Advanced search
2 files | 2.88 MB Add to list

Multivariate statistical analysis for the identification of potential seafood spoilage indicators

(2018) FOOD CONTROL. 84. p.49-60
Author
Organization
Keywords
Hierarchical cluster analysis, Intelligent packaging, Principal components analysis, Partial least squares regression analysis, Selected-ion flow-tube mass spectrometry, SHRIMP CRANGON-CRANGON, SHELF-LIFE, MODIFIED ATMOSPHERE, VOLATILE COMPOUNDS, ELECTRONIC NOSE, BROCHOTHRIX-THERMOSPHACTA, QUALITY CHANGES, DEGREES-C, STORAGE, MS

Downloads

  • Kuuliala FC 2018 84.pdf
    • full text
    • |
    • open access
    • |
    • PDF
    • |
    • 1.18 MB
  • (...).pdf
    • full text
    • |
    • UGent only
    • |
    • PDF
    • |
    • 1.69 MB

Citation

Please use this url to cite or link to this publication:

MLA
Kuuliala, Lotta et al. “Multivariate Statistical Analysis for the Identification of Potential Seafood Spoilage Indicators.” FOOD CONTROL 84 (2018): 49–60. Print.
APA
Kuuliala, L., Abatih, E., Ioannidis, A.-G., Vanderroost, M., De Meulenaer, B., Ragaert, P., & Devlieghere, F. (2018). Multivariate statistical analysis for the identification of potential seafood spoilage indicators. FOOD CONTROL, 84, 49–60.
Chicago author-date
Kuuliala, Lotta, Emmanuel Abatih, Angelos-Gerasimos Ioannidis, Mike Vanderroost, Bruno De Meulenaer, Peter Ragaert, and Frank Devlieghere. 2018. “Multivariate Statistical Analysis for the Identification of Potential Seafood Spoilage Indicators.” Food Control 84: 49–60.
Chicago author-date (all authors)
Kuuliala, Lotta, Emmanuel Abatih, Angelos-Gerasimos Ioannidis, Mike Vanderroost, Bruno De Meulenaer, Peter Ragaert, and Frank Devlieghere. 2018. “Multivariate Statistical Analysis for the Identification of Potential Seafood Spoilage Indicators.” Food Control 84: 49–60.
Vancouver
1.
Kuuliala L, Abatih E, Ioannidis A-G, Vanderroost M, De Meulenaer B, Ragaert P, et al. Multivariate statistical analysis for the identification of potential seafood spoilage indicators. FOOD CONTROL. 2018;84:49–60.
IEEE
[1]
L. Kuuliala et al., “Multivariate statistical analysis for the identification of potential seafood spoilage indicators,” FOOD CONTROL, vol. 84, pp. 49–60, 2018.
@article{8543149,
  author       = {Kuuliala, Lotta and Abatih, Emmanuel and Ioannidis, Angelos-Gerasimos and Vanderroost, Mike and De Meulenaer, Bruno and Ragaert, Peter and Devlieghere, Frank},
  issn         = {0956-7135},
  journal      = {FOOD CONTROL},
  keywords     = {Hierarchical cluster analysis,Intelligent packaging,Principal components analysis,Partial least squares regression analysis,Selected-ion flow-tube mass spectrometry,SHRIMP CRANGON-CRANGON,SHELF-LIFE,MODIFIED ATMOSPHERE,VOLATILE COMPOUNDS,ELECTRONIC NOSE,BROCHOTHRIX-THERMOSPHACTA,QUALITY CHANGES,DEGREES-C,STORAGE,MS},
  language     = {eng},
  pages        = {49--60},
  title        = {Multivariate statistical analysis for the identification of potential seafood spoilage indicators},
  url          = {http://dx.doi.org/10.1016/j.foodcont.2017.07.018},
  volume       = {84},
  year         = {2018},
}

Altmetric
View in Altmetric
Web of Science
Times cited: