Advanced search
1 file | 1.37 MB

Rapid prediction of total petroleum hydrocarbons concentration in contaminated soil using vis-NIR spectroscopy and regression techniques

(2018) SCIENCE OF THE TOTAL ENVIRONMENT. 616-617. p.147-155
Author
Organization
Keywords
Total petroleum hydrocarbons, vis-NIR spectroscopy, Chemometric methods, Partial least squares regression, Random forest regression, DIFFUSE-REFLECTANCE SPECTROSCOPY, NEAR-INFRARED-SPECTROSCOPY, PARTIAL LEAST-SQUARES, GAS-CHROMATOGRAPHY, RANDOM FORESTS, IDENTIFICATION, SENSOR

Downloads

  • (...).pdf
    • full text
    • |
    • UGent only
    • |
    • PDF
    • |
    • 1.37 MB

Citation

Please use this url to cite or link to this publication:

Chicago
Douglas, RK, Said Nawar, MC Alamar, Abdul Mouazen, and F Coulon. 2018. “Rapid Prediction of Total Petroleum Hydrocarbons Concentration in Contaminated Soil Using vis-NIR Spectroscopy and Regression Techniques.” Science of the Total Environment 616-617: 147–155.
APA
Douglas, R., Nawar, S., Alamar, M., Mouazen, A., & Coulon, F. (2018). Rapid prediction of total petroleum hydrocarbons concentration in contaminated soil using vis-NIR spectroscopy and regression techniques. SCIENCE OF THE TOTAL ENVIRONMENT, 616-617, 147–155.
Vancouver
1.
Douglas R, Nawar S, Alamar M, Mouazen A, Coulon F. Rapid prediction of total petroleum hydrocarbons concentration in contaminated soil using vis-NIR spectroscopy and regression techniques. SCIENCE OF THE TOTAL ENVIRONMENT. 2018;616-617:147–55.
MLA
Douglas, RK et al. “Rapid Prediction of Total Petroleum Hydrocarbons Concentration in Contaminated Soil Using vis-NIR Spectroscopy and Regression Techniques.” SCIENCE OF THE TOTAL ENVIRONMENT 616-617 (2018): 147–155. Print.
@article{8545326,
  author       = {Douglas, RK and Nawar, Said and Alamar, MC and Mouazen, Abdul and Coulon, F},
  issn         = {0048-9697},
  journal      = {SCIENCE OF THE TOTAL ENVIRONMENT},
  keywords     = {Total petroleum hydrocarbons,vis-NIR spectroscopy,Chemometric methods,Partial least squares regression,Random forest regression,DIFFUSE-REFLECTANCE SPECTROSCOPY,NEAR-INFRARED-SPECTROSCOPY,PARTIAL LEAST-SQUARES,GAS-CHROMATOGRAPHY,RANDOM FORESTS,IDENTIFICATION,SENSOR},
  language     = {eng},
  pages        = {147--155},
  title        = {Rapid prediction of total petroleum hydrocarbons concentration in contaminated soil using vis-NIR spectroscopy and regression techniques},
  url          = {http://dx.doi.org/10.1016/j.scitotenv.2017.10.323},
  volume       = {616-617},
  year         = {2018},
}

Altmetric
View in Altmetric
Web of Science
Times cited: