approximating pdf. This
metric is always positive, and is a measure of the similarity between two probabil-
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Figure 9.1: CDF and CCDF of γeff (N = 64, m = 2).

ity distributions. A smaller value denotes a higher similarity between both pdfs.
However, the value of this metric is only defined if, for every value of x, q(x) = 0

implies that p(x) = 0 . Because the GEV and Pearson approximations are equal
to 0 in certain intervals, this condition cannot be guaranteed. Therefore we will
consider the Jensen-Shannon (JS) divergence [102]. This metric is also a mea-
sure of the similarity between two pdfs, but it does not have the restriction of the
KL-divergence. The JS-divergence is defined as

JSD(p||q) =
1

2
D(p||m) +

1

2
D(q||m), (9.11)

where m(x) is a pdf which is defined as m(x) = 1
2 (p(x) + q(x)). Table 9.2

shows the JS-divergence of the different approximating distributions, again for
Hp,k = 0.5 · (1+i)√

2
(∀k). The values of the JS-divergence are consistent with the

approximation accuracies observed from Fig. 9.1, which confirms the usefulness
of the JS-divergence as a similarity metric.

Fig. 9.1 and table 9.2 have shown the performance of the different approx-
imations for a single realization of Hp; however what really matters is which
approximation has the best performance averaged over Hp. Therefore, we have
generated 1000 independent realizations of Hp according to the following distri-
bution Nc(0,F(Rh − Re)FH), and averaged the corresponding JS-divergences
over these realizations. The results for the various approximating distributions can
be found in table 9.3, for the number of used subcarriers N ∈ {8, 64, 128}. For
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model JS-divergence

beta 3.19× 10−4

gamma 8.49× 10−5

lognormal 2.76× 10−3

Gaussian 6.09× 10−3

log-Gaussian 7.74× 10−3

GEV 7.31× 10−5

Pearson 4.32× 10−6

Table 9.2: JS-divergence (N = 64, m = 2).

model N = 8 N = 64 N = 128

beta 8.50× 10−3 1.41× 10−3 1.35× 10−3

gamma 4.37× 10−3 1.76× 10−3 1.71× 10−3

lognormal 3.12× 10−3 1.66× 10−3 1.79× 10−3

Gaussian 2.63× 10−2 4.42× 10−3 4.37× 10−3

log-Gaussian 2.08× 10−2 4.42× 10−3 3.59× 10−3

GEV 1.07× 10−3 8.33× 10−4 9.83× 10−4

Pearson 8.38× 10−4 1.15× 10−4 9.35× 10−5

Table 9.3: Average JS-divergence (m = 2).

all three values of N , we observe that the Pearson approximation has the lowest
JS-divergence, followed by the GEV approximation. The largest JS-divergence is
achieved for the Gaussian and log-Gaussian approximations. When N = 8 we
note that both the gamma and lognormal approximation are a better choice than
the beta approximation. For N = 64 or N = 128 the JS-divergence of the pro-
posed beta approximation is shown to be lower than for the gamma and lognormal
approximation, which indicates the beta approximation becomes more appropriate
when the number of subcarriers increases.

In table 9.4 we show the average JS-divergence for a varying number of bits
per subcarrier mk = m, k = 1, . . . , N . We compare a 4-QAM, 16-QAM and
64-QAM constellation where Es/σ

2
w is equal to 10, 15 and 20 dB, respectively.

We take a higher Es/σ
2
w for the higher order constellations, in order to reflect

that typically the operating SNR increases with the constellation size. The JS-
divergences for the different approximations show the same trends as before. Only
for 64-QAM we notice some differences, i.e., the beta approximation performs
slightly better than the GEV approximation, and the gamma distribution has a
slightly better accuracy than the beta distribution; however, the differences in JS-
divergence are almost negligible.
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model 4-QAM 16-QAM 64-QAM

beta 1.41× 10−3 8.46× 10−4 6.52× 10−4

gamma 1.76× 10−3 9.19× 10−4 6.31× 10−4

lognormal 1.66× 10−3 1.31× 10−3 1.09× 10−3

Gaussian 4.42× 10−3 3.28× 10−3 2.82× 10−3

log-Gaussian 4.42× 10−3 2.30× 10−3 1.50× 10−3

GEV 8.33× 10−4 7.36× 10−4 7.39× 10−4

Pearson 1.15× 10−4 4.25× 10−5 2.79× 10−5

Table 9.4: Average JS-divergence for mk = m = 2, 4 and 6, k = 1, . . . , N , with
corresponding Es/σ

2
w=10, 15 and 20 dB (N = 64).

9.4 Chapter Summary
This chapter proposed a new statistical model to approximate the distribution of
the effective SNR resulting from κESM when only outdated and imperfect CSI is
available at the TX. The proposed beta approximation is shown to have an accu-
racy which is slightly less than the more involved GEV and Pearson distributions,
but is more accurate than other often used approximations like the gamma, Gaus-
sian, log-Gaussian and lognormal distributions. When the number of subcarriers
is sufficiently large, the numerical results have shown that this approximation has
a high accuracy, independent of the chosen constellation size. This accurate model
provides the TX with a simple statistical description of the effective SNR, which
will be used in the following chapter to adapt the transmission parameters as a
function of the outdated and imperfect channel information.
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9.A Derivation of the Mean and Variance of Y
First we calculate the mean of Y as follows

E [Y ] = E

∑
k∈N

√
2mk
2∑

µ=1

αk,µe
−
Ek|Hp,k+(Bs)k|2(µdk,min)

2

4βσ2w


=
∑
k∈N

√
2mk
2∑

µ=1

αk,µE

e−Ekχk(µdk,min)
2

4βσ2w

 , (9.12)

where χk = |Hp,k + (Bs)k|2 is a random variable which is distributed according
to a scaled noncentral χ2 distribution. The moment-generating function of χk is

E
[
etχk

]
=

e

t|Hp,k|2
1−t(BBH )k,k

1− t(BBH)k,k
, (9.13)

where (BBH)k,k denotes the element at the kth row and the kth column of matrix

BBH . If we substitute t = −Ek(µdk,min)2

4βσ2
w

we obtain

E [Y ] =
∑
k∈N

√
2mk
2∑

µ=1

αk,µ
e

−|Hp,k|2 Ek
4βσ2w

(µdk,min)
2

1+
Ek

4βσ2w
(µdk,min)

2
(BBH )k,k

1 + Ek
4βσ2

w
(µdk,min)

2
(BBH)k,k

. (9.14)

For the variance we get

Var [Y ] = E
[
Y 2
]
− E [Y ]

2
, (9.15)

so we still have to calculate E
[
Y 2
]
,which gives

E
[
Y 2
]

= E

 ∑
k,l∈N

√
2mk
2∑

µ=1

√
2ml
2∑

λ=1

αk,µαl,λe
−
γk(µdk,min)

2

4β e−
γl(λdl,min)

2

4β


= E

[ ∑
k,l∈N ,k 6=l

√
2mk
2∑

µ=1

√
2ml
2∑

λ=1

αk,µαl,λe
−
γk(µdk,min)

2

4β e−
γl(λdl,min)

2

4β

+
∑
k∈N

√
2mk
2∑

µ=1

√
2ml
2∑

λ=1

αk,µαk,λe
−
γk(µ2+λ2)d2k,min

4β

]
, (9.16)
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where γk was defined in (9.2). The second term of this expression can be found
by substituting

t = −
Ek(µ2 + λ2)d2

k,min

4βσ2
w

, (9.17)

in (9.13), which gives

g(µ, λ, k) = E
[
e−

γk(µ2+λ2)d2k,min
4β

]

=
e

−|Hp,k|2 Ek
4βσ2w

(µ2+λ2)d2k,min

1+
Ek

4βσ2w
(µ2+λ2)d2

k,min
(BBH )k,k

1 + Ek
4βσ2

w
(µ2 + λ2)d2

k,min(BBH)k,k
. (9.18)

The first term of equation (9.16) can be validated with the aid of the following
function

f(t) = E
[
e
∑
tk|Hp,k+(Bs)k|2

]
, (9.19)

where t , [t1, . . . , tN ]T . If we define

A , diag (t1, . . . , tN ) , (9.20)

the function f(t) can be written as

f(t1, . . . , tN ) =

ˆ
1

πq
e−s

Hse(Hp+Bs)HA(Hp+Bs)d s. (9.21)

After the introduction of the following vector

c , (Iq −BHAB)−1BHAHp, (9.22)

this can be evaluated as follows

f(t) =

ˆ
1

πq
e−(s−c)H(Iq−BHAB)(s−c)

· eHH
p AHp+cH(Iq−BHAB)cd s

= |Iq −BHAB|−1eH
H
p AHp+cH(Iq−BHAB)c

·
ˆ

1

πq|Iq −BHAB|−1
e−(s−c)H(Iq−BHAB)(s−c)d s

= |Iq −BHAB|−1eH
H
p AHp+HH

p AB(Iq−BHAB)−1BHAHp , (9.23)

where in the last step we have used the fact that the integral of the complex Gaus-
sian probability density is equal to 1. To calculate the first term of equation (9.16),
we have to evaluate f(t) when

t = − Ek
4βσ2

w

(µdk,min)
2
ek −

El
4βσ2

w

(λdl,min)
2
el, (9.24)
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where ek and el denote the kth and lth column of IN , respectively. Using (9.15),
(9.16), (9.18), (9.23) and (9.24), we get

Var [Y ] =
∑

k,l∈N ,k 6=l

√
2mk
2∑

µ=1

√
2ml
2∑

λ=1

αk,µαl,λ

· f
(
− Ek

4βσ2
w

(µdk,min)
2
ek −

El
4βσ2

w

(λdl,min)
2
el

)

+
∑
k∈N

√
2mk
2∑

µ=1

√
2ml
2∑

λ=1

αk,µαk,λg(µ, λ, k)− E [Y ]
2
. (9.25)





10
Adaptive Coding and Modulation

using Imperfect Channel State
Information in BIC-OFDM systems

In this chapter (which is based on contributions [103] and [104]), we investigate re-
source allocation algorithms under the realistic assumption that the available chan-
nel state information (CSI) at the transmitter (TX) is imperfect due to estimation
errors and/or feedback delays. First, we introduce an optimal performance metric
for the secondary user BIC-OFDM system, called the expected goodput (EGP).
By using the accurate approximation derived in chapter 9, we succeed in deriving
a tractable and very accurate approximation for the EGP. This approximate EGP
(AEGP) is then used for the derivation of several resource allocation algorithms
which optimize the code rate, bit and energy allocation under a constraint on the
interference caused to the PU network. In the numerical results, we show that the
AEGP is far more accurate than previous attempts to model the GP in the presence
of imperfect CSI. Further, we verify that, in spite of the imperfect nature of the
available CSI, the derived resource allocation algorithms significantly increase the
goodput of the SU network, compared to a non-adaptive selection of the transmis-
sion parameters.

In section 10.1 we describe the cognitive BIC-OFDM system. In section 10.2,
we introduce the EGP metric, and discuss the statistical approximation of the
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κESM. The resource allocation algorithms which select the code rate and the en-
ergy and bit allocations per subcarrier are derived in section 10.3. The accuracy
of the EGP metric and the performance of the resource allocation algorithms are
validated in section 10.4. This chapter is concluded in section 10.5.

10.1 Cognitive BIC-OFDM System Model

We consider a SU network, which consists of a point-to-point OFDM link, that oc-
cupies the same bandwidth as a PU network containing NPU PU-RXs. Messages
are transmitted by means of a packet-oriented BIC-OFDM communication system
as described in chapter 4. We assume that the transmit energies are constrained by

N∑
k=1

Ek ≤ E(max), (10.1)

whereE(max) is the maximal transmit energy per OFDM symbol. We again define
the received SNR associated with the kth subcarrier at the FFT output as

γk ,
Ek|Hk|2
σ2
w

, (10.2)

and arrange the received SNRs into a vector SNR , [γ1, . . . , γN ] for further use.
Further, as not all N available subcarriers will necessarily be used for the trans-
mission, we make a distinction between the set {1, ..., N} of available subcarriers,
and the set N ⊆{1, ..., N} of active subcarriers. When the kth subcarrier is not
active (i.e., k /∈ N ), both the transmit energy Ek and the number of bits mk on
that subcarrier are set to 0.

As in the previous chapters, the available CSI at the TX is assumed to be im-
perfect. To make the description of our proposed approach quite general, we will
denote the CSI, which is available at the TX about the actual channel realization
H , [H1, . . . ,HN ]T , by the vector ICSI. We make the assumption that H and
ICSI are jointly zero-mean circularly symmetric Gaussian. It then follows that H

conditioned on ICSI is Gaussian, with expectation µH|CSI = EH [H|ICSI] and
covariance matrix CH|ICSI = EH

[
HHH |ICSI

]
− µH|ICSIµ

H
H|ICSI; note that

µH|ICSI corresponds to the MMSE estimate (3.25) of H based on ICSI. Some
examples of ICSI and the associated statistics are given in appendix 10.A.

Denoting by G(q)
k the channel gain from the SU-TX to the qth PU-RX, ex-

perienced by the kth subcarrier, the interference constraints can be expressed as∑
k∈N Ek|G

(q)
k |2 ≤ Γq for q ∈ Q , {1, . . . , NPU}. Note that this is an approxi-

mation compared to the interference constraints used in section 8.1.3.3. However,
this approximation is quite accurate for most subcarriers (more specifically, the
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inner subcarriers), as the delay spread of the channel gain from the SU-TX to the
qth PU-RX is often much smaller than the length of the OFDM symbol Ts.

We denote by ICSIPU = {ICSI
(q)
PU, q ∈ Q} the imperfect CSI available at

the SU-TX about its channels to the PU-RXs. As only ICSIPU and not the exact
channel gains G(q)

k are available at the SU-TX, it can happen that the interference
constraint at the PU-RXs is violated. Therefore, the interference constraints can
be satisfied only on average, i.e. for given ICSI

(q)
PU, the constraint is replaced by

EG(q)

[∑
k∈N

Ek|G(q)
k |2 |ICSI

(q)
PU

]
≤ Γq, q ∈ Q, (10.3)

where G(q) , [G
(q)
1 , . . . , G

(q)
N ]T . The expected value in (10.3) can be expressed

as

EG(q)

[∑
k∈N

Ek|G(q)
k |2 |ICSI

(q)
PU

]
=
∑
k∈N

Ek(|(µ(q)
G|ICSIPU

)k|2

+ (C
(q)
G|ICSIPU

)k,k), q ∈ Q, (10.4)

where we have assumed that the distribution of G(q) conditioned on ICSI
(q)
PU is

Gaussian with mean µ
(q)
G|ICSIPU

and covariance matrix C
(q)
G|ICSIPU

.

10.2 Goodput Performance Metric
The secondary user will try to optimize the goodput (GP), which was defined in
(4.13) as

GP(φ,SNR) =
Npr

NtotN

(∑
k∈N

mk

)
· (1− PER(φ,SNR)). (10.5)

As a performance measure of the SU network we consider the long-term average
of the goodput GPavg (4.14) over many channel realizations.

If perfect CSI were available at the TX (i.e., the TX knows the realizations of
its channels to the SU-RX and PU-RXs), the optimal way of selecting the trans-
mission mode φ and the energy allocation vector E , [E1, . . . , EN ]T as a function
of these realizations is to maximize (10.5) under the constraints on the SU trans-
mit energy and the interference at the PU-RXs, for the given realizations H and
{G(q), q ∈ Q}. This selection obviously maximizes the long-term average good-
put GPavg of the system.

However, when only imperfect CSI is available, the transmission parameters
(φ,E) must be selected as functions of ICSI and ICSIPU, rather than H and
{G(q), q ∈ Q}. Taking into account that for given φ and E, GP from (10.5) is
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a function of H, and that the joint probability density function of H, ICSI and
ICSIPU can be factored as

p(H, ICSI, ICSIPU) = p(H|ICSI)p(ICSI)p(ICSIPU), (10.6)

the long-term average goodput can be written as

GPavg = EICSI,ICSIPU

[
Npr

NtotN

(∑
k∈N

mk

)

· (1− EH [PER(φ,SNR)|ICSI])

]
. (10.7)

It follows from equation (10.7) that GPavg becomes maximum when for given
(ICSI, ICSIPU) the transmission parameters (φ,E) maximize the expression be-
tween brackets in (10.7), under the constraints (10.1) and (10.3). This is equivalent
to maximizing the expected goodput (EGP) metric, given by

EGP = EH [GP(φ,SNR)|ICSI]

=
Npr

NtotN

(∑
k∈N

mk

)
· (1− EH [PER(φ,SNR)|ICSI]) , (10.8)

which is the conditional expectation of GP for given ICSI and represents the op-
timal performance metric in terms of GPavg when only imperfect CSI is available
at the TX.

The EGP from (10.8) will be approximated by replacing PER(φ,SNR) by
PERAWGN(r, γeff), with γeff given by (4.25). The reference curves
PERAWGN(r, γeff) can be stored in a lookup table for each code rate r from the set
Dr. In order to compute the conditional expectation EH [PERAWGN(r, γeff)|ICSI],
we will use the approximation of Y , e−γeff/β which we proposed in chapter 9.
This means that Y conditioned on ICSI will be approximated by a random vari-
able Z which follows a beta distribution with shaping parameters a and b, which
are given by (9.7) and (9.8), respectively. Note that the distribution of Z depends
on the selected bit allocation through the variables ψk(µ), mk and dk,min. Us-
ing this approximating beta distribution, we obtain the approximate EGP (AEGP)
given by

AEGP =
Npr

NtotN

(∑
k∈N

mk

)
· (1− EZ [PERAWGN(r,−β ln(Z))]) . (10.9)

The expectation w.r.t. Z in (10.9) can be approximated by means of numerical
integration.
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10.3 Goodput Optimization
In this section we consider different algorithms the TX can employ to optimize the
code rate r, the energy allocation Ek and the bit allocation mk (∀k ∈ N ) such
that the AEGP from (10.9) is maximized, while satisfying the transmit energy
constraint (10.1) and the interference constraints (10.3) at the PU-RXs. These
algorithms assume that only imperfect CSI is available at the TX.

10.3.1 Uniform Energy and Bit Allocation

In this first subsection, we make the restriction that the bit and energy alloca-
tion are uniform, and that all N available subcarriers are actually used, i.e., N =

{1, ..., N}. For the bit and energy allocation this means that

∀k ∈ N : mk = m, Ek = E, (10.10)

where m ∈ Dm . Considering the constraints (10.1) and (10.3), the optimal uni-
form energy per subcarrier is given by

E = min

min
q∈Q

Γq

EG(q)

[∑
k∈N |G

(q)
k |2 |ICSI

(q)
PU

] , E(max)

|N |

 , (10.11)

where the expected value can be found from (10.4) and |N | denotes the number
of active subcarriers. The TX will calculate the AEGP (10.9) for every TM φ =

{m, r}, and then selects the TM φ = {m, r} which yields the largest AEGP. The
pseudo-code of this optimization is outlined in table 10.1.

10.3.2 Optimized Energy and Uniform Bit Allocation

In this subsection, we will adapt the previous algorithm such that the TX opti-
mizes the energy per subcarrier, while the bit allocation remains uniform. As
explained further, we will allow some of the subcarriers to be inactive, i.e., N ⊆
{1, 2, ..., N}. We first have a closer look at the EGP from (10.8) where PER(φ,SNR)

is replaced by PERAWGN(r, γeff), i.e.,

EGP ≈ Npr

NtotN

(∑
k∈N

mk

)
·
(

1− EH [PERAWGN(r,−β ln(Y (E)))|ICSI]
)
, (10.12)

where we have explicitly shown the dependence on the energy allocation vector
E. Because the PER is a convoluted function of the individual subcarrier ener-
gies, an exact optimization of this metric will be very hard to obtain. Therefore
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Optimization of E, m and r

Set AEGPopt = 0

Set E = min

(
minq∈Q

Γq∑
l∈N (|(µ(q)

G|ICSI
)l|2+(C

(q)

G|ICSI
)l,l)

, E
(max)

|N |

)
For m ∈ Dm

Set mk = m, ∀k ∈ N
For r ∈ Dr

Set AEGP according to (10.9)
If AEGP ≥ AEGPopt Then

Set AEGPopt = AEGP

Set ropt = r

Set mopt = m

End If
End For

End For

Table 10.1: Uniform energy and bit allocation.
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we suggest a more computationally efficient method, by optimizing the following
simplification of the EGP

EGP ≈ Npr

NtotN

(∑
k∈N

mk

)
· (1− PERAWGN(r,−β ln(EH [Y (E)|ICSI]))), (10.13)

where the expectation is now taken inside the logarithm. As PERAWGN(r, γeff)

decreases with increasing γeff , the maximization of (10.13) w.r.t. E is equiva-
lent to the minimization of EH [Y (E)|ICSI]. The latter function can be obtained
analytically as shown in (9.14):

EH [Y (E)|ICSI] =
1∑

l∈N ml

∑
k∈N

√
2mk
2∑

n=1

gk,n(Ek), (10.14)

where

gk,n(Ek) =
ψk(n)

2mk−1

exp

(
−|(µH|ICSI)k|2 Ek

4βσ2w
n2d2k,min

1+
Ek

4βσ2w
n2d2k,min(CH|ICSI)k,k

)
1 + Ek

4βσ2
w
n2d2

k,min(CH|ICSI)k,k
· (10.15)

So the optimized energy allocation that maximizes the simplified EGP in (10.13)
is found by solving the following optimization problem

E(opt) = arg minE

∑
k∈N

∑√
2mk
2

n=1 gk,n(Ek)

s.t.
∑
k∈N Ek ≤ E(max)

(10.3).

(10.16)

According to [4], an optimization problem is convex when both the constraints
and the objective function are convex. From (10.16), it is clear that the constraints
are convex, as they are linear in the components of E. Further, the convexity of
the objective function follows from the fact that the second derivative of gk,n(Ek)

with respect to Ek can be shown to be non-negative; hence, each term of the ob-
jective function is convex, so that the entire objective function is convex as well.
Therefore the optimization problem of (10.16) can be efficiently solved by using
optimization tools such as CVX [5].

For the optimization of the EGP, we slightly adapt the algorithm outlined
in table 10.1. We start by considering all available subcarriers as active, i.e.,
N = {1, ..., N}. For every possible TM φ = {m, r} the algorithm computes
the approximation (10.9) of the EGP, using as energy allocation the solution of
optimization problem (10.16). Because the energy allocation now depends on the
parameter m, it must now become part of the outer loop of the algorithm. For a
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given value ofm it might happen that for some k the optimized value of Ek equals
0. In this case, the corresponding subcarriers are removed from the active set N
by putting mk = 0, which also removes the large terms with Ek = 0 (i.e., γk = 0)
from Y for the considered bit allocation. Finally, the algorithm selects the TM and
the corresponding energy allocation yielding the largest value of the AEGP (10.9).

10.3.3 Uniform Energy and Greedy Bit Allocation

In this subsection we consider a uniform energy allocation according to (10.11)
and an optimized bit allocation per subcarrier.

We first consider the simplified expression for the EGP (10.13):

EGP ≈ Npr

NtotN

(∑
k∈N

mk

)
· (1− PERAWGN (r,−β ln(EH [Y (m,E)|ICSI]))) , (10.17)

where now the dependence on the bit and energy allocation vectors m and E is
explicitly shown. Considering the fact that Y (m,E) is given by

Y (m,E) =
1∑

k∈N mk

∑
k∈N

Ωk(mk, Ek), (10.18)

where Ωk(mk, Ek) is introduced in equation (4.26), we notice that the simpli-
fied EGP from (10.17) only depends on the bit allocation through the quantity∑
k∈N EH [Ωk(mk, Ek)|ICSI] and the sum

∑
k∈N mk , M(m). Because the

PER is a decreasing function of the effective SNR γeff , the maximal value of the
simplified EGP, for a fixed value of M(m), will be achieved for the bit allocation
m and energy allocation E which minimizes

arg min
E,m

∑
k∈N

EH [Ωk(mk, Ek)|ICSI]

= arg min
E,m

∑
k∈N

√
2mk
2∑

n=1

gk,n(mk, Ek), (10.19)

where gk,n(mk, Ek) is given by (10.15), and the dependence on mk is shown ex-
plicitly. However this represents a mixed integer programming problem, which
is computationally very hard. In order to obtain a computationally efficient solu-
tion, we base our algorithm on the iterative suboptimal greedy algorithm described
in [105].

In the current iteration we modify the bit allocation from the previous iteration
by adding 2 bits (because we restrict our attention to square QAM constellations,
representing an even number of bits) to the subcarrier which leads to the smallest
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increase of
∑
k∈N EH [Ωk(mk, Ek)|ICSI]. For the resulting bit and energy allo-

cation, we determine the code rate r which leads to the highest AEGP (10.9). The
iterative algorithm is initialized with mk = 0 for all available subcarriers (yield-
ing M(m) = 0), and continues until all N available subcarriers have mmax bits
(yielding M(m) = mmaxN ), where mmax is the largest allowed number of bits
in the constellation. At that point we select the code rate r, the energy and bit
allocation which correspond to the value of M(m) for which the AEGP (10.9) is
maximal.

Now we outline how the increase of
∑
k∈N EH [Ωk(mk, Ek)|ICSI] is evalu-

ated. Let us denote by m the value of the bit allocation vector and byN the set of
active subcarriers, both referring to the previous iteration. We now introduce the
quantity δ(mk+2)

k (m) which is defined as the increase of (10.19) when the bit allo-
cation on subcarrier k increases from mk to mk + 2. If subcarrier k was not active
in the previous iteration (i.e., mk = 0), the set of active subcarriers increases from
N (previous iteration) to N ∪ {k} (current iteration), yielding the increase

δ
(2)
k (m) = EH

[
Ωk(2, Ek(m + 2ek))

+
∑
l∈N

(Ωl(ml, El(m + 2ek))− Ωl(ml, El(m)))|ICSI
]
, (10.20)

where E(m) and E(m+2ek) denote the uniform energy allocations from (10.11)
corresponding to the bit allocations m and m + 2ek, respectively, related to the
previous and the current iteration; because the corresponding set of active subcar-
riers has changed, E(m) and E(m + 2ek) are different, which makes in (10.20)
the summation over l non-zero. If subcarrier k was already active in the previous
iteration (i.e., mk > 0), we obtain

δmk+2
k (m) = EH

[
Ωk(mk + 2, Ek(m + 2ek))

− Ωk(mk, Ek(m))|ICSI
]
. (10.21)

As in this case the set of active subcarriers equals N for both the previous and
the current iteration, the uniform energy allocation from (10.11) satisfies E(m +

2ek) = E(m). In the current iteration, the increments δmk+2
k (m) are computed

for all k ∈ {1, . . . , N}; then the subcarrier k which yields the lowest δmk+2
k (m)

(k ∈ {1, . . . , N}) is selected, and the bit allocation for this subcarrier and M(m)

are both increased by 2, compared to the previous iteration.

10.3.4 Suboptimal Joint Energy and Bit Allocation

The greedy bit allocation algorithm introduced in the previous subsection requires
the reevaluation of the values of δmk+2

k (m) (∀k ∈ {1, . . . , N}) each time the set
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N of active subcarriers is modified. The complexity would increase even further
if we combined each step of the greedy bit allocation algorithm with the optimized
energy allocation introduced in section 10.3.2, which requires solving a convex
optimization algorithm instead of a simple evaluation of equation (10.11).

To circumvent this complexity, we present a faster, less computationally inten-
sive algorithm. We initialize the algorithm with the optimal uniform energy and
bit allocation from section 10.3.1. Then, as a first step we calculate for this spe-
cific uniform bit allocation the optimized energy allocation vector resulting from
optimization problem (10.16), for N = {1, ..., N}. In the second step, we opti-
mize the bit allocation and code rate according to the greedy algorithm outlined
in 10.3.3. Because during this step the energy allocation vector E is kept to its
value resulting from the previous step, we can drop the dependency of δmk+2

k on
m, because δmk+2

k now depends only on mk for given k and, therefore, has to be
evaluated only once for each mk (mk ≥ 0,∀k ∈ {1, . . . , N}). This considerably
reduces the complexity. For more details, we refer to the pseudo-code of this algo-
rithm shown in table 10.2. As a final step, the optimized energy allocation vector
E is recalculated according to section 10.3.2, for the optimized TM resulting from
the second step. The resulting values for the code rate r, energy allocation E and
bit allocation m are then used for the transmission.

10.4 Numerical Results

We consider a communication system characterized by the parameters from table
10.3, which uses orthogonal frequency-division multiple access (OFDMA) to sup-
port several users. Here we concentrate on the performance of a user to which
48 data subcarriers are allocated, which is equal to one subchannel in the FUSC
permutation mode of WiMax [106]. These subcarriers are considered to be evenly
spaced across the 384 inner data subcarriers. The channel impulse responses be-
have according to the ITU vehicular A model [13], with time variations according
to Jakes’ model [12]. We consider a single PU-RX (so we can drop the index q) and
the channels between the different nodes are characterized by Tr(E

[
hhH

]
) = 1

and Tr(E
[
ggH

]
) = 10−3, where h and g denote the channel impulse responses

corresponding to the channel frequency responses H and G, respectively; this
yields E

[
|Hk|2

]
= 1 and E

[
|Gk|2

]
= 10−3 for k ∈ {1, ..., N}. In this section,

we will consider three types of CSI, i.e., estimated CSI, delayed CSI, and estimated
and delayed CSI (see appendix 10.A); we always assume that for both ICSI and
ICSIPU the same type of CSI is available at the TX. We note however that this is
not a requirement for the proper functioning of our proposed algorithms.

The SNR is defined as

SNR ,
E(max)

Nσ2
w

. (10.22)
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Optimization of E, m and r

Set AEGPopt = 0

Set r and m according to section 10.3.1
Set E according to (10.16)
For k ∈ {1, . . . , N}

For mk ∈ Dm
Set δmkk according to (10.21)

End For
Set δmmax+2

k =∞
End For
Set mk = 0 (∀k ∈ {1, . . . , N})
For M ∈ {2, 4, . . . ,mmaxN}

Set k = arg min{δm1+2
1 , . . . , δmN+2

N }
Set mk = mk + 2

Update N
For r ∈ Dr

Set AEGP according to (10.9)
If AEGP ≥ AEGPopt Then

Set AEGPopt = AEGP

Set ropt = r

Set mopt = m

End If
End For

End For
Set E according to (10.16)

Table 10.2: Suboptimal joint energy and bit allocation.
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Parameter Value

Data subcarriers (N ) 48

Sampling rate (1/T ) 5.6 MHz
FFT size (Ncar) 512

Length of cyclic prefix (ν) 64

Convolutional code (171, 133)

Code rates (Dr) 1/2, 2/3, 3/4, 5/6

Constellation sizes (Dm) 2, 4, 6 bits
Information bits (Np) 1024

CRC (NCRC) 32

Table 10.3: System parameters.

As a performance indicator for the different resource allocation schemes we will
display (10.7), which denotes the average of the actual GP w.r.t. the joint probabil-
ity density function of H, ICSI and ICSIPU. This averaging involves the genera-
tion of realizations of ICSI and ICSIPU, from which the corresponding (m,E, r)

are computed. For each such realization of (m,E, r), we generate realizations of
H according to the conditional distribution p(H|ICSI). For each such realiza-
tion of H we transmit and decode one packet using the transmission parameters
(m,E, r), and verify whether a decoding error has occurred; averaging the indica-
tor of a decoding error over the realizations of H yields EH [PER(φ,SNR)|ICSI]

corresponding to the considered realization of (m,E, r).

10.4.1 Accuracy of AEGP

In this subsection, we investigate how accurately the AEGP metric (10.9) approx-
imates the EGP from (10.8). As a reference we compare the accuracy with the
predicted GP (PGP) and the IC-κESM introduced in [103] and [107], respectively.
Both approximations are explained in appendix 10.B. The IC-κESM is an approx-
imation that only applies to delayed CSI. For this reason, we will compare the
accuracy of these three metrics for the scenario where the TX only has delayed
CSI available (see appendix 10.A.2). The following simulation parameters are
used: SNR = 10 dB, Γq/σ

2
w = 0 dB and the value of fdτd is equal to 0.05.

We generate 1000 realizations of ICSI and ICSIPU (see appendix 10.A), and
for each realization the corresponding optimum uniform bit and energy allocation
and code rate are obtained as described in section 10.3.1. Then for each realiza-
tion of ICSI, ICSIPU and the corresponding (m,E, r), we compute (i) the AEGP
from (10.9); (ii) the PGP; (iii) the IC-κESM; (iv) the EGP from (10.8), where the
average conditioned on ICSI is replaced by an arithmetical average over 1000
realizations of H, generated according to the conditional distribution p(H|ICSI)
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AEGP PGP IC-κESM

E [ε] 1.87 · 10−2 5.48 · 10−1 5.57 · 10−1√
Var[ε] 2.07 · 10−2 2.45 · 10−1 1.95 · 10−1√
E [ε2] 2.79 · 10−2 6.00 · 10−1 5.90 · 10−1

Table 10.4: Accuracy of the AEGP, PGP and IC-κESM metric (SNR= 10 dB,
Γq/σ

2
w = 0 dB and fdτd = 0.05).

(see appendix 10.A), and for each realization of H it is verified whether the re-
ceived packet is correctly decoded; and (v) the differences εAEGP = |AEGP −
EGP|, εPGP = |PGP − EGP| and εIC-κESM = |IC-κESM − EGP|. Table
10.4 shows the average, the standard deviation and the root mean-squared (RMS)
value of εAEGP, εPGP and εIC-κESM, resulting from the simulations; these num-
bers should be compared to the average of EGP over the CSI, which equals 1.42

bits/subcarrier/OFDM symbol. From table 10.4 we observe that the AEGP is a
very accurate estimate of the EGP, outperforming both the PGP and the IC-κESM
by about one order of magnitude in terms of RMS value. This result validates
the accuracy of both the κESM and our approximation of Y by a beta-distributed
random variable. The high accuracy of the AEGP metric makes it a very attractive
objective function for the optimization of the SU transmission parameters. Further,
we also note that being able to accurately describe the expected performance of a
link will also have further benefits for more high level algorithms such as schedul-
ing as the probability, of correctly allocating a user to a channel that satisfies its
demands, will be increased.

10.4.2 Uniform Energy and Bit Allocation

The performance of the uniform energy and bit allocation algorithm described in
section 10.3.1 is investigated. As a reference we will also show the performance
in the case of perfect CSI and also for non-adaptive transmission.

In the case of perfect CSI, the optimal uniform energy allocation is given by

E = min

(
min
q∈Q

Γq∑
k∈N |G

(q)
k |2

,
E(max)

|N |

)
. (10.23)

Using this uniform energy allocation, the GP metric (10.5) is computed for each
possible TM {m, r}, but with PER(φ,SNR) replaced by PERAWGN(r, γeff). The
TM which corresponds to the largest GP is then considered optimal.

In the case of non-adaptive transmission, the TX has no CSI available. This
is equivalent to the case where the pdf of the channel gains conditioned on ICSI

reduces to the unconditional pdf of the channel gains. Hence, the uniform energy
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allocation is obtained as

E = min

min
q∈Q

Γq

EG(q)

[∑
k∈N |G

(q)
k |2

] , E(max)

|N |

 . (10.24)

For the above energy allocation, the TX selects, for the current value of SNR
(10.22), the TM {m, r} which leads to the highest value of EH [GP], with GP
given by (10.5).

Now we will apply the algorithm described in section 10.3.1. As a first ex-
ample, we assume that the TX only has estimated CSI available (see appendix
10.A.1). The variance of the estimation error related to the PU and SU channels
is equal to σ2

e = 0, 10, 20 and 30 dB. For the interference threshold we con-
sider Γq/σ

2
w = 0 dB. The results are shown in Fig. 10.1. We observe that the

performance of the SU network clearly depends on the variance of the estimation
error σ2

e . For σ2
e = 30 dB there is almost no gain by exploiting CSI compared

to a non-adaptive transmission algorithm, because the CSI is unreliable. However
when the value of σ2

e decreases we consistently see a clear gain in performance by
exploiting the CSI. When σ2

e = 0 dB, we notice there is a negligible difference
between the algorithm using estimated CSI or perfect CSI. Further, we also note
that there is almost no gain compared to non-adaptive transmission for small SNR.

In the following example, the TX only has access to delayed CSI (see appendix
10.A.2). The performance of the SU network is shown in Fig. 10.2 for a value of
fdτd equal to 0.01, 0.05, 0.1 and 0.2. It is clear from Fig. 10.2 that when fdτd is
equal to 0.2 there is almost no gain in performance compared to the non-adaptive
transmission algorithm, because the channel variations are too fast. However for
lower values of fdτd the GP of the SU network increases considerably. When
fdτd = 0.01 the GP almost equals the performance of the algorithm which uses
perfect CSI. In Fig. 10.3 we show the difference in performance between optimiz-
ing the AEGP, the PGP (as in [103]) or the IC-κESM (as in [107]). We show the
performance for fdτd equal to 0.05 and 0.2. For fdτd = 0.05 we can see a small
performance benefit by optimizing the AEGP compared to the less accurate PGP
and IC-κESM. When fdτd = 0.2 we notice that the performance improvement
we get by using the AEGP or IC-κESM becomes significantly larger compared
to using the PGP. In this case, the performance achieved by using the PGP drops
even below the performance we would get by using the non-adaptive approach.
This demonstrates that the PGP approximation is unable to accurately describe the
expected goodput and is thus not suited as an objective function for the optimiza-
tion problems, especially in the case of fast channel variations. While optimizing
the IC-κESM is shown to achieve a similar performance as the optimization of the
AEGP, the IC-κESM is far less general than the proposed AEGP as it can only be
used in the scenario with delayed CSI described in appendix 10.A.2.



CHAPTER 10 10-15

0 10 20 30 40
0

1

2

3

SNR (dB)

G
P

(b
it
s/
su
b
ca
rr
ie
r/
O
F
D
M

sy
m
b
ol
)

perfect

σ2
e = 0 dB

σ2
e = 10 dB

σ2
e = 20 dB

σ2
e = 30 dB

non-adaptive

Figure 10.1: GP using estimated CSI (σ2
e = 0, 10, 20 and 30 dB).
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Figure 10.2: GP using delayed CSI (fdτd =0.01, 0.05, 0.1 and 0.2).
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Figure 10.3: Comparison between AEGP, PGP and IC-κESM using delayed CSI
(fdτd =0.05 and 0.2).

In the last example, we combine the delayed CSI with the estimated CSI (see
appendix 10.A.3). We choose fdτd = 0.2 and σ2

e = 0 dB. We investigate the
performance for a different number (P ) of available, delayed channel estimates,
with corresponding delays τd, 2τd, ..., P τd. The performances are shown in Fig.
10.4 for P = 1, 2, 3 and 4. We observe that the performance of the SU network
can be significantly improved when the CSI consists of multiple delayed channel
estimates. In this example, the GP increases by about 20 percent when going
from P = 1 to P = 4 for high SNRs. We note that it is not possible to reach
the performance of an algorithm with perfect CSI, by increasing the number of
estimates. As is clear from Fig. 10.4, there is no noticeable performance gain by
going from P = 3 to P = 4.

In Fig. 10.5 we investigate the impact of the interference threshold. We
show the performance of the uniform bit and energy allocation algorithm when
Γq/σ

2
w = 0, 5 and 10 dB. The resulting goodput is shown for the following sim-

ulation variables: fdτd = 0.2, σ2
e = 0 dB and P = 3. We observe that the value

of the interference threshold has a huge impact on the performance of the SU net-
work. A too conservative value of the interference threshold will severely limit the
achievable goodput of the SU network.
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Figure 10.4: GP using estimated and delayed CSI (σ2
e = 0 dB, fdτd = 0.2,

P = 1, 2, 3 and 4).
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Figure 10.5: GP for different interference thresholds. (σ2
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Figure 10.6: GP achieved by optimized and uniform energy allocation (σ2
e = 0

dB, fdτd = 0.2, P = 3, Γq/σ
2
w = 0 dB).

10.4.3 Optimized Energy and Uniform Bit Allocation

In this subsection, the optimized energy (OE) allocation from (10.16) and the uni-
form energy (UE) allocation are compared in terms of goodput. The following sim-
ulation parameters are chosen: σ2

e = 0 dB, fdτd = 0.2, P = 3 and Γq/σ
2
w = 0 dB.

Fig. 10.6 shows the goodput resulting from the uniform energy and bit allocation
described in section 10.3.1, along with the goodput corresponding to the OE allo-
cation for the same uniform bit (UB) allocation. We notice that for high SNR the
OE allocation improves the goodput by about 8 percent compared to UE allocation.

10.4.4 Greedy Bit Allocation

Now we investigate the performance of the SU network in the case where the
SU-TX optimizes the bit allocation per subcarrier. The simulation parameters are
chosen as follows: σ2

e = 0 dB, fdτd = 0.2, P = 3 and Γq/σ
2
w = 0 dB. We

compare the performance of uniform bit and energy allocation (UB+UE), with our
algorithm introduced in section 10.3.3 which combines greedy bit allocation with
uniform energy allocation (GB+UE). Further, we also consider the performance of
the suboptimal algorithm introduced in section 10.3.4 which combines the greedy
bit allocation and optimized energy allocation (GB+OE). From Fig. 10.7 we no-
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Figure 10.7: Comparison of the goodput achieved by GB and UB allocation
(σ2

e = 0 dB, fdτd = 0.2, P = 3, Γq/σ
2
w = 0 dB).

tice that there is a considerable increase in GP when we apply GB instead of UB
allocation. At low SNR the TX is now capable of deactivating subcarriers with
poor instantaneous channel gains, which considerably decreases the PER and im-
proves GP. At higher SNR the TX can now better utilize the full capacity at each
subcarrier by allocating a larger number of bits to a subcarrier with favorable chan-
nel gains. An even larger gain at higher SNR can be obtained by combining the
GB with the OE allocation. In Fig. 10.7, we notice that the gain compared to uni-
form bit and energy allocation (UB+UE) amounts to 10 percent for greedy bit and
uniform energy allocation (GB+UE), and becomes nearly 20 percent for greedy
bit and optimized energy allocation (GB+OE). This additional gain is achieved by
giving the TX the freedom of reallocating the energy over the subcarriers, which
improves the performance in several ways: it can happen for example that subcar-
riers with less favorable channel gains now receive more energy, or that subcarriers
causing strong interference at the PU are switched off to allow for a higher total
transmit energy. We do notice however that at lower SNRs the GB+OE algorithm
performs slightly worse than the GB+UE algorithm. This is a consequence of our
suboptimal approach outlined in section 10.3.4. However the performance loss at
low SNR is very small, and an optimal joint bit and energy allocation algorithm
would require a much higher complexity.
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10.4.5 Computational Complexity

To illustrate their complexity, we will compare the average computation times of
the different resource allocation algorithms described in section 10.3. The SNR is
fixed at 20 dB and the simulation parameters are σ2

e = 0 dB, fdτd = 0.2, P = 3

and Γq/σ
2
w = 0 dB. In Fig. 10.8, the computation time of the algorithms is

shown as a function of the number of subcarriers N . We notice a slight increase
in computation time for the optimized energy allocation (UB+OE) compared to
the uniform energy allocation (UB+UE). However, a more significant increase in
computation time occurs when implementing the greedy bit allocation. The greedy
bit with uniform energy allocation (GB+UE) described in section 10.3.3 clearly
becomes unfeasible when the number of subcarriers becomes too high. Compared
to GB+UE, the complexity is significantly reduced when using the suboptimal
joint energy and bit allocation (GB+OE) described in 10.3.4, whose computation
time increases much more slowly with N .

10.5 Chapter Summary

In this chapter, we have considered adaptive coding and modulation in a cogni-
tive BIC-OFDM system, under the realistic assumption that only imperfect CSI is
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available. In order to tackle this problem, we introduced an optimum performance
metric called the expected goodput (EGP), which is the expectation of the goodput,
conditioned on the imperfect CSI.

A major advantage of this metric is that it allows the TX to account for the
imperfections of the CSI by selecting its transmission parameters such that the
best average goodput is achieved. To make the optimization of the code rate, bit
and energy allocation tractable, we proposed a very accurate approximation of
this performance metric, referred to as approximate EGP (AEGP). The numerical
results clearly show the resource allocation algorithms based on the AEGP have
at least the same performance as the non-adaptive algorithms and, in most cases,
clearly outperform them. Finally, we also show that, depending upon the quality of
the available CSI, the proposed algorithms can come very close to the performance
of algorithms with perfect CSI.
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10.A Examples of Different Types of Imperfect CSI
at the Transmitter

In the following, the impulse response of a generic channel between the SU-TX
and any RX of the PU or SU network will be defined as in section 9.1. This means
that, for given t, the samples h(mT, t), m = 0, . . . , ν, of the channel impulse vec-
tor h(t) , [h(0, t), . . . , h(νT, t)]T are assumed to be independent circularly sym-
metric zero-mean Gaussian complex random variables; assuming stationarity w.r.t.
the variable t, the covariance matrix of h(t) is given by1 Rh , diag(σ2

0 , . . . , σ
2
ν).

The time variations of the channel are described by Jakes’ model [12], which
gives E [h(mT, t+ τd)h∗(mT, t)] = J0(2πfdτd)σ2

m, where J0(x) represents the
zeroth-order Bessel function of the first kind, and fd denotes the Doppler fre-
quency.

If F ∈ CNcar×(ν+1) denotes the Fourier matrix introduced in (8.6), the time-
varying frequency response of the channel can then be written as H(t) = Fh(t)

which has the covariance matrix RH = FRhF
H . The kth component of H(t)

denotes the channel gain which affects the kth subcarrier at time instant t.
In the following subsections, we consider a few possible examples of the type

of CSI available at the TX. Each case leads to different expressions for the param-
eters µH|ICSI and CH|ICSI, which completely describe the random variable H(t)

conditioned on the available ICSI as follows

H(t) = µH|ICSI(t) + n(t), (10.25)

where n(t) ∼ Nc(0,CH|ICSI). The probability density function p(H(t)|ICSI)

is then given by Nc(µH|ICSI(t),CH|ICSI). If only N of the Ncar subcarriers
are available at the TX, as is the case in the numerical section, we can define a
smaller µH|ICSI and CH|ICSI which only contain the elements corresponding to
the available subcarriers.

10.A.1 Estimated CSI

In this subsection we determine the quantities µH|ICSI and CH|ICSI in the case of
channel estimation errors. The TX only has access to an estimated frequency re-
sponse H̃(t), which means that ICSI = H̃(t). The estimated frequency response
H̃(t) is decomposed as

H̃(t) = H(t) + ẽ(t), (10.26)

where ẽ(t) and H(t) are statistically independent, ẽ(t) ∼ Nc(0, σ2INcar
). In

section 10.4, we will use the value of the normalized estimation error variance

1Note that if we have a number of paths L < ν + 1, only L diagonal elements of Rh are strictly
greater than 0.
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σ2
e , σ2/Tr(E

[
hhH

]
). Using the results from section 3.3, it can be shown that

µH|ICSI = RH(RH + σ2INcar
)−1H̃(t), (10.27)

and

CH|ICSI = RH −RH(RH + σ2INcar)
−1RH. (10.28)

Note that in the case of perfect estimation (i.e., σ2 = 0) we obtain perfect CSI,
as (10.26), (10.27) and (10.28) reduce to H̃(t) = H(t), µH|ICSI = H(t) and
CH|ICSI = 0.

10.A.2 Delayed CSI

Now we assume that the ICSI is outdated, because of a delay in the feedback
to the TX. At time instance t, the delayed CSI available at the TX is denoted by
H(t− τd), where τd denotes the delay. In this case, it can be shown that

µH|ICSI = J0(2πfdτd)H(t− τd), (10.29)

and
CH|ICSI = (1− J0(2πfdτd)2)RH. (10.30)

When τd = 0, we obtain perfect CSI, as (10.29) and (10.30) reduce to µH|ICSI =

H(t) and CH|ICSI = 0.

10.A.3 Estimated and Delayed CSI

In this section we assume that the CSI available at the TX is both delayed and
estimated. We also consider the possibility that the TX has access to multiple
delayed estimates. With P denoting the number of available estimates, the CSI
which is available at the TX is given by

ICSI = [H̃(t− τd)T . . . H̃(t− Pτd)T ]T , (10.31)

where H̃(t− kτd) (∀k ∈ {1, . . . , P}) is defined as in (10.26). Defining the matri-
ces

X , [J0(2πfdτd), J0(2π2fdτd) . . . , J0(2πPfdτd)]⊗RH, (10.32)

Y , J⊗RH + IP ⊗ σ2INcar
, (10.33)

where J ∈ CP×P with entries (J)k,l , J0(2πfdτd(k − l)), k = 1, . . . , P ; l =

1, . . . , P , and ⊗ indicates the Kronecker product, it can be shown that
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µH|ICSI = XY−1ICSI, (10.34)

and

CH|ICSI = RH −XY−1XH . (10.35)

10.B PGP and IC-κESM
In the numerical results, we compare our approach to the following two approxi-
mations: the predicted goodput metric (PGP) and the IC-κESM. The PGP, intro-
duced in [103], is obtained by neglecting the uncertainty on H given the vector
ICSI, and is calculated by substituting H by µH|ICSI in the expression for Y
and using this deterministic value of Y to replace the random variable Z in (10.9).
Thus, we get

PGP =
Npr

NtotN

(∑
k∈N

mk

)
· (1− PERAWGN(r,−β ln(YPGP))) , (10.36)

where

YPGP =
1∑

l∈N ml

∑
k∈N

√
2mk
2∑

n=1

ψk(n)

2mk−1
e
−
Ek|(µH|ICSI)k|

2
n2d2k,min

4βσ2w . (10.37)

The IC-κESM metric was introduced in [107] and assumes the following chan-
nel model

H(t) = J0(2πfdτd)H(t− τd) +
√

1− J0(2πfdτd)2e, (10.38)

where e ∼ Nc(0,RH). From appendix 10.A it is clear that this approximation
only applies to delayed CSI. We get

IC− κESM =
Npr

NtotN

(∑
k∈N

mk

)
· (1− PERAWGN(r,−β ln(YIC−κESM))) ,

(10.39)
where

YIC−κESM

=
1∑

l∈N ml

∑
k∈N

√
2mk
2∑

n=1

ψk(n)

2mk−1

exp

(
−J0(2πfdτd)2|(H(t−τd))k|2 Ek

4βσ2w
n2d2k,min

1+
Ek

4βσ2w
n2d2k,min(1−J0(2πfdτd)2)(RH)k,k

)
1 + Ek

4βσ2
w
n2d2

k,min (1− J0(2πfdτd)2) (RH)k,k
.

(10.40)



11
Concluding Remarks and Ideas for

Future Work

In this chapter, we formulate the main conclusions from this doctoral thesis (sec-
tion 11.1) and present some ideas for future work (Section 11.2). Finally, section
11.3 gives an overview of our publications related to this dissertation.

11.1 Main Conclusions

As the demand in wireless applications is continuously increasing, an efficient
use of the spectrum is more important than ever. For this reason, we turned our
attention towards various resource allocation algorithms in cognitive underlay net-
works, which are designed to coexist with other networks that are present in the
same frequency band.

In this dissertation, we have investigated the performance of several allocation
schemes that allow a dynamic adaptation of the transmission parameters, in order
to increase the spectral efficiency. However, a dynamic allocation scheme requires
the availability of channel state information (CSI) at the transmitter. As providing
accurate CSI to the transmitter will lead to additional overhead for the network,
we have investigated how the quality of this CSI influences the performance of the
network.

First, we focused on the optimization of information-theoretical metrics. We
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considered both cooperative networks and multiple antenna systems, as these in-
crease the reliability of the communication over the wireless fading channel.

• For a multi-antenna relay network, we proposed several distributed algo-
rithms that minimize the exact outage probability of the network, while pro-
tecting the quality of service of the primary user network. These distributed
algorithms optimize the beamforming at the relay nodes and the allocation
of the transmit energy at the source node. When the available CSI at the
transmitter is not perfect, the proposed resource allocation algorithm allows
the transmitter to take these imperfections into account. This method en-
sures that the secondary user network can maintain the limit on the interfer-
ence to the primary user network, regardless of the quality of the available
CSI, while minimizing its outage probability. The proposed algorithms were
shown to outperform several algorithms presented in literature. Further, we
found that the use of multi-antenna relays significantly decreases the outage
probability of a secondary user network which uses the underlay paradigm.
It became clear that the secondary user network considerably benefits from
having at least imperfect channel knowledge of the channel gains to the
primary user receivers, and having relay nodes with a number of antennas
larger than the number of primary user antennas. The level of CSI about the
channels to the destination node was found to have a smaller impact on the
outage probability.

• We compared the outage probability resulting from resource allocation algo-
rithms that consider an average or a peak interference constraint. It became
clear that the outage probability of the secondary user network can be signif-
icantly lowered when an average interference constraint is imposed instead
of a peak interference constraint. When all relay nodes transmit in turn,
the computational complexity of the average interference-based and peak
interference-based approaches was found to be comparable. However, even
for a simple network, it appeared to be quite difficult to find a resource al-
location algorithm that combines the use of average interference constraints
with a relay selection algorithm. The latter observation is important, because
the use of multiple relay nodes, transmitting in turn, can lead to a significant
performance loss for low SNRs.

• We proposed an approximation of the outage probability for a cooperative
multicarrier network, which was shown to be more accurate than the often
used Gaussian approximation. This approximation is used for the optimiza-
tion of the transmission rate between the secondary user source, which has
imperfect CSI available, and destination node under a fixed outage prob-
ability constraint. This approach led to a centralized resource allocation
algorithm, which implies that a) each node of the network has to receive a
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periodical update from a central unit about its transmission parameters and
b) the central unit requires CSI about all the relevant channels in the network.
However, even if a centralized solution is not practical, our solution still pro-
vides an interesting benchmark to which the spectral efficiency achieved by
more practical algorithms can be compared. Further, it was shown that tak-
ing a sufficiently large memory P of the channel predictor at the transmitter
significantly reduces the loss in spectral efficiency, compared to the case of
perfect CSI.

Next, we optimized the goodput of a practical packet-based secondary user trans-
mission system. The goodput is a practical metric that expresses the ratio of the
expected number of correctly received information bits to the actual transmission
time. We assumed that the packet-based system uses bit-interleaved coded modu-
lation (BICM), as this allows for a high flexibility of the system by separating the
encoding and the constellation mapping. Further, we also made use of a technique,
called effective SNR mapping, which provides an analytical approximation of the
goodput of the system.

• As the effective mapping technique has originally been introduced under
the assumption of perfect CSI, we extended this technique to include im-
perfect CSI, by proposing an approximation based on the beta distribution.
We showed that our proposed beta approximation outperforms often used
approximations such as the gamma, Gaussian, log-Gaussian and lognormal
distributions, while providing an accuracy that is only slightly worse, com-
pared to the more involved generalized extreme value and Pearson distribu-
tions.

• We introduced the expected goodput metric, which we defined as the expec-
tation of the goodput, conditioned on the imperfect CSI that is available at
the transmitter. By using this metric, it becomes possible to derive resource
allocation algorithms that are able to select the code rate, constellation and
transmit energy per subcarrier in such a manner that the best average good-
put is achieved. In most cases, it was found that our proposed resource
allocation algorithms clearly outperform non-adaptive algorithms. Further,
by incorporating the knowledge about the imperfect CSI into the optimiza-
tion problem, we showed that the resulting goodput can come very close to
the goodput achieved by algorithms with perfect CSI.

However, there are still some important topics that we did not discuss. In the
following section, we will present our ideas about some possibilities for future
work.
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11.2 Future Work

11.2.1 Imperfect CSI at the Receiver

In practice, the CSI available at the transmitter and at the receiver will both contain
errors. Because the CSI errors at the receiver are often smaller than those at the
transmitter [3], in this dissertation we made the assumption that the receiver had
perfect CSI available, and only the CSI at the transmitter was imperfect. Still,
the performance that can be achieved by our algorithms in the scenario where the
receiver has imperfect CSI available remains to be investigated. We expect that for
relatively small errors in the CSI at the receiver, the performance of the algorithms
will still be close to optimal. However, when the errors in the CSI at the receiver
become large, it will be necessary to adapt our resource allocation algorithms. We
like to mention that even in this case, our proposed algorithms provide a useful
upper bound on the performance, which allows a system designer to assess the
loss occurred by a receiver with imperfect CSI.

11.2.2 Multiple Secondary Users

In this work, we have restricted our attention to a single secondary user network.
However, it is possible to extend the algorithms to a scenario where multiple sec-
ondary user networks coexist.

However, when optimizing the performance of multiple users there is no longer
a single objective function that we can optimize. For these problems, we come
into the domain of multi-objective optimization. As each user has its own objec-
tive function, the network has to choose how it will divide its resources between
the users. If we want to maximize the worst performance among all users, the
following optimization problem can be used

max min
i
fi(E)

s.t. intf constraints,
(11.1)

where E
∆
= [E1, . . . , EK ]T , fi(E) denotes the performance metric of the ith user,

i = 1, . . . ,K, as a function of the energy allocation vector E and “intf constraints”
denote the interference constraints that protect the primary user network. It is clear
that the function fi(E) in general does not only depend on the energy allocation
Ei of the ith user, but also on the energy allocation Ej (j 6= i) of the other users.
The reason for this is that the different secondary users also cause interference
to each other. This means that choosing a higher transmit energy will now not
only cause more interference to the primary user network, but also to the other
secondary users.
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The approach in (11.1) is not always the ideal solution. The proposed opti-
mization problem in (11.1) treats every secondary user equally, however this can
lead to an unsatisfactory result. If ri denotes the minimum required performance
of the ith user, i = 1, . . .K, it is possible that some users are allocated more re-
sources than strictly required (ri < fi(E)), while other users might not achieve
their required performance criterion (ri > fi(E)).

Therefore, in some cases the following objective function is more suitable∑
i

ωifi(E), (11.2)

where ωi denotes the weight that is given to user i. By tuning these weights, the
system designer can prioritize certain users. This allows the network to differenti-
ate between users.

If we want to make sure that each user has a certain minimum performance,
the following optimization problem can be used

min
E1,...,EK

∑
i

Ei

s.t. fi(E) ≥ ri
intf constraints.

(11.3)

The objective function in (11.3) is the minimization of the total energy consump-
tion of the network, which is for example useful when the network is battery oper-
ated. However, the objective function in (11.3) can also be chosen similar to (11.2)
such that we can choose a different priority for each user, while guaranteeing the
required minimum performance of each user.

11.2.3 Primary User Interference

We have not given much attention to the interference that the secondary user net-
work receives from the primary user network. We briefly mentioned that this in-
terference can be taken into account by increasing the variance of the noise at
the secondary user receiver, which requires only a minimal adaptation of the al-
gorithms proposed in this dissertation: a) The algorithms now have to take into
account that the combined variance of the noise and interference can be different
at each relay and destination node, b) the secondary user transmitters have to know
the value of these combined variances.

However, this method is only a good first approximation, if we can assume
that the interference coming from the primary user transmitters is approximately
normally distributed. This is the case when the interference comes from multiple
independent primary user transmitters, as the central limit theorem can be applied
in this scenario.
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When the interference at the secondary user receivers cannot be considered
Gaussian, which can be the case when the number of primary user transmitters is
small, we have to take a different approach. One possible solution is to model the
SNR at a secondary user receiver as

Es|h|2
Ep|g|2 + σ2

, (11.4)

where σ2 denotes the noise variance, Es and Ep denotes the transmit energy per
symbol of the secondary user network and primary user network, respectively.
The scalar values h and g denote the channel gains between the secondary user
transmitter and secondary user receiver, and between the primary user transmitter
and secondary user receiver, respectively. In this approach, the secondary user
network requires (an estimate of) the instantaneous channel gain g. However, as
it is not always easy to obtain the channel gain g in a practical network, it can be
necessary in some cases to take into account that the estimate of the channel gain
g is imperfect.

Depending on the amount of interference that is present at the secondary user
receivers, there are several approaches that can be pursued. When the interference
at the secondary user receivers is low, it can be feasible in some cases to just
neglect the interference, in which case a small performance loss will be incurred.
However, when the primary user transmitters are relatively close to the secondary
user receivers, it can be necessary to take some countermeasures in the secondary
user network. For example, when multiple receive antennas are present at the
secondary user nodes, as in chapter 5, zero-forcing beamforming instead of the
maximum ratio combining can be applied, in order to eliminate the interference
caused by the primary user network.

11.2.4 Carrier Frequency Offset

In this dissertation we have made the assumption that there is no carrier frequency
offset between a transmitter and a receiver. However, the performance of mul-
ticarrier systems is very sensitive to carrier frequency offset. This means that an
accurate carrier frequency synchronization between transmitter and receiver is nec-
essary.

However, in some applications low-latency is key. In these cases, a time-
consuming synchronization protocol between the transmitter and receiver is not al-
ways desirable and the use of orthogonal frequency-division multiplexing (OFDM)
may not be the best choice.

For these reasons, other waveforms that are more robust against synchroniza-
tion errors are being considered for fifth generation (5G) networks. One such
waveform is filter bank multicarrier (FBMC) [108]. In this waveform, each sub-
carrier is individually filtered. This approach makes the multicarrier system much
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more robust against intercarrier interference caused by frequency offset. How-
ever in order to achieve a steep filtering of the subcarriers, a large filter length is
required.

