Dear Prof. Dr. Vanhove

You have successfully submitted your contribution for the EMIM 2017. This is the transmission report. You can make changes on your submission until the deadline. To modify your submission you need to log in to the control center. The login data for the control center has been sent to the corresponding author by e-mail.

Looking forward to meeting you in Cologne. For further information on programme, speaker, travel www.emim.eu.

Data:

ID: #232
Topic: Neuroimaging > Disease model
Type of presentation: Oral or Poster presentation
Keywords: Multimodal imaging, Rat model for brain metastasis

Authors:
Main author: de Meulenaere Valerie
Presenting author: Vanhove Christian
Correspondence author: Vanhove Christian
Authors including in correspondence: de Meulenaere Valerie
Access rights*: De Meulenaere Valerie (<valerie.demeulenaere@ugent.be>)

*This author already has access rights for control center or the access data were sent automatically by the system to this author.

Your submission:

Multimodal imaging in an experimental rat model for brain metastasis

de Meulenaere Valerie¹, Vanhove Christian², Neyt Sara³, Vandeghinste Bert³, Decrock Elke⁴, de Wever Olivier⁵, Descamps Benedicte², Deblaere Karel¹

¹Ghent University, Department of Radiology and Nuclear Medicine - Ghent, Belgium
²Ghent University, IBITECH - Medisip - Infinity lab - Ghent, Belgium
³MOLECUBES NV - Ghent, Belgium
⁴Ghent University, Basic Medical Sciences - Physiology group - Ghent, Belgium
⁵Ghent University, Laboratory of Experimental Cancer Research - Ghent, Belgium

Introduction

Metastatic brain tumors are a severe problem in the treatment of patients with breast carcinoma. Preclinical models can play an important role in unravelling the underlying mechanisms behind the metastatic process and evaluation of new therapies. We developed a rat model for brain metastasis that allows follow-up by MRI. Injection of cancer cells labeled with iron oxide particles, allows tracking from the single-cell stage until the appearance of full-blown metastases (1). Potential metastasis development outside the brain is evaluated with PET and CT.
Methods

MDA-MB-231br/EGFP human breast cancer cells were labeled with micron-sized particles of iron oxide (MPIO; 1µm). 13 female nude rats (Crl:NIH-Foxn1rnu, Charles River) were intracardially injected with 100,000 of these labeled cells at the age of 5 weeks (2).

MRI was performed on a 7T system (PharmaScan) at day 1, and then weekly until 10 weeks post-injection, taking human endpoints into account. T2*W images were acquired one day post-injection to show the initial distribution of MPIO-labeled cells in the brain. T2W and contrast-enhanced T1W sequences were acquired to visualize the brain metastases.

A static whole-body 18F-FDG PET-CT (Triumph-II, Trifoil, 37MBq, 30 minutes uptake, 60 minutes acquisition) was performed to determine metastasis development outside the brain. For detection of bone metastases full body spiral high-resolution CT acquisitions were performed (X-CUBE, MOLECUBES NV) with 460 µA tube current and 50 kVp tube voltage, resulting in a 7 minute acquisition time. Acquisitions were reconstructed into a 1400x1400x4000 matrix with 50 µm voxel size using an FDK-based algorithm (3).

Results

At week 3 to 4 the first signs of brain metastasis development were visible as hyperintensities on T2W images in all animals. The metastases visible on T2W images could be correlated to their corresponding hypointensities on T2*W images. Whole-body PET imaging suggested hot spots in the lungs of 2 animals. Cellular alterations in the lung were confirmed with hematoxylin and eosin staining. Bone metastases were detected in 11 out of 13 animals with CT evaluation.

Conclusions

Our aim was to develop a rat model for brain metastasis. However, early formation of metastases outside the brain was observed in the lungs and bone, as evidenced by PET and CT, respectively. This indicates that this model is currently not suited for investigating brain metastasis and associated treatment strategies. Therefore, the brain metastatic propensity of the cell line will be optimized by in vivo passaging.

(1) De Meulenaere et al. Abstracts WMIC Seoul 2014
(2) Yoneda et al. J Bone Miner Res 2001. 16: 1486-1495

Acknowledgement

The MDA-MB-231br/EGFP cell line was a kind gift from Dr. P. Steeg from the National Cancer Institute, Bethesda.

Figure 1:

Figure 2:
A: PET-CT images. B: Hematoxylin and eosin staining of lung tissue. C: High resolution CT images.
ESMI - European Society for Molecular Imaging
Management Office
Doris Kracht
phone: +49 221 78966180
e-mail: office@e-smi.eu

Technical support:
EventClass GmbH
phone: +49 351 30900031
e-mail: abstract@eventclass.com