A tradeoff between OFDM and FBMC is universal filtered multicarrier (UFMC),
which filters contiguous groups of subcarriers, called subbands, instead of individ-
ual subcarriers. This approach leads to an increased robustness against frequency
offsets compared to OFDM, without the need for the long filters that FBMC re-
quires. We already made some contributions in the following papers [109, 110]
about this topic. In these papers, the resource allocation algorithm from chapter 10
is adapted to a bit interleaved coded UFMC system. These papers also investigate
the impact of a carrier frequency offset on the goodput of the network. In [110],
the resource allocation takes the carrier frequency offset into account by modeling
it as a random variable, with known distribution.

11.2.5 Bit-Interleaved Coded Modulation with Iterative Decod-
ing

In [111], it was shown that the bit error rate of the BICM can be improved by
performing iterative decoding (BICM-ID). Reconsidering the equation (4.4) de-
scribing the soft demapping, we get

p(yk(i)|cj,k(i) = b,Hk) =
∑
α∈Xk

p(yk(i)|xk(i) = α,Hk) Pr(xk(i) = α|cj,k(i) = b).

(11.5)
In chapter 4, we set Pr(xk(i) = α|cj,k(i) = b) equal to 1/2mk−1 for α ∈ χjk,b,
where mk denotes the number of bits on the kth subcarrier. This approach as-
sumes that all symbols in χjk,b are equally likely, implying that we do not have any
a priori information about the symbols. However, when using iterative decoding,
it is possible for the decoder to feed back the estimated values of the probabilities
Pr(cj,k(i) = b) to the demapper. The quantity Pr(cj,k(i) = b) denotes the proba-
bility that the jth coded bit of the symbol xk(i) equals b. This allows the modulator
to calculate Pr(xk(i) = α|cj,k(i) = b) as follows

Pr(xk(i) = α|cj,k(i) = b) =

{∏
l 6=j Pr(cl,k(i) = fl(α)), α ∈ χjk,b

0, α /∈ χjk,b
, (11.6)

where fj(α) denotes the jth bit of the symbol α, and the events cj,k(i) = fj(α)

(j ∈ {1, . . . ,mk}) are assumed to be independent because of the use of a bit
interleaver.

For the non-iterative BICM system, we have used Gray mapping. This map-
ping function has the nice property that the Hamming distances between the bit
labels of constellation points at minimum Euclidean distance are minimized. This
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Figure 11.1: Gray mapping with perfect a priori information.
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Figure 11.2: Set partitioning with perfect a priori information.

property is perfect for the non-iterative BICM system. However, in the case of the
iterative BICM system, the demapper now receives feedback information from the
decoder about the coded bits, which has a huge impact on the properties that we
require from a mapping function [112]. To illustrate this point, we assume that the
demapper has perfect a priori information available about all the bits except the
one bit we are trying to detect. In Fig. 11.1 and 11.2 we show the various symbol
pairs in a 8-PSK constellation for the Gray mapping and set partitioning, respec-
tively. For example, if we assume that the second and third coded bit are known at
the demapper, we can divide the constellation into four separate pairs as shown in
the left of Fig. 11.1. The value of the second and third coded bit determines which
pair the demapper considers for the detection of the first bit. The center and right
part of Fig. 11.1 and 11.2 show the pairs for the detection of the second and third
bit, respectively.

From Fig. 11.1 and 11.2, we notice that the Euclidean distance between the
two points from a pair is larger for the set partitioning than for the Gray mapping.
This means that when a priori information about the coded bits is present at the
demapper, the set partitioning can lead to a higher goodput, compared to the Gray
mapping. However, when the a priori information at the demapper is wrong, it is
possible that error propagation will occur. In this case, set partitioning can lead to
a goodput that is lower than the goodput achieved by Gray mapping. However, a
good convolutional code can provide a high reliability for the decoded bits, which
significantly reduces the probability of error propagation.
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However, when a mapping different from the Gray mapping is used, equa-
tion (4.23), which was used for the derivation of the cumulant generating function
based effective SNR mapping (κESM), does no longer hold. Further, the itera-
tive decoding will also lead to an actual goodput which differs from the goodput
predicted by the effective SNR. For these reasons, we have to revise the κESM
function for BICM-ID.

A possible way to derive an approximation for BICM-ID, is by considering
expression (4.22)

κ(1/2) = lnE
[
e−γkd

2(xk,x
′
k,j)/4|SNR

]
, (11.7)

where d(xk, x
′
k, j) is the Euclidean distance between the symbol xk and x′k. We

will now assume that the feedback information from the decoder is perfect. This
means that we will define the symbol x′k as the symbol that corresponds to the label
of xk but where the bit in the jth position is a 1 instead of a 0. If we then calculate
expression (11.7) for the quadrature amplitude modulation (QAM) constellation
shown in Fig. 3.2, we get

κ(1/2) = ln

(
1∑

k∈N mk

∑
k∈N

1

2mk−1

3∑
µ=1

ψk(µ)e−γk(µdk,min)2/4

)
, (11.8)

where
ψk(µ) = 24δµ−1 + 8δµ−3, (11.9)

instead of
ψk(µ) = 24δµ−1 + 8δµ−2, (11.10)

in the case of a non-iterative receiver.
However, note that the expression for κ(1/2) can become more complicated

for other labeling methods. For example, if we consider the random labeling
shown in Fig. 11.3. The expression for κ(1/2) becomes

κ(1/2) = ln

 1∑
k∈N mk

∑
k∈N

1

2mk−1

∑
µ∈S

ψk(µ)e−γk(µdk,min)2/4

 , (11.11)

where

ψk(µ) = 6δµ−1+5δµ−
√

2+8δµ−2+3δµ−
√

5+2δµ−
√

8+4δµ−3+3δµ−
√

10+δµ−
√

13

(11.12)
and S = {1,

√
2, 2,
√

5,
√

8, 3,
√

10,
√

13}. Notice that the summation of κ(1/2)

becomes more involved, but the expression itself does not change.
In Fig. 11.4, we show the pdf of the log-likelihood ratio (LLR) defined in (4.3)

for a 16-QAM constellation with both Gray and random labeling when perfect
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Figure 11.3: 16-QAM with random labeling.

feedback information is assumed and the transmitted bit equals zero. We assume
an AWGN channel and a ratio Es/σ

2 = 12 dB. In the figure, we also show the
Gaussian approximation N(4κ(1/2),−8κ(1/2)), discussed in [59]. We can see
that this approximation is tight for the tail of the LLR. As the tail of the LLR
is related to the error probability, this tail is exactly the region we are interested
in. Further, the fact that the Gaussian distribution is a good approximation of
the tail of the distribution of the LLR, is an essential result on which the κESM
mapping function is based. Because the Gaussian approximation also appears to
be tight in the case with perfect feedback information, it makes us hopeful that the
algorithms proposed in chapter 10 can be easily adapted to operate in a system that
uses an iterative BICM receiver. However, it remains to be validated how well this
approximation will perform when the received feedback from the decoder is not
perfect.

11.2.6 BICM with Turbo Codes

In this dissertation, we have investigated the goodput of a BICM system that uses
convolutional codes. In [58], where the κESM function was originally proposed,
the authors also considered the possible use of a turbo code instead of a convolu-
tional code. Thus, using a turbo code instead of a convolutional code would not
drastically change our allocation algorithms.

However, some differences have to be taken into account. First, a small perfor-
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mance gain can be achieved when using multiple parallel interleavers, instead of
a single interleaver [113]. The use of multiple interleavers allows the transmitter
to map the systematic bits to the most protected bit positions in the constellation.
As the systematic bits are very important in the iterative decoding of the turbo
decoding algorithm, this strategy allows for a small gain in the goodput.

Further, in order to decode the turbo codes, the receiver requires an iterative
decoder. Thus, the decoder will be more complicated than a regular convolutional
decoder. The advantage of using turbo codes however, is that they achieve a given
error performance at a considerably lower SNR, compared to convolutional codes.
This could be very beneficial for underlay networks, where the secondary user
network has to limit the interference to the primary user network.

Finally, for BICM with turbo codes it is also possible to iterate between the
demapper and the decoder as is the case in BICM-ID. However, the possible gain
that can be achieved is lower in this case, as the operating point of the turbo codes
is already very close to the capacity of the channel [113], which means that there
is only very little room for improvement.

11.3 Publications

Our work has been presented in the following refereed international journal and
conference publications:
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Journal Publications

• IEEE Transactions on Wireless Communications: [71, 114]

• EURASIP Journal on Wireless Communications and Networking: [104]

Conference Publications

• IEEE International Conference on Communications (ICC): [103]

• IEEE International Symposium on Personal, Indoor, and Mobile Radio Com-
munications (PIMRC): [81, 86]

• IEEE Wireless Communications and Networking Conference (WCNC): [79]

• IEEE Symposium on Communications and Vehicular Technologies in the
Benelux: [96, 110]

• IEEE Globecom Workshops: [109]

• European Wireless Conference: [107]
